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Abstract

In this work we discuss the limitations of link emulators
based on conventional network stacks, and present our
alternative architecture called TLEM, which is designed
to address current high speed links and be open to future
speed improvements. TLEM is structured as a pipeline
of stages, implemented with separate threads and with
limited interactions with each other, so that high perfor-
mance can be achieved. Our emulator can handle bidi-
rectional traffic at speeds of over 18 Mpps (64 byte pack-
ets) and 30 Gbit/s (1500 byte packets) per direction even
with large emulation delays. Even higher performance
can be achieved with shorter delays, as the workload fits
better into the L3 cache of the system.

TLEM runs on any system that supports netmap (this
includes FreeBSD, Linux and now even Windows hosts).
The code is available as open source under a BSD license
at github.com:luigirizzo/tlem.

1 Introduction

Link and network emulators are hardware or software
systems that manipulate network traffic in ways similar
to the real devices they emulate: traffic is subject to queu-
ing, bandwidth limitations, delay, and possibly classifi-
cation and scheduling. Figure 1 shows the basic features
(queue size, bandwidth and delay) that are implemented
by link emulators. These can be constant or variable,
both in deterministic and probabilistic ways.

Solutions for link emulation have been embedded in
commodity operating systems for almost twenty years.
The most relevant examples include dummynet [8, 1],
which is available for all major operating systems
(FreeBSD, Linux, OS/X and Windows), and netem [4],
which is Linux-only. Having the emulator within the OS
eases experiments, as they can be run with real traffic
sources/sinks, and potentially even without having a real
network. The negative aspect of this approach is that per-
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Figure 1: The basic operation implemented by a link em-
ulator.

formance can be limited by the OS’ network stack, which
is often unable to deal with the extreme packet rates that
are possible on 10 Gbit/s and faster networks.

Having recently developed solutions for high speed
packet I/O, we have been confronted with the problem
of building high speed link emulators. In this paper we
discuss why the problem cannot be simply approached
by replacing the network I/O layer in existing emulators,
and propose an alternative design that we developed to
build a very high speed link emulator called TLEM.

Our system, available as open source under a BSD li-
cense, uses a pipeline of stages, each assigned to a sep-
arate core, to achieve high performance. The pipelined
architecture addresses in an elegant way one of the
key problems in scaling network appliances, namely the
preservation of packet ordering. A mixed blocking/busy
wait architecture inspired to solutions used in Virtual
Machine communication permits keeping latency under
control while achieving high packet rates and low energy
consumption.

TLEM achieves bidirectional delay emulation at
speeds of over 18 Mpps with short frames, and over
30 Gbit/s with 1500-byte frames. These speeds exceed
the capacity of 10 Gbit/s interfaces, even with minimum
packet sizes, and are almost 20 times higher than the



throughput of a basic dummynet instance. While not
including all features of dummynet, TLEM is actually
easier to extend to implement more complex or custom
features such as time-based transmissions, empirical or
trace-driven delay emulation, packet mangling, classifi-
cation, scheduling.

2 Background

In this Section we describe the features and performance
of legacy link emulators embedded in commodity oper-
ating systems, discuss performance issues and report ex-
perimental results in accelerating our dummynet emula-
tor with a faster network I/O framework.

2.1 Legacy link emulators

Almost twenty years ago, after some early experiment
with custom solutions and dedicated hardware boxes,
the quest for link emulators has been effectively ad-
dressed with our seminal work on dummynet [8], which
showed how in-system link emulation can be achieved
in simple and effective ways. Especially, its integra-
tion in FreeBSD [9] made the tool readily available to
a large number of researchers, who used it in count-
less research projects, testbeds such as Emulab [12] and
Planetlab [3, 2], as well as in ISPs and commercial de-
ployments. On the Linux side, netem [4] and the traffic
shaper tc [5] have become popular, also favoured by a
much larger popularity of the operating system.

The advantage of an emulator embedded in the oper-
ating system are immense, in terms of ease to use, flexi-
bility, even availability. Experiments do not require any
special setup other than configuring, with OS commands,
the desired features of the underlying network.

On the negative side, the very same location of the em-
ulator raises the bar when it comes to modify or extend
its features. Kernel components are generally fragile,
and the environment offers limited support for features
such as floating point computations, logging, and crash
handling. We have tried to compensate these limitations
for dummynet by doing periodic overhauls of the code,
adding functionality such as support for programmable
schedulers [1], enhanced link emulation [2], and work-
ing on improving performance. Part of our support effort
was also dedicated to make dummynet available on other
platforms, such as Linux and Windows (the OSX version
came by itself when Apple decided to base its operating
system upon FreeBSD). This work contributed largely to
improving dummynet’s availability and usefulness.

