
Introduction to Debugging the FreeBSD Kernel

John H. Baldwin
Yahoo!, Inc.

Atlanta, GA 30327
jhb@FreeBSD.org, http://people.FreeBSD.org/˜jhb

Abstract

Just like every other piece of software, the
FreeBSD kernel has bugs. Debugging a ker-
nel is a bit different from debugging a user-
land program as there is nothing underneath
the kernel to provide debugging facilities such
as ptrace() or procfs. This paper will give a
brief overview of some of the tools available
for investigating bugs in the FreeBSD kernel.
It will cover the in-kernel debugger DDB and
the external debugger kgdb which is used to
perform post-mortem analysis on kernel crash
dumps.

1 Introduction

When a userland application encounters a
bug the operating system provides services for
investigating the bug. For example, a kernel
may save a copy of the a process’ memory
image on disk as a core dump. An operating
system may also provide APIs for one process
to analyze the state of another process. Using
these services, debugging tools such as gdb [1]
can be written.

Operating system kernels have bugs just
like userland applications. A key difference,
however, is that operating system kernels are
not always able to rely on a separate piece of
software to provide debugging services. As a
result, kernels generally must provide their
own specialized support for debugging ser-
vices. The FreeBSD kernel provides several
services such as crash messages, crash dumps,
the /dev/kmem device, a remote GDB inter-
face, and a self-contained in-kernel debugger
called DDB [2]. These services can then be

used either directly by the user or indirectly
via other tools such as kgdb [3].

The Kernel Debugging chapter of the
FreeBSD Developer’s Handbook [4] covers
several details already such as entering DDB,
configuring a system to save kernel crash
dumps, and invoking kgdb on a crash dump.
This paper will not cover these topics. In-
stead, it will demonstrate some ways to use
FreeBSD’s kernel debugging tools to investi-
gate bugs.

2 Kernel Crash Messages

The first debugging service the FreeBSD
kernel provides is the messages the kernel
prints on the console when the kernel crashes.
When the kernel encounters an invalid condi-
tion (such as an assertion failure or a memory
protection violation) it halts execution of the
current thread and enters a “panic” state also
known as a “crash”. The kernel will always
print a message on the console summarizing
the reason for the crash. For many crashes
this summary message is all the kernel out-
puts. Figure 1 contains the crash message for
a simple assertion violation. In this case the
message indicates that a thread attempted to
sleep while sleeping is prohibited.

Some crashes output more detailed mes-
sages to the console. Crashes caused by a
CPU exception generally output several de-
tails. For example, if a thread in the ker-
nel dereferences a pointer into unmapped
memory (such as a NULL pointer) then the
crash messages will include the invalid ad-
dress. Figure 2 contains the crash messages
for an amd64 page fault. This particular page

panic: Trying sleep, but thread marked as sleeping prohibited

Figure 1: Example Assertion Failure Crash

fault was the result of a NULL pointer deref-
erence in the net.inet.tcp.pcblist sysctl
handler. It was caused by a race condi-
tion where a struct tcpcb was freed in one
thread while another thread was in the sysctl
handler.

The first key piece of data is the fault vir-
tual address. It is the invalid memory ad-
dress that caused the fault. In this case
the fault address is indicative of a NULL

pointer derefence since its value is very small.
The instruction pointer indicates the pro-
gram counter value where the fault occurred.
This can be used either with gdb(1) or
addr2line(1) to determine the corresponding
source line. The current process lists the com-
mand name and PID of the process that was
executing when the fault occurred.

3 Live Debugging with DDB

Another debugging tool provided by the
FreeBSD kernel is the in-kernel debugger
DDB. DDB is an interactive debugger that
allows the user to execute specific commands
to inspect various details of the running ker-
nel. It is able to resolve global symbols to ad-
dresses and control execution via breakpoints
and single stepping. It is also extensible since
new commands may be added at compile
time. Details about several of the commonly
used DDB commands may be found in the
ddb(4) manpage [2].

3.1 Inspecting Processes and
Threads

One of the best ways to get an overview
of a system’s state from DDB is to examine
the current state of individual processes and
threads. DDB provides several commands to
do this. First, the ps command will display
a list of all the processes and threads in the

system. The listing includes a summary of
the state of each thread including any lock
the thread is blocked on or a wait channel on
which the thread is sleeping. More specific
details about individual processes may be ob-
tained via the show proc command. This
command accepts a single argument that is
either a direct pointer to a struct proc or a
process ID (PID). Similarly, the show thread

command provides details about an individ-
ual thread and accepts either a direct pointer
to a struct thread or a thread ID (TID).
Figure 3 shows a truncated list of processes
and threads in various states. Figure 4 shows
more detailed information about the first pro-
cess in the list and one of its threads.

A very important part of a thread’s state is
the stack trace. A stack trace provides a bit
of history of where the thread has been in the
past. It can also help explain how a thread
arrived at its current state. DDB provides a
trace command to obtain the stack trace of
single thread. With no aguments it will pro-
vide a trace of the current thread. If an argu-
ment is specified then it may be either a TID
or a PID. If the argument is a PID, then the
first thread from the indicated process will be
used. Figure 5 shows the stack trace for the
thread blocked on the def lock. The trace in-
dicates that the thread attempted to acquire
the lock in the aptly named mtx deadlock

function.

3.2 Investigating Deadlocks

Debugging deadlocks requires determining
which resources threads are waiting on and
then analyzing those dependencies to find
a cycle. One source of deadlocks is mis-
use of locking primitives such as mutexes.
DDB provides several commands for analyz-
ing locking primitives and the dependency re-
lationships between threads and locks.

First, DDB provides commands to directly
inspect the state of locks and the queues of

Fatal trap 12: page fault while in kernel mode

cpuid = 0; apic id = 00

fault virtual address = 0x4

fault code = supervisor read, page not present

instruction pointer = 0x8:0xffffffff80359af8

stack pointer = 0x10:0xffffffffa3cbb550

frame pointer = 0x10:0xffffffffa3cbb570

code segment = base 0x0, limit 0xfffff, type 0x1b

= DPL 0, pres 1, long 1, def32 0, gran 1

processor eflags = interrupt enabled, resume, IOPL = 0

current process = 31466 (netstat)

trap number = 12

panic: page fault

Figure 2: Example amd64 Page Fault

db> ps

pid ppid pgrp uid state wmesg wchan cmd

954 0 0 0 LL (threaded) crash2

100144 L *abc 0xffffff0001288dc0 [crash2: 3]

100143 L *jkl 0xffffff0001288c80 [crash2: 2]

100142 L *ghi 0xffffff0001288be0 [crash2: 1]

100055 L *def 0xffffff0001288d20 [crash2: 0]

812 0 0 0 SL - 0xffffffff80673a20 [nfsiod 0]

771 769 771 26840 Ss+ ttyin 0xffffff00011b9810 tcsh

769 767 767 26840 S select 0xffffff00018ca0d0 sshd

767 705 767 0 Ss sbwait 0xffffff00016ed94c sshd

...

10 0 0 0 RL (threaded) idle

100005 Run CPU 0 [idle: cpu0]

100004 Run CPU 1 [idle: cpu1]

100003 Run CPU 2 [idle: cpu2]

100002 Run CPU 3 [idle: cpu3]

Figure 3: Example DDB ps Output

db> show proc 954

Process 954 (crash2) at 0xffffff0001354000:

state: NORMAL

uid: 0 gids: 0

parent: pid 0 at 0xffffffff806538e0

ABI: null

threads: 4

100144 L *abc 0xffffff0001288dc0 [crash2: 3]

100143 L *jkl 0xffffff0001288c80 [crash2: 2]

100142 L *ghi 0xffffff0001288be0 [crash2: 1]

100055 L *def 0xffffff0001288d20 [crash2: 0]

db> show thread 100055

Thread 100055 at 0xffffff00013869c0:

proc (pid 954): 0xffffff0001354000

name: crash2: 0

stack: 0xffffffffae213000-0xffffffffae216fff

flags: 0x4 pflags: 0x200000

state: INHIBITED: {LOCK}

lock: def turnstile: 0xffffff0001288d20

priority: 224

Figure 4: Inspecting a Process and Thread in DDB

db> tr 100055

Tracing pid 954 tid 100055 td 0xffffff00013869c0

sched_switch() at sched_switch+0x15d

mi_switch() at mi_switch+0x215

turnstile_wait() at turnstile_wait+0x24c

_mtx_lock_sleep() at _mtx_lock_sleep+0xe0

_mtx_lock_flags() at _mtx_lock_flags+0x7a

mtx_deadlock() at mtx_deadlock+0xb4

crash_thread() at crash_thread+0x138

fork_exit() at fork_exit+0x12a

fork_trampoline() at fork_trampoline+0xe

--- trap 0, rip = 0, rsp = 0xffffffffae23ed30, rbp = 0 ---

Figure 5: Example DDB Stack Trace

threads waiting for locks. The show lock

command takes the address of a lock (either a
mutex [5], read-mostly lock [6], reader/writer
lock [7], shared/exclusive (sx) lock [8], or
lockmgr lock [9]) as its argument and displays
details about the lock including the current
owner, if any. The show turnstile com-
mand takes the address of a mutex, read-
mostly lock or reader/writer wlock as its ar-
gument. If there is a turnstile associated
with the lock, then it will display the lists
of threads waiting on the specified lock. In
Figure 3, four threads from process 954 are
stuck in a deadlock cycle. In Figure 6 the
relationships between the threads from that
process and the def lock are inspected.