Nevertheless, we must acknowledge that the bar to
build and include extensions to the emulator has been
quite high, and very little third party code has made

its way into dummynet. Similar considerations apply to
netmem and tc.

2.2 Performance

On the performance side, dummynet and netem both suf-
fer from the constraints of the environment in which they
run. The use of the OS’s network stack for packet rep-
resentation and I/O makes their performance (and that of
the rest of the network stack) unsuitable for the packet
rates produced by the fastest NICs at any point in time.
When 1 Gbit/s NICs became widespread, the PCI bus
and single core, low speed CPUs of the time were pre-
venting good performance. As CPU and bus speeds
improved, and additional cores become available, NIC
speeds bumped up to 10 Gbit/s and more, leaving the gap
unchanged. This time, the bottleneck is less of a hard-
ware problem (bus and CPU speeds, and core counts, are
more than adequate) but a software one.

As a data point, our measurements on the 2010 ver-
sion of dummynet [1, Sec.4.2] show how it can process
about 0.5 Mpps. Other systems exhibit similar perfor-
mance. Network I/O takes a significant part of the per-
packet processing time, but it is not the only culprit, as
we will discuss in the next Section.

2.3 Network I/0 performance

As widely discussed elsewhere [10], network I/O subsys-
tems for commodity operating were designed almost 30
years ago, under a set of constraints (CPU number and
speed, memory size and speed, protocol features) very
different from today. Retrofitting the software on modern
architectures (which can exploit parallelism, have fast
and large memories but with high latency) and support-
ing a variety of “hardware offloading” features on the
network cards (such as checksums, TCP segmentation
and reassembly, VLANs and encapsulation) only pro-
vided a small fraction of the speedup that one could ex-
pect from the difference in hardware speeds.
Acknowledging the I/O performance issue, a substan-
tial amount of work has been performed in the past years
to provide efficient mechanisms for network I/O, even
though with somewhat specific goals such as software
switching, and traffic capture and generation. High per-
formance APIs such as netmap [11] and DPDK [6] have
addressed in a successful way high packet rate applica-
tions, and opened the way to the application of certain
performance improvement ideas (batching, streamlined
processing, etc.) also to the ordinary network stack.
Link emulators, at least those that interconnect two
network interfaces' as shown in Figure 1, are good candi-

lanother use of link emulators such as dummynet is to have one
of their ports connected to the host stack. In this case the need for



dates to use the fast I/O frameworks mentioned above. In
fact, replacing the network I/O component with a faster
one definitely removes one of the heaviest cost compo-
nents from the emulator. How much this contributes to
performance must be determined experimentally, which
is what we do in the next Section.

2.4 Early experiment: netmap-ipfw

Our first attempt at high speed emulation, in 2012, was
to run the dummynet code on top of netmap. For this
project, called netmap-ipfw [7], we needed to port to
user space the entire kernel code for dummynet and its
associated packet classifier, ipfw.

The port was done by providing a set of functions to
replicate some kernel functionality in user space (mem-
ory allocation, module management, timers, sysctl and
ioctl/sockopt). Clearly, the network I/O path was re-
placed by calls to the netmap framework; other than
that, we tried to make the port with as few as possible
changes to the original code. This constraint was nec-
essary to avoid introducing new bugs in the system, or
having to redesign parts of what had over time become a
relatively complex system (dummynet supports a variety
of scheduling policies, and the traffic classifier itself has
tens of traffic matching options).

2.4.1 netmap-ipfw performance

Packet processing costs in netmap-ipfw are made of
three components: network I/O (the one we replaced by
netmap), packet classification, and emulation. The lat-
ter two are essentially unchanged between the two en-
vironments (kernel and userspace), although there might
be some differences due to the different locking require-
ments. Network I/O is expected to be much faster in the
userspace version, as witnessed by our measurements.

Due to the additive impact of the three components,
it is easier to report performance in terms of time
per packet, which is also an additive figure. “time
per packet” should be interpreted as the inverse of the
throughput (“packet per second”) computed over large
(= 1 second) intervals; we could not measure these num-
bers in other ways, as some operations are amortised over
batches of packets, and individual packets are processed
in multiple phases.

The numbers reported below have been measured on
a variety of modern systems with single socket Intel i7
CPUs (including i7-4790 and i7-5930k) running at 3.5-
3.7 GHz. Besides CPU type and speed, memory speed
and L3 cache sizes also have a deep impact on some
of the measurements. In our systems, memory runs at

high performance is much less pressing, being limited by the slow host
stack.

speeds between 1333 and 2133 MHz, and L3 cache sizes
vary between 6 and 12 Mbytes.

2.4.2 netmap /O costs

The netmap architecture lets us connect applications to
a variety of “network ports”, each with different features
in terms of I/O costs. In particular we have the follow-
ing cases (performance figures have been determined in
previous experiments):

physical interfaces (NICs) For them, read and write
costs depend on the number of register accesses and
interrupts needed on each packet. By amortizing
these operations over sufficiently large batches, we
have a total of 15-20 ns on each side on the platform
used for our tests (with Intel 10 G and 40 G NICs).

VALE switch In this case a read operation is extremely
cheap (in the order of 15 ns), whereas writes are
more expensive, requiring the sender to perform a
data copy. For short packets, writes require 40-
50 ns, up to 150-200 ns for 1500-byte packets. Note
that it is difficult to report these times precisely, be-
cause they are dominated by memory latency and
bandwidth, which in turn depends on how overall
memory accesses in the system fit within caches.

netmap pipes In this case both read and write opera-
tions only require to manipulate ring pointers and
minimal locking. We can account approximately
10 ns on each side for I/O.

In the case of NICs, the throughput may be further lim-
ited by the speed of the internal controller, or by conges-
tion on the bus (PCI or PCle) used to connect the NIC to
the system. It follows that using a physical NIC to send
and receive traffic may hide the effect of optimizations in
the code and give misleading results in the experiment to
determine the maximum speed of the system.

Given the above considerations, we ran our test on
netmap-ipfw by connecting the application to netmap
pipes, which give clear and repeatable overheads.

2.4.3 Cost breakdown

netmap-ipfw runs the following operations on each
packet:

1. read packet, encapsulate in pseudo-mbufs;
2. apply ipfw rules for filtering;

3. for packets subject to emulation, allocate a buffer,
copy the packet, and copy it back into a netmap
buffer when it is time to release it;

4. transmit the packet.



In our first experiment we only ran the first and last step,
disabling the intermediate operations. This accounts for
the basic I/O costs, and requires only 26 ns per packet
without touching the payload of the packet itself (pipes
are fully zero copy, and netmap-ipfw exploits the fea-
ture if possible). The number quickly grows to 50 ns if
we try to access even just one byte of the packet, as we
pay the cache miss penalty for accessing data that had
been never read before.

Enabling step #2, the application of traffic selection
rules, increases the processing time by an amount that
depends on the complexity of the ruleset. In our exper-
iments, simply inserting one rule requires an additional
33 ns, and extra rules take at least 6-7 ns each. Thus, the
combination of I/O and traffic selection brings us in the
best case to about 83 ns per packet, which is already too
slow for the peak rate on 10 Gbit/s NICs.

The largest component in the processing costs is how-
ever the one related to emulation. In this case the filters
must use an ipfw rule that makes packets go to a dum-
mynet pipe, which in turn implements the emulation.
Packets subject to emulation must be delayed for some
time before being sent out. Implementing this feature re-
quires some data copies for the reasons discussed below.

Netmap I/O buffers are a limited resource and a space
consuming one: they have a fixed size (default 2 Kbytes,
or up to over 9 Kbytes in case the network uses jumbo
frames), so they can use as much as 32..140 times the
size of a short packet. Considering that the delays can be
in the order of seconds, and data rates reach 40 Gbits/s,
the inefficient use of space can easily consume tens of
Gigabytes of memory.

To address this problem, netmap-ipfw trades space
for time, and copies packets to a temporary, custom al-
located buffer before the delay. Packets are then copied
back into netmap buffers when it is time to release them.
These two copies, together with the cost of running
through the emulation engine and the packet scheduler
(which is part of a dummynet pipe), consume a signifi-
cant amount of time.

In our experiments, step #3 requires about 290 ns per
packet even for 64-byte packets. Adding the I/O and
filtering times, this translates into a maximum through-
put of 2.7 Mpps when dealing with unidirectional traffic.
Bidirectional traffic would reach a much lower value, be-
cause the same core that runs the entire netmap-ipfw
process would have to deal also with traffic in the oppo-
site direction.