In this case, thread 100142 owns the def

lock and thread 100055 is waiting for it. Note
that the turnstile information actually in-
cludes the lock owners as well as the waiters
for a given lock. Also, from Figure 3 one can
see that the thread information includes the
turnstile that a thread is currently blocked
on. From this, it is apparent that one can
build a dependency graph among a group of
threads. For a given thread that is blocked
on a turnstile, it is waiting for the owner of
the lock associated with the turnstile.

DDB provides another command, show

lockchain that displays this dependency
chain. It walks the thread dependencies
via turnstiles until it finds a thread that is
not blocked on a turnstile. If it encounters
a deadlock it will stay stuck in the cycle
until the user uses ’q’ at DDB’s --More--

prompt. The show lockchain argument
takes an optional argument specifying the
starting thread as either a pointer to a struct

thread or a TID. Figure 7 shows the de-
pendency graph for thread 100055 which is
clearly stuck in a deadlock with the other
threads from the same process.

A limitation of show lockchain is that it
only handles dependencies for locking prim-
itives that use turnstiles such as mutexes.
Other locking primitives such as sx locks
use sleepqueues to hold threads waiting for
locks. DDB includes a show sleepchain

command which displays a dependency graph
for threads blocked on sx locks and lockmgr
locks. Figure 8 shows the dependency graph

for four threads locked in a cycle of lockmgr
and sx locks.

3.3 Adding New DDB Commands

DDB commands are implemented by func-
tions in the kernel. Thus, new commands can
be added simply by writing new functions.
Currently new commands cannot be added
at runtime via kernel modules.

3.3.1 Declaring a Command

Each DDB command is bound to a func-
tion. The <ddb/ddb.h> header provides
helper macros to declare a command func-
tion and add it to a command table. The
DB COMMAND macro creates a top-level com-
mand including the function prototype. See
Figure 9 for an example of a simple “foo”
command. Note that there is no explicit func-
tion prototype and that the function body
immediately follows the macro. To add a
“show” command, use DB SHOW COMMAND in-
stead of DB COMMAND.

The command function takes four argu-
ments which provide the command’s param-
eters. The addr argument specifies the ad-
dress for the command to operate on. It
may either be the user-supplied address or the
dot address as described in ddb(4) [2]. The
have addr argument is a boolean that is true
if the user supplied an explicit address. The
count argument indicates the count of oper-
ations to be performed. If the user did not
specify one, then count is set to -1. Finally,
the modif argument is a string that contains
the command modifiers without the leading
slash. If no modifiers were specified, then
modif will be an empty string.

3.3.2 I/O for DDB Commands

DDB command functions are executed in an
alternative environment from the rest of the
kernel. One of the primary differences is
that DDB uses its own I/O subsystem. DDB
commands do not accept direct input from

db> show lock def

class: sleep mutex

name: def

flags: {DEF}

state: {OWNED, CONTESTED}

owner: 0xffffff000155c680 (tid 100142, pid 954, "crash2: 1")

db> show turnstile def

Lock: 0xffffffffae3c6fc0 - (sleep mutex) def

Lock Owner: 0xffffff000155c680 (tid 100142, pid 954, "crash2: 1")

Shared Waiters:

empty

Exclusive Waiters:

0xffffff00013869c0 (tid 100055, pid 954, "crash2: 0")

Pending Threads:

empty

Figure 6: Examining Relationships Between Threads and the def Lock

db> show lockchain 100055

thread 100055 (pid 954, crash2: 0) blocked on lock 0xffffffffae3c6fc0 (sleep mutex) "def"

thread 100142 (pid 954, crash2: 1) blocked on lock 0xffffffffae3c7000 (sleep mutex) "ghi"

thread 100143 (pid 954, crash2: 2) blocked on lock 0xffffffffae3c7040 (sleep mutex) "jkl"

thread 100144 (pid 954, crash2: 3) blocked on lock 0xffffffffae3c6f80 (sleep mutex) "abc"

thread 100055 (pid 954, crash2: 0) blocked on lock 0xffffffffae3c6fc0 (sleep mutex) "def"

thread 100142 (pid 954, crash2: 1) blocked on lock 0xffffffffae3c7000 (sleep mutex) "ghi"

...