2.4.4 Considerations

All the above numbers are both reason for excitement
and for depression. On the one hand, we have achieved
a 5-fold speedup over the existing in-kernel implemen-

tation. On the other hand, for emulation we are still six
times below the top speed of a 10 Gbit/s interface.

There are multiple reasons why netmap-ipfw cannot
exploit the raw speed of the netmap API. Remember that
ipfw and dummynet were designed and developed for an
environment where network I/O was by far the main bot-
tleneck, so not much effort had gone in addressing other,
less important bottlenecks. Among them, two are partic-
ularly relevant.

First, packets are represented by linked lists of dynami-
cally allocated buffers, which not only adds complexity
at runtime, but also produces very scattered memory ac-
cesses, which in turn result in a significant number of
cache misses.

Second, netmap-ipfw is single threaded, and processes
packets one at a time, in three phases: one when en-
queueing the packet, one when the packet exits the em-
ulated link, and finally when it exits the delay line and
it is time to transmit it. Data structures between the
three stages are completely shared, so the in-kernel ver-
sion runs under a single lock, and netmap-ipfw is im-
plemented by a single thread that alternates between the
three tasks as needed. Having a single thread saves
much of the locking overhead, which would be signif-
icant when dealing with one packet at a time. Trying
to split netmap-ipfw into multiple threads while keep-
ing the locking overhead low would require significant
changes to the code.

Another limitation of netmap-ipfw, also due to the
environment in which it was originally developed, is
that it operates with a relatively coarse granularity (pro-
grammable, but for practical purposes in the order of
100 us). At 10 Gbit/s, 100 us correspond to one megabit
of data, which means that traffic is released from the em-
ulator in large bursts.

2.5 Multiqueue solutions

It is common, when dealing with high speed network-
ing, to decompose applications in multiple instance of
netmap-ipfw, each operating independently on a subset
of the traffic. This approach leverages hardware support
in the NICs; specifically, multiqueue adapters which can
partition traffic into different queues according to criteria
such as configuration of MAC or IP addresses and ports.

This solution works well when there are no timing
relations among the traffic on different queues — a no-
ticeable example being implementing network servers or
firewalls. In fact, several people use exactly this ap-
proach in production firewalls. Link emulators, however,
need to make global decisions on the traffic, such as en-
forcing bandwidth limitations, and preserving the order-
ing of packets across all queues. As a consequence, we
cannot exploit multiqueue in a link emulator.



3 TLEM, a pipelined link emulator

From the experience with netmap-ipfw we have learned
that a single core is unable to cope with traffic at line
rate on even a 10 Gbit/s interface. We thus need an ar-
chitecture that can make use of the many cores avail-
able in the system. We also need to reduce the impact
of cache misses, which are not adequately amortised by
netmap-ipfw due to the processing of one packet at a
time.

Based on the above considerations, we redesigned the
link emulator following two main principles.
First, for extremely high speed applications, simplic-
ity is king, so we removed all features that exist in
netmap-ipfw but are not required for link emulation. In
particular, we do not need a programmable traffic filter
that uses a domain specific language such as ipfw rules,
nor we need a general purpose traffic scheduling frame-
work as the one present in dummynet.
Second, in partitioning the system across multiple cores,
we avoid solutions that introduce data races or depen-
dencies that are expensive to verify; as an example, we
do not use solutions that partition traffic because they
would prevent us from enforcing bandwidth limitations
or preserve global packet ordering.

3.1 Pipelined architecture

The solution we adopted for our design, called TLEM,
is a pipelined software architecture, shown in Figure 2.
Each stage performs a simple task and has minimal in-
teractions with the other ones.

Each direction is managed by a different pipeline, so
we can deal with bidirectional traffic with no loss of per-
formance, of course subject to the availability of a suffi-
cient number of cores in the system.

Each pipeline in TLEM is made of at least an input
stage, which reads incoming traffic and copies it into a
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Figure 2: The architecture of TLEM

shared buffer, and an output stage, which polls the buffer
and releases packets at their due time. Before packets
are passed to the output stage, they are annotated with
their fate (drop or keep it), the time at which they can be
released, and possibly altered if the emulation includes
packet modifications. Depending on the amount of com-
putation to be performed on each packet, the computa-
tions to generate annotations and packet modifications
can be run in the input stage, or in additional stages in
the pipeline.