Figure 7: Example show lockchain Output

db> ps

pid ppid pgrp uid state wmesg wchan cmd

811 0 0 0 SL (threaded) crash2

100139 D fee 0xffffffffae3a9180 [crash2: 3]

100138 D four 0xffffffffae3a9140 [crash2: 2]

100137 D fo 0xffffffffae3a9240 [crash2: 1]

100136 D two 0xffffffffae3a90c0 [crash2: 0]

...

db> show lock fee

class: lockmgr

name: fee

lock type: fee

state: EXCL (count 1) 0xffffff00013079c0 (tid 100136, pid 811, "crash2: 0")

waiters: 1

db> show sleepchain 100139

thread 100139 (pid 811, crash2: 3) blocked on lk "fee" EXCL (count 1)

thread 100136 (pid 811, crash2: 0) blocked on sx "two" XLOCK

thread 100137 (pid 811, crash2: 1) blocked on lk "fo" EXCL (count 1)

thread 100138 (pid 811, crash2: 2) blocked on sx "four" XLOCK

thread 100139 (pid 811, crash2: 3) blocked on lk "fee" EXCL (count 1)

...

Figure 8: Example show sleepchain Output

DB_COMMAND(foo, db_foo_cmd)

{

struct foo *foop;

int i;

if (have_addr)

foop = (struct foo *)addr;

else

foop = &default_foo;

if (count == -1)

count = 1; /* Default count. */

for (i = 0; i < count; i++)

do_something(foop);

}

Figure 9: Sample DDB Command

the user. Instead, the input comes from the
command line when the command is invoked.
Commands do output various messages to the
console, and DDB provides its own API for
console output.

The primary routine in DDB’s I/O API is
db printf. This function takes the same ar-
guments as printf(9) and supports all of the
same output formats. This includes the ex-
tended formats %b and %D. DDB command
functions should use db printf for all con-
sole output.

An additional detail of DDB’s I/O subsys-
tem that DDB commands may need to han-
dle is the pager. DDB’s output includes a
builtin pager which will interrupt the output
with a --More-- prompt periodically. If a
command does not wish to have any of its
output interrupted it may disable the pager
entirely by calling db disable pager. The
panic command does this for example. A
DDB command that produces a lot of out-
put (for example, one that iterates over a list)
should honor a request by the user to abort
the current command at the pager prompt. If
the user aborts a command, then the global
variable db pager quit will be set to true.
Thus, DDB command functions simply need
to check the state of db pager quit periodi-
cally and gracefully exit when it is non-zero.
Figure 10 contains a sample “show foos” com-
mand which walks a list of struct foo ob-
jects displaying information about each ob-
ject. It supports a “v” flag to enable more

verbose output.

3.3.3 Using DDB to Map Addresses
to Symbols

Another useful debugging tool DDB provides
is the ability to use its symbol tables to map
addresses to symbolic names. This can be
very useful for looking up the name of a func-
tion for a function pointer. This is especially
true when working with facilities that work
on lists of function pointers such as taskqueue
tasks, callouts, or SYSINITs. Note that these
routines can be used outside of DDB. How-
ever, doing so may result in races with loading
kernel modules, so care should be taken.

The db search symbol function is used
to map a specific address to a symbol. It
accepts an address as its first argument,
a strategy as its second argument, and a
pointer to a db expr t variable as its third
argument. The strategy argument can ei-
ther by DB STGY PROC to only match func-
tions or DB STGY ANY to match any sym-
bol. The third argument cannot be NULL as
db search symbol assumes it always points
to valid storage. Upon successful completion,
the function returns a pointer to a symbol. It
also stores the offset of the address relative
to the symbol in the variable pointed to by
the third argument. If no appropriate symbol
was found, then db search symbol returns
C DB SYM NULL.

DB_SHOW_COMMAND(foos, db_show_foos_cmd)

{

struct foo *foop;

int verbose;

verbose = index(modif, ’v’) != NULL;

TAILQ_FOREACH(foop, &allfoos, f_list) {

if (verbose)

db_printf("%p: ", foop);

db_printf("%s (%d)\n" foop->f_name, foop->f_count);

if (db_pager_quit)

break;

}

}

Figure 10: Sample DDB “show” Command

The db symbol values function is used
to obtain the name and value of a symbol.
The first argument is a pointer to a symbol
(such as returned from db search symbol).
The second argument is a pointer to a
const char * and the third argument is a
pointer to a db expr t. The second argument
must point to valid storage, but the third
argument can be NULL. On return from the
function, the second argument will point to
the name of the symbol or will have the value
NULL if the first argument was an invalid sym-
bol. The third argument will hold the value
of the symbol (i.e., its address). Figure 11
shows the code from the VERBOSE SYSINIT

kernel option which outputs the name of each
SYSINIT routine executed during boot.

The db printsym routine is a wrapper
around the previous two routines. It accepts
an address as its first argument and a strat-
egy as its second argument. It looks up the
symbol for the address and prints the name
using db printf. If the offset of the address
is non-zero, then it appends a “+” character
followed by the offset to the output. This is
the routine used by DDB’s stack trace com-
mand the print the return address for each
stack frame.