Decomposing operations in a pipeline, as opposed to
running multiple parallel stages, has a significant advan-
tage in that it is inherently safe from packet reordering.
Of course, to achieve a sufficient performance, we should
make sure that each stage of the pipeline can cope with
the expected processing rate. TLEM can introduce more
stages in the pipeline to perform the computation. In the
current implementation, we have found that the input and
output stages can perform all the computations and ex-
ceed the speed of a 10 Gbit/s interface.

4 TLEM operation

In the rest of this Section we describe how TLEM im-
plements its functions. Following Figure 1, we recall that
the emulator must first replicate the effect of a queue at-
tached to a link with predefined bandwidth, and then im-
pose additional delay in delivering the packet, to model
propagation delays and possibly additional effects such
as further queueing in other parts of the network.

We call link queue the simulated queue, and delay line
the part that emulates delay.

4.1 Network I/0

TLEM uses netmap for packet I/O, thus requiring only
a small fraction of a core for communicating with the
NIC, even at 10 Gbit/s and above. As mentioned in Sec-
tion 2.4.1, the amortized cost per packet is between 10
and 20 ns when accessing network devices, excluding
the cost of data touching operations (reads, which incur
some latency on the first access; and copies, which con-
sume CPU cycles and pollute caches). The above makes
it possible for the input and output stages to perform a
fair amount of useful computation.

A straightforward implementation of the emulator in
Figure 1, such as the one in dummynet, would first put
packets into a “link queue” (enforcing queue size limi-
tations); drain the queue at a rate corresponding to the
link’s bandwidth, putting packets into a second queue
implementing the delay line; and finally, extract packets
from the delay line at their due transmission time. The
above scheme is only appropriate for low speed opera-
tion. At our target speeds, enqueueing and dequeueing



packets multiple times is a potential performance bottle-
neck that should be avoided.

The solution we use, instead, requires only a single en-
queue and dequeue operation per packet. Packets coming
from the input NIC are immediately? stored in a large cir-
cular buffer, described in Section 4.6. Each packet is pre-
ceded by a packet descriptor, which among other things
contains the absolute time when the packet should be re-
leased to the output interface. This value is computed
as described in Section 4.2 and 4.4, and is used by the
output stage of the pipeline.

4.2 Queue and link bandwidth

Traffic shaping (emulating a link with predefined band-
width) is a core function of any link emulator. This is
normally implemented as follows. When the i-th packet
arrives at time tj‘, TLEM computes when it will exit the
link, 7, using the following formula:

th = max(ei 1 1) + k
B

where /; is the packet’s length (including framing over-
head, such as preambles, inter-packet gaps, checksum)
and B is the link’s bandwidth. Minor modifications to
the formula can be used when when the link’s bandwidth
is not constant. As an example, Time Division Multi-
plex channels let clients communicate only during peri-
odic slots of time. Even on an idle channel, a packet
arriving outside the slot must wait for the next slot to be
ready, and #; must be computed accordingly. Another ex-
ample is that of wireless links where bandwidth may vary
depending on channel conditions. In both cases TLEM
can be configured, with user supplied C code, to emulate
these and other variable bandwidth channels.

Knowledge of the exit time #; for all previous packets
makes it possible to determine the queue occupation (in
bytes and packets) at the arrival of a new packet, and
determine whether or not it should be dropped, without
having to implement a separate link queue.

Link bandwidth and queue size to be used in the em-
ulation are configured from the command line and inde-
pendently for each direction.

4.3 Random packet drops

Congestion-induced drops, as those described in the pre-
vious Section, are a normal artifact of a communication
network and one that TLEM emulates precisely. It is
sometimes useful to analyse the behaviour of a system or
application in presence of other types of packet drops or

2as an optimization, TLEM does not store packets that must be

dropped because of queue overflow or random drops.

errors. These could be caused by noise in the communi-
cation channel, or even complex congestion situations in
parts of the network that cannot be simply modeled with
a queue and a link.

For this reason TLEM, same as many other emula-
tors, supports random or deterministic packet dropping
or errors. The actual distribution of drops (e.g., their
frequency, burstiness, data dependencies) may affect the
behaviour of the system under test, so it is important to
provide high flexibility in defining drop patterns.

TLEM implements this feature allowing users to pro-
vide a C function that is invoked on each packet together
with full information on the packet itself. The result —
a yes/no answer — determines whether the packet should
be dropped. The user supplied function can be stateful,
thus supporting complex policies that simulate burst er-
rors. TLEM also includes some predefined distributions
that can be configured from the command line, and in-
clude constant packet- and bit- error rates.