4 Debugging with kgdb

The kgdb program is a wrapper around
gdb that is used for analyzing a kernel. Un-
like DDB which is integrated into the kernel
and self-contained, kgdb is an external pro-
gram. As a result, it requires more setup
work. However, it also can target several dif-
ferent environments. DDB can only be used
to debug the currently running kernel on the
same machine and only by halting the kernel.
The kgdb debugger can be used to analyze
a kernel crash, inspect the currently running
kernel, or debug a halted kernel on another
machine. In addition, it provides a much
richer debugging environment than DDB in-
cluding source-level debugging, access to local
symbols, and scripting that supports control
flow.

4.1 Inspecting Processes and
Threads

In general, kgdb treats the kernel as if one
were using gdb to analyze a single multi-
threaded process. Each kernel thread is
mapped to a single gdb thread. Thus, the
usual gdb commands for managing threads
(e.g. info threads and thread) can be used
with kernel threads as well. One slight annoy-
ance, however, is that the thread IDs kgdb
uses have no relation to the PIDs and TIDs
the FreeBSD kernel uses to identify processes

#if defined(DDB)

const char *name;

c_db_sym_t sym;

db_expr_t offset;

sym = db_search_symbol((vm_offset_t)(*sipp)->func,

DB_STGY_PROC, &offset);

db_symbol_values(sym, &name, NULL);

if (name != NULL)

printf(" %s(%p)... ", name, (*sipp)->udata);

else

#endif

printf(" %p(%p)... ", (*sipp)->func,

(*sipp)->udata);

Figure 11: Mapping Function Pointers to Names for VERBOSE SYSINIT

and threads. Thus, to switch to a thread with
a specific TID or PID one has to examine the
thread list from info threads to map a TID
or PID to a gdb thread ID.

To alleviate this inconvenience, kgdb pro-
vides proc and tid commands. The proc

command accepts a PID and switches to the
thread context of the first thread for the spec-
ified process. The tid command accepts
a TID and switches to the corresponding
thread. Note that the proc command does
not work with remote debugging.

4.2 Debugging Kernel Modules

Kernel modules (also called “klds”) are sep-
arate object files that can be loaded into the
kernel’s address space at runtime. Each ker-
nel module contains its own symbols that are
separate from the kernel’s symbols. DDB
uses a merged symbol table that is updated
by the kernel linker when modules are loaded
and unloaded. The kgdb debugger, on the
other hand, has to explicitly load symbols for
each kernel module from an appropriate sym-
bol file.

An arbitrary symbol file can be loaded
in kgdb using the add-symbol-file com-
mand. This command requires the relocated
addresses of each section as command argu-
ments. Doing this by hand is a bit tedious.
It involves extracting the base address of the

kernel module from the kernel (e.g. using kld-
stat(8)), and the relative addresses of each
section from the kernel module (e.g. using
objdump(8)). The relocated address of each
section is then computed by adding its rela-
tive address to the base address of the mod-
ule. Thankfully, there are ways to automate
this process.

4.2.1 kgdb KLD Support

Recent versions of kgdb provide integrated
support for managing kernel modules. First,
the add-kld command can be used to man-
ually load the symbols for a single module.
Second, kgdb uses gdb’s support for shared
libraries to automatically load symbols for
modules. Note that both of these features
only work for a kernel with debug symbols.

The add-kld command accepts as its sole
argument a pathname of a kernel module and
loads the symbols for that module. The path
can either be an absolute path or a relative
path. If it is a relative path, then kgdb
will look for the module in several directo-
ries: the current working directory, the di-
rectory of the current kernel executable, and
each directory in the target kernel’s module
path. If a kernel module is found, then its
filename is matched to one of the target ker-
nel’s loaded modules. The base address for
the loaded module is read from the target
kernel and used to relocate the section ad-

dresses in the kernel module symbol file. Ba-
sically, add-kld is a wrapper around the gdb
command add-symbol-file that does all the
math internally. As with add-symbol-file,
the only way to unload symbols added via
add-kld is to clear all symbols via the file

or symbol-file commands.

For more automated handling of kernel
modules, kgdb hooks into gdb’s shared li-
brary support and treats kernel modules as
shared libraries. As a result, the stan-
dard commands for manipulating shared li-
braries in gdb such as info sharedlibrary,
sharedlibrary, and nosharedlibrary can
be used to manage kernel module symbols. In
addition, sections from kernel modules loaded
via the shared library mechanism are listed in
the info files output. Figure 12 shows the
kernel modules loaded on my laptop.

To locate the corresponding file for a ker-
nel module, kgdb will first use the abso-
lute path stored in the kernel image for
8.0 and later. Note that you can use set

solib-absolute-prefix to force a prefix for
the absolute paths. If the absolute path is
not present (or the corresponding file is not
present), then kgdb will first search for the file
in paths set via set solib-search-path. If
that fails, then kgdb will search the same set
of paths as the add-kld command.

Using this facility, symbols for kernel mod-
ules are automatically loaded when a vmcore
file is used as the target. When debugging a
remote target, on the other hand, symbols for
kernel modules are not automatically loaded
when attaching to the target. However, in-
voking the info sharedlibrary command
will cause kgdb to query the list of kernel
modules from the remote kernel. Afterward
the sharedlibrary command can be used to
load symbols for the modules.

4.2.2 Using asf(8)

For older versions of kgdb, the asf(8) [10] tool
can be used to automate the loading of kld
symbols. Specifically, asf(8) searches for ker-
nel modules corresponding to a set of loaded
modules and then generates a text file con-

taining add-symbol-file commands to load
the symbols for each module. Note that by
default, asf(8) expects to parse output from
kldstat(8) on its standard input to obtain the
list of kernel modules. However, the -M and
-N options can be used to make asf(8) read
the list of kernel modules directly from a vm-
core similar to kgdb. Also, asf(8) assumes
that it is invoked from a kernel build direc-
tory. If you wish it to load symbols from
the modules in the installed location you will
need to use the -s flag and specify an explicit
kernel module path. Once asf(8) has gener-
ated a gdb command file, the symbols can be
loaded by using the source command from
kgdb to execute the commands in the gener-
ated file. Figure 13 shows the command file
generated by asf(8) for the modules loaded
on my laptop. Note that the addresses of the
various named sections in the command for
iwi bss.ko match the addresses in the info

files output from Figure 12.

4.3 Extending kgdb via Scripts

Similar to DDB, kgdb can be extended by
adding new commands. Rather than requir-
ing a recompile of the kernel, new commands
can be added on the fly using gdb’s scripting
language. GDB scripts are evaluated at run-
time and are not pre-compiled. On the one
hand this provides several benefits. For ex-
ample, the physical layout of structures are
not hardcoded into the scripts when writing
them. Instead, gdb uses symbols from the
kernel and modules to compute the offsets
of member names as well as the addresses of
global symbols. Also, gdb does not evaluate
statements that are not executed. Thus, one
can use members of structures that are not
always present (e.g. when a new member is
added) by using conditional execution. The
downside is that gdb scripts require a ker-
nel built with debug symbols for all but the
simplest tasks. The gdb info documentation
covers the basics of scripts, or user defined
commands, but there are several quirks that
are worth mentioning.

First, while gdb scripts do support control
flow via while loops and if-then-else state-
ments, there are a few limitations. For

> sudo kgdb -q

Reading symbols from /boot/kernel/iwi_bss.ko...

Reading symbols from /boot/kernel/iwi_bss.ko.symbols...done.

done.

Loaded symbols for /boot/kernel/iwi_bss.ko

Reading symbols from /boot/kernel/logo_saver.ko...

Reading symbols from /boot/kernel/logo_saver.ko.symbols...done.

done.

Loaded symbols for /boot/kernel/logo_saver.ko

...

(kgdb) info sharedlibrary

From To Syms Read Shared Object Library

0xc3e8e5a0 0xc3e8e63b Yes /boot/kernel/iwi_bss.ko

0xc41037a0 0xc4103c28 Yes /boot/kernel/logo_saver.ko

(kgdb) info files

Symbols from "/boot/kernel/kernel".

kernel core dump file:

‘/dev/mem’, file type FreeBSD kernel vmcore.

Local exec file:

‘/boot/kernel/kernel’, file type elf32-i386-freebsd.

Entry point: 0xc04513c0

...

0xc3e8e5a0 - 0xc3e8e63b is .text in /boot/kernel/iwi_bss.ko

0xc3e8e63b - 0xc3e8e724 is .rodata in /boot/kernel/iwi_bss.ko

0xc3e8f000 - 0xc3ebdb04 is .data in /boot/kernel/iwi_bss.ko

0xc3ebdb04 - 0xc3ebdb7c is .dynamic in /boot/kernel/iwi_bss.ko

0xc3ebdb7c - 0xc3ebdb88 is .got in /boot/kernel/iwi_bss.ko

0xc3ebdb88 - 0xc3ebdb8c is .bss in /boot/kernel/iwi_bss.ko

...