4.4 Link delay

The time tI’; computed by the input stage only indicates
when the packet exits the link queue. Before being ac-
tually released by the emulator, a packet may incur fur-
ther delay, normally to model the effect of its traversal of
the physical link — copper, fiber, air, space. Sometimes
the link delay is also used to model additional equipment
downstream, including queueing delay and possibly mul-
tipath effects.

To support these features, TLEM must compute an
additional value for each packet, tb, which is added to ti
to determine when the packet can be released.

In the simplest case, tjj is constant and can be config-
ured from the command line. Same as for random drop,
however, TLEM lets the user provide arbitrary C code
to compute the additional delay for each packet, and in-
cludes some predefined distributions. Among them we
have constant delays, uniformly distributed delays within
a range, or exponentially distributed delays with prede-
fined minimum and average.

Values for non uniform distributions are computed by
generating a uniformly distributed number in the range
[0, 1] and using it as the argument to the Inverse of the
Cumulative Density Function (CDF) for the distribution,
to generate the desired values. When the CDF is too dif-
ficult to invert analytically, or it is empirically defined
(derived by actual samples), the inverse is simply tabu-
lated with a sufficient number of samples.

4.4.1 Reordering

TLEM imposes one restriction on link delay distribu-
tions, namely, link delays 7, must not cause packet re-



ordering. This is motivated by practical considerations:
reordering would require a sorting step when producing
the output schedule, slowing down the emulator and re-
quiring more complex code for managing storage as de-
scribed in the next Section. The constraint is enforced by
conditionally increasing packet release times so that they
are monotonically increasing.

4.5 Output stage

The output stage has a very simple task: it only needs
to look at the shared buffer, and transmit packets when
their release time has elapsed. A simplified version of
the code of the output stage is below:

// q is the shared buffer
gq->now = <current time>
while (true) {
pkt = head_pkt(q);
if (<netmap buffer full> ||
g->head == g->tail ||
pkt->release_time > gq->now) {
<flush output interface>
<sleep if next packet is far away>
g->now = <current time>
continue;
¥
<copy pkt to netmap buffer>
g->head = pkt->next;
}

The amount of computation on each packet minimal, and
the most expensive operation is the data copy. Prefetch
instructions (not shown above) help reduce a bit the ef-
fect of cache misses.

High speed and high efficiency requires doing I/O with
large batches of packets; this however increases latency.
In our case, given that a core is entirely dedicated to the
output stage, efficiency is not a major concern as long as
we can sustain the required output rate. With the above
code, we make sure that overdue packets are promptly
moved to the netmap buffer, and then sent without wait-
ing for further packets that are not due yet. The system
is self adjusting: if, for any reason, the output stage lags
behind, it will build a larger batch before flushing it, thus
becoming more efficient and hopefully catching up.

4.6 Shared buffer

Communication between the various stages of TLEM is
implemented through a large, circular buffer shared by
all stages of the pipeline. Packets are written contigu-
ously into the buffer by the input stage, each preceded by
a fixed size header containing the packet’s release time,
its length and a small amount of metadata. For perfor-
mance reasons, packets are padded to multiples of the

word size, and we make sure that individual packets are
never split in two parts when the buffer wraps around.

The shared buffer is allocated when the emulator is
started, and it is large enough to accommodate the data
in the emulated link’s queue, plus any packets that may
be stored in the delay line. Note that at the speeds at
which we operate (we are targeting 40 Gbit/s and higher)
even a delay of 100 ms requires 500 Mbytes of memory
for data, plus space for packet descriptors and padding.

It is common practice for high speed I/O frameworks
to try as much as possible to use “zero-copy” solutions,
saving the CPU cycles and memory bandwidth involved
with the data copies. In our case, we had to abandon
this idea because the of the potential waste of memory,
and also because zero copy solutions tend to generate
sparse memory accesses, resulting in frequent Transla-
tion Lookaside Buffer (TLB) misses which would defeat
or greatly reduce the advantages of zero-copy.

Our solution of a contiguous buffer containing both
descriptors and data packets is extremely cache friendly,
and makes good use of the TLB entries due to high lo-
cality of accesses.

Each stage of the pipeline has its own set of pointers
(indexes) into the shared buffer, to track which packets
should be processed by the stage itself, and also commu-
nicate with the downstream stage about the availability of
new packets. Contiguous stages in the pipeline act as a
producer and a consumer. We need to deal with potential
contention in accessing the head and tail pointers, and
with the synchronization between the two entities when
the buffer becomes empty or completely full.

To reduce access to shared variables, each stage of the
pipeline keeps a private copy of the buffer indexes up-
dated by the other stages, and refreshes the copy only
when it has consumed all the data/space available. Since
the buffer indexes only grow in one direction, this per-
mits a correct access to the buffer while minimizing con-
tention.

For the handling extreme situations (buffer full or
empty), we decided not to implement a blocking scheme
using semaphores or similar resources. Rather, stages
spin on the buffer’s indexes when they have no work to
do and are waiting for updates. Spinning does not mean
using a busy-wait loop: we implement an adaptive mech-
anism so that we start with busy wait, and then move to
short sleeps after some amount of time. CPU utilization
rapidly goes to a few percent even with modest sleep
times (a few microseconds) and the additional jitter in-
troduced in the processing is modest.

4.7 Bidirectional traffic

TLEM as described operates on a single direction of the
traffic. Handling bidirectional traffic is as simple as run-



ning two instances of the pipeline in Figure 2, one per di-
rection. Similarly, one can run multiple TLEM instances
in a single host by starting pipelines on different pairs of
interfaces.

5 Performance

As for the case of netmap-ipfw, we have run a number
of tests with TLEM in various configurations (delay and
queue sizes) and with different input traffic to evaluate its
performance. The system used for evaluation uses a fast
17 CPU (i7-5930k at 3.5 GHz), and 2133 MHz memory,
with a sufficient number of cores to run each stage of the
pipeline, as well as traffic sources and sinks, on a sep-
arate core. We ran our measurements on netmap pipes,
and using both FreeBSD and Linux hosts.

The main figures we are interested in are throughput,
accuracy in the delay emulation, and stability of perfor-
mance (both in terms of throughput and jitter in the out-
put).

We briefly address the latter two as they are heavily
affected by the various power management mechanism
(C-states, frequency scaling) made available by the hard-
ware and exploited more or less aggressively by the op-
erating system.

5.1 Providing a sane test environment

Power management mechanisms on modern CPUs are
aimed at reducing power consumption when the system
is idle, which happens for 90-99.9% of the time on most
systems.

Two mechanisms are called C-states and P-states. C-
states (named CO, C1, ....) are states of operation which,
when a core is HALTed, more and more parts of the sys-
tem are shut down, saving energy. The higher the C state,
the longer it takes to restart execution; these times are
low for state C1 (100ns) and rapidly jump in the 50-
100 us range for higher C states, meaning that when a
core goes to sleep with deep C-states enabled, it may take
up to 100 us to wake up. Which C-states can be used by
the CPU can be set in the BIOS, or with run-time mech-
anisms such as setting sysctl variables (on FreeBSD) or
keeping certain file descriptors open (on Linux). Once a
certain C state is available, the CPU will automatically
make use of it when a HALT or equivalent instruction is
executed.

P-state, also known as dynamic frequency scaling, are
a different mechanism which can be used to slow down
active cores, throttling frequency (and reducing oper-
ating voltages), once again to reduce power consump-
tion. Throttling is normally decided by software sub-
systems (called “governors”) which monitor system load
and manage the operating frequency accordingly.

First and foremost, stable performance demands that
C-states are disabled with the exception of C1. A wake
up latency of 10..100 us would have horrible effect on
the jitter of the system. Furthermore, 100 s correspond
to about 1300 minimum size packets on a 10 Gbit/s link,
meaning that the system will run dangerously close to
the total queue size of the input NIC, easily resulting in
packet drops.

Dynamic frequency scaling is also a source of jitter.
Many power governors dynamically adjust the CPU fre-
quency based on observed load on relatively long win-
dows. If an application is power aware and goes to
sleep under light load, the governor may reduce the clock
speed to 1/4 or less of the peak value, resulting in limited
ability to handle spikes of load.

Finally we would like to mention another source of
jitter, namely interrupt moderation. This is a mecha-
nism designed to reduce the interrupt load on the system,
which is necessary with conventional I/O architectures
(this includes NAPI in Linux) where the interrupt han-
dler performs a significant amount of work.

In netmap, the interrupt handler has relatively little
work to do, so while it makes sense to use a bit of in-
terrupt moderation, values should be limited to 10-20 us
to limit jitter.