Figure 12: Examining Kernel Modules from kgdb

> sudo asf -o - -N /boot/kernel/kernel -M /dev/mem -s /boot/kernel

add-symbol-file /boot/kernel/iwi_bss.ko.symbols 0xc3e8e5a0

-s .data 0xc3e8f000 -s .bss 0xc3ebdb88

add-symbol-file /boot/kernel/logo_saver.ko.symbols 0xc41037a0

-s .data 0xc4104c80 -s .bss 0xc4106ee8

Figure 13: Sample kgdb Command File Generated by asf(8)

example, there is no direct “else-if” con-
struct. Instead, one must include a nested
if statement inside an else block. Figure 14
shows a simple example of this. In addi-
tion, there are no equivalents to the C state-
ments break, continue, or return. There
are gdb commands which have those names,
but they affect the execution of the program
being debugged (e.g. setting a breakpoint).
Newer versions of gdb do add loop break and
loop continue but FreeBSD’s gdb does not
have those commands.

Second, the implementation of arguments
to user-defined commands has several sub-
tle implications. First, there is no easy way
for a command to figure out how many ar-
guments the user passed to it. However,
if the command references an argument the
user did not define, then gdb will halt execu-
tion of the command with an error. Second,
as described in the documentation, gdb re-
places the argument variables with the text
of the user-supplied argument before evalu-
ating expressions rather than evaluating the
user-supplied expression and creating a new
variable with that value. This means that you
cannot treat the arguments as local variables
with local scope. However, it does mean that
any variables passed as arguments to user-
defined commands are effectively passed by
reference. This provides a way to return val-
ues from user-defined commands by assigning
values to argument variables.

Third, working with string literals can be
awkward. Specifically, one cannot assign a
string literal to a convenience variable or in-
dex a string literal unless gdb is attached to
a live process, and core dumps do not count
as live processes. As a result, to compare a
variable in a core to a known string one has to
explicitly compare invidual characters. While
this is tedious, this can be useful. In Figure 15
the contents of the machine arch global vari-
able are used to determine the current ar-
chitecture and include another command file
with architecture-specific commands.

Finally, there is no way to abort execution
of a user-defined command. If a user-defined
command gets stuck in an infinite loop, for
example, the sole recourse is to kill the kgdb
process. A command can be aborted at the

pager prompt if it emits a full page of output.
However, one cannot use Ctrl-C or some-
thing similar to abort execution of a com-
mand.

5 Examining Crashdumps with
System Utilities

Several system utilities can examine crash
dumps instead of the running kernel. In gen-
eral, these utilities accept two optional argu-
ments: -M and -N. These arguments specify
an alternate core file and kernel image, re-
spectively. Some of the utilities which sup-
port this feature include ddb(8), dmesg(8),
fstat(1), iostat(8), ipcs(1), netstat(1), nfs-
stat(1), ps(1), pstat(8), and vmstat(8).

6 Debugging Strategies

Kernel bugs manifest in several different
ways. Some bugs trigger a panic, but other
bugs may result in a hang or a partial loss of
function. For example, if several threads are
locked in a deadlock, they may not hang the
entire machine but only impair certain oper-
ations. These differing consequences require
different strategies for finding the bug.

6.1 Kernel Crashes

Kernel crashes can often be investigated
with a very straightforward approach. Often,
the panic message itself points to the prob-
lem. For those crashes, the context of the
panic in the source is sufficient to determine
the cause of the crash.

Some crashes are an indirect result of a
bug, however. For example, a corrupted data
structure will usually result in a memory pro-
tection exception such as a page fault. For
these crashes, simply examining the source
line where the crash occurred will usually lead
to the data structure that is in an invalid
state. Inspecting the data structure more

def foo

if ($arg0 > 10)

print "big number"

else

if ($arg0 > 5)

print "medium number"

else

print "small number"

end

end

end

Figure 14: Sample GDB Script Else-If Construct

if (machine_arch[0] == ’a’ && machine_arch[1] == ’m’ && machine_arch[2] == ’d’)

source gdb6.amd64

set $__amd64__ = 1

end

if (machine_arch[0] == ’i’ && machine_arch[1] == ’3’ && machine_arch[2] == ’8’)

source gdb6.i386

set $__i386__ = 1

end

Figure 15: Including a Machine Dependent kgdb Command File

closely as well as the code around the crash
point is often sufficient to determine the cause
of the bug.

Another crash that can be a secondary ef-
fect is a crash due to exhausting the space
in the “kmem” virtual memory map. The
“kmem” virtual memory map is used to pro-
vide virtual address space for memory allo-
cated via malloc(9) or uma(9) in the ker-
nel. On architectures with a direct map such
as amd64, “kmem” is only used for alloca-
tions larger than a page. On other architec-
tures “kmem” is used for all allocations. If
the amount of virtual address space in the
“kmem” map is exhausted, then the kernel
will crash. This can sometimes be the re-
sult of resource exhaustion. For example, if
kern.ipc.nmbclusters is set to a high value
and a m getcl(M WAIT) invocation causes the
“kmem” map to be exhausted before the
nmbclusters limit is reached, then the kernel
will panic.