5.2 Latency accuracy and jitter

We have run a limited number of tests on the system to
determine the accuracy and jitter of latency emulation,
not only across netmap pipes but also using intel 10 G
NICs. Latency errors may come from multiple causes
including from C- and P- states (which we disabled in
tests, leaving only C1 and pinning CPUs to the maxi-
mum clock rate), thread migrations (which we disabled
by pinning threads to a specific core, as migration may
affect thread wakeup times), and the delays in waking up
threads upon interrupts or timer notifications. The latter
are, in normal situations, limited to 10 us or less.

Another factor that affects latency is the load in the
various stages of the system. Because we want to exploit
batching, each stage may defer notifications or transmis-
sions until a batch of available packets has been fully
processed. TLEM has a command line parameter to set
the maximum batch size, thus choosing a tradeoff be-
tween throughput and performance. We found that batch
sizes of 64 packets give good results with short packets,
although our tests with larger packets suggest that the
batch size should also account for packet sizes.

With all the above considerations, we have measured
that, on physical interfaces, latency emulation is accurate
to 50 us, which is in line with the expected effect of all
the above mechanisms.



5.3 Throughput

We tested TLEM in a configuration similar to that pre-
sented in Section 2.4.1, using netmap pipes for I/O. Our
configuration uses two cores per direction, one for the
input stage and one for the output stage. The input stage
has three main tasks to perform:

1. read packets;
2. compute timestamps;
3. copy to the shared buffer.
The output stage instead has two tasks:
1. copy from the shared buffer to the netmap buffer;
2. write to the netmap port.

The TLEM the pipeline has two stages, both extremely
fast as we will see, and we need to run both in order to
perform an experiment. Measurements can only indicate
the maximum of the time spent in each of the stages of
the pipeline, leaving some uncertainty on the location of
the actual bottlenecks in the system. Nevertheless, the
data reported below will give some hints on what are the
operations that influence the performance of the system
and suggest ways to improve it.

Our first experiment was done by disabling the copy
of packets on both input and output. Note that the shared
queue still needs to be updated with packet descriptors,
which are scattered through the buffer itself. In this con-
figuration, we achieved a time of 30 ns per packet with
zero delay. The time grows to 35 ns when generating a
20 ms delay. The extra delay does not require additional
computation, however it changes the memory access pat-
terns, as it defines the distance between a packet is writ-
ten to the queue and its extraction time. At 10 Gbit/s,
20 ms correspond to 200 Mbits or 25 Mbytes, exceeding
the L3 cache size on our system. This means that ac-
cesses to the shared buffer must go to main memory, and
this explains the extra time in this experiment.

Adding back memory copies (i.e. restoring full func-
tionality of the emulator) brings the per-packet time to
about 44 ns with zero delay, and 54 ns with 20 ms delay.
The extra 15 ns can be charged to the memory copy, and
specifically to the read latency in accessing the source.

We expect that memory copy costs are the dominant
component in the operation of the emulator, so we ran
some experiments with larger packets (1500 bytes). In
this case the per-packet time jumps to very high values,
around 250 ns with zero delay, and up to 400 ns for 20 ms
delay. These rates correspond to 48 Gbit/s and 30 Gbit/s,
respectively.

Once again memory access times are the main culprit
for these values. With short delays (and correspondingly

short buffers), the memory copies make a reasonable use
of L3 cache, which is shared among the various cores
used in the experiment. As the delay (and buffer size)
increase, the cache is overflown and memory accesses
become more expensive, with increased latency and re-
duced bandwidth.

6 Extensions and future work

We have presented TLEM, a fast, pipelined link emu-
lator that can deal with speeds tens of gigabits per sec-
ond in a scalable way. Being developed in userspace,
TLEM is easy to extend with additional features such
as more complex emulation functions and traffic selec-
tion mechanisms, and can be extended with additional
pipeline stages to preserve the operating speed in the face
of more expensive computations.

The main botteneck in TLEM operation is currently
constituted by the cost of memory copies. We are study-
ing mechanisms to reduce these costs, including better
support for zero copy operation with large packets (the
case where copy costs are more important), and options
to run copies in parallel on separate cores (at the price of
additional latency).

While our system has been designed specifically for
link emulation, its components can be easily reused for
other applications that fit the pipelined model of opera-
tion. One example that we have already implemented is
that of a programmable traffic generator: we replace the
input stage with one that generates a suitable schedule
of packets to transmit, and use the output stage just as a
fast data pump that goes through the schedule as desired.
The traffic generator can read from a PCAP file, or gen-
erate packets programmatically. Other examples include
fast packet processors such as firewalls, NAT or similar
middleboxes.
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