Sometimes the “bug” can actually be faulty
hardware. For example, a pointer might have
a bit error. This can result in a page fault

for a NULL pointer. One way to verify if a
crash on an x86 machine was the result of a
hardware error is to check the system event
log. This can usually be examined from the
BIOS setup. For systems with a BMC, the
ipmitool [11] utility can be used to examine
the system event log at runtime. Lack of a
corresponding entry in the system event log
doesn’t necessarily disprove a hardware fail-
ure, but if an entry is present it can confirm
failing hardware as the panic’s cause.

6.2 Kernel Hangs

Kernel hangs tend to require a bit more
sleuthing. One reason for this is that it can
sometimes take a bit of investigating to figure
out the true extent of the hang. Here are a
few things to try to start the investigation of
a hang.

First, check for resource starvation. For
example, check for messages on the console
about the kern.maxfiles or maxproc limits
being exceeded. Sometimes a machine that
is overloaded will appear to be hung because

it is unable to fork a new process for a re-
mote login, for example. Login to the box on
the console if possible and check for other re-
source exhaustion issues using commands like
netstat(1) and vmstat(1).

The next step is generally to break into
DDB. The ps command in DDB can give a
very useful overview of the system. For exam-
ple, if all of the CPUs are idle, then there may
be a deadlock. The ps command can be used
to look for suspect threads which can then be
investigated further. On the other hand, if all
of the CPUs are busy, then that may indicate
a livelock condition (or an overloaded box).

If the hang’s cause is still unknown, then
the panic command can be used from DDB
to explicitly panic the machine. If the ma-
chine is configured for crashdumps, then it
will write out a crash. After the machine has
rebooted the crashdump can be used to exam-
ine the hang further. For example, if logging
into the box to run netstat was not possible,
then netstat can be run against the crash-
dump.

7 Conclusion

The FreeBSD kernel has bugs just like any
other piece of software. To aid in the investi-
gation and fixing of bugs, FreeBSD provides
several kernel debugging tools. Some of the
tools are services within the kernel itself such
as DDB. Other tools are outside of the kernel
such as kgdb. As with other tools, skilled use
is obtained from practice and a bit of trial
and error.

8 Availability

The sources of both DDB and kgdb
are present in the FreeBSD source tree.
While the core DDB sources are present in
src/sys/ddb, the source to several DDB
commands are present in different parts of
the kernel sources. The kgdb sources are all
found in src/gnu/usr.bin/gdb/kgdb.

The show lock DDB command was added
in FreeBSD 6.1. The show proc, show

thread, show turnstile, show lockchain,
and show sleepchain commands were added
in FreeBSD 6.2.

Several recent changes to kgdb will first ap-
pear in FreeBSD 6.4 and 7.1. These include
the integrated kernel module support as well
as the ’tid’ command supporting remote tar-
gets. Also, while the ’proc’ command has
been present since 6.0, the ’tid’ command first
appeared in 7.0.

There are several existing sets of kgdb com-
mand files containing various user-defined
commands. Some scripts are present
in the FreeBSD source tree under the
src/tools/debugscripts directory. The
scripts at http://www.FreeBSD.org/~jhb/

gdb include user-defined commands that pro-
vide similar functionality to many DDB
commands such as ps, lockchain, and
sleepchain.

References

[1] The GNU Project Debugger, http://

www.gnu.org/software/gdb

[2] DDB, FreeBSD Kernel Interfaces Man-
ual, http://www.FreeBSD.org/cgi/

man.cgi

[3] kgdb, FreeBSD General Commands
Manual, http://www.FreeBSD.org/

cgi/man.cgi

[4] Kernel Debugging, FreeBSD Developers’
Handbook, http://www.FreeBSD.org/

doc/en/books/developers-handbook

[5] Mutex, FreeBSD Kernel Developer’s
Manual, http://www.FreeBSD.org/

cgi/man.cgi

[6] RMLock, FreeBSD Kernel Developer’s
Manual, http://www.FreeBSD.org/

cgi/man.cgi

[7] RWLock, FreeBSD Kernel Developer’s
Manual, http://www.FreeBSD.org/

cgi/man.cgi

[8] SX, FreeBSD Kernel Developer’s Man-
ual, http://www.FreeBSD.org/cgi/

man.cgi

[9] Lock, FreeBSD Kernel Developer’s
Manual, http://www.FreeBSD.org/

cgi/man.cgi

[10] ASF, FreeBSD System Manager’s Man-
ual, http://www.FreeBSD.org/cgi/

man.cgi

[11] IPMItool, http://ipmitool.

sourceforge.net

