
Looking	Backwards
The	Coming	Decade	of	BSD

George	Neville-Neil



Welcome	to	EuroBSD 2026!

• FreeBSD	15
• Dropped	support	for	sparc64	and	PC98

• NetBSD 11.0
• Dropped	VAX,	Amiga,	and	Atari	ST	Support

• OpenBSD 9.0
• First	implementation	of	SMP!



Some	Notable	BSD	Achievements

• Scaling	to	32K	CPU	cores
• Single	System	Serving	10	Terabits/sec
• Always	on	Petabyte	File	Server
• Security	Isolation	Technology	in	Every	Mobile	Device
• Most	commonly	deployed	IoT OS
• The	most	used	OS	technology	in	the	world



2017	BSD	Declared	Dead	(again)

• 64	bit	inode work	complete
• First	exabyte scale	UFS3	deployment
• Network	stack	librarification continues
• Integration	of	Concurrency	Kit	primitives
• BSD	API	Standards	Published
• LLVM	Compiler	Extensions	Begin



2018	Linux	On	the	Desktop

• Three	new	schedulers	added	as	libraries
• Massive	Multicore	(MMC)
• Little	John	(Big/Little	written	by	John	Baldwin)
• Skimpy	Sched	(Power	aware	scheduler	for	embedded)
• Enhanced	NUMA	Awareness	started	in	MMC	Scheduler

• 1	Terabit	NICs	support
• VFS	system	packaged	as	a	library
• MSDOSFS	first	FS	to	be	turned	into	a	library
• Adopted	as	standard	by	most	embedded	systems	projects



2019	Hinkley Point	B	Meltdown	tracked	to	
use	of	Linux	2.6	kernel
• All	network	stack	components	are	now	libraries
• Based	on	pioneering	work	with	ifLib
• Network	device	drivers	shrink	by	2/3

• Librarification of	VM	system	starts
• First	working	version	of	LLVM	assisted	system	configurator
• LLDB	and	LLVM	now	default	for	all	BSD	systems	and	CPU	architectures
• All	calls	to	printf()	replaced	by	DTrace debugging
• NVDIMM	Support	Complete
• Libraries	may	now	use	memory	that	never	goes	away



2021	Google	Abandons	Go	in	Favor	of	Rust

• VM	system	as	a	library
• All	user	level	configuration	programs	now	consume	and	emit	machine	
readable	output
• All	BSDs	now	come	in	flavors	which	may	or	may	not	look	like	
distributions
• pkg system	achieves	sentience	and	demands	a	vacation



2022	DragonFly Selected	as	Default	OS	on	
Open	Compute
• GEOM	and	Storage	Layers	as	a	library
• Storage	drivers	shrink	by	2/3

• bhyve now	default	virtualization	system	on	all	BSDs
• Configurator	can	now	build	kernel	images	between	1M	and	512G
• Support	for	RPi10
• Support	for	HAL	9000

• Which	is	now	25	years	late
• Which	we	know	is	typical



2023	OpenBSD Adopted	as	the	primary	OS	at	
NSA,	GCHQ,	FSB,	etc.
• PCI	as	a	Fabric	Support	Added
• Capsicumization of	kernel	and	user	space	components	complete
• OpenBSD adopts	capsicum

• Configurator	can	remote	or	localize	code
• Adoption	of	new	X12	windowing	system
• Java	added	to	the	base	system	of	all	BSDs



2025	Apple	Donates	to	the	FreeBSD,	NetBSD
and	OpenBSD Foundations

• Universal	Peace
• World	Hunger	Ends
• Realization	of	the	Human	Millennium
• Everyone	gets	a	pony!



What	do	we	want	to	achieve?

• The	most	used	OS	technology	in	the	world
• Scaling	to	many	more	CPU	cores
• Single	System	Serving	many	Terabits/sec
• Always	on	Yottabyte	File	Server
• Security	Isolation	Technology	in	Every	Mobile	Device
• Most	commonly	deployed	IoT OS
• Or	would	you	prefer	Linux	or	Windows	to	run	your	next	automobile?



How	do	we	get	there?

• APIs
• Design	Guidelines
• Ease	of	remoting

• Libraries
• Shatter	the	kernel,	and	glue	it	back	together

• Tooling
• We	now	have	the	most	flexible,	open	source,	compiler	on	the	planet
• But	we	barely	use	its	advanced	features
• Or	create	our	own	extensions
• That,	must,	change…



Jordan	Hubbard	is	Correct…





Hardware/Software	Co-Evolution

• CPU	Extensions effect	on	UNIX
• NVME	– Faster	than	SSD
• NVDIMM	– Memory that	never	goes	away
• More	cores	(18/36 available	in	2014)
• More	caches	(128 MB	of	L4	will	available	on	SkyLake)
• Faster	NICs
• Terabit	is	not	as	far	away	as	you	think



What	was	UNIX	written	for?



Hot,	bed	time,	reading



A	company	that	cared



Behold!		The	Pentium	4!



Current	CPU	Technology



Scheduler	Upgrades

• Is	already	pluggable!
• Many	more	cores
• NUMA
• I/O	Scheduling	
• Cache	Awareness
• Power
• Avoid	the	pitfalls

The	Linux	Scheduler:	a	Decade	of	Wasted	Cores



NUMA	Awareness

• We	know	the	memory	topology
• Memory	must	be	allocated	near	the	process
• And	processes	ought	to	be	started	where	there	is	memory
• I/O	Complicates	the	problem
• Extend	the	scheduler	to	know	about	the	I/O	layout



Scheduling	for	Cache

• Instructions	are	cheap,	cache	misses	are	expensive
• Now	the	overwhelming	source	of	most	bottlenecks
• Teach	the	scheduler	about	cache	layout	and	constraints
• Optimize	for	cache	coherency
• Feed	hwpmc samples	into	the	scheduling	decisions



Power

• Big/Little	Will	Become	More	Common
• Need	to	understand	the	compute	power	of	each	core
• Do	we	schedule	for…
• Quickest	to	complete
• Earliest	deadline
• Lowest	power	consumption



From	monolith	to	building	blocks
Librarification

• NetBSD’s RUMP	kernels
• libuinet
• ifLib
• Must	have	good	API	standards
• Documentation	standard	for	APIs

Need	to	keep	going



I	want	one	of	these!



API	Design

• Regularity
• Tractability
• Composability
• Assisted by	the	compiler	toolchain
• Withered	Drivers
• Easily	forwardable APIs
• Better	building	blocks!



API	Regularity

• The	position	of	arguments	matter
• What	is	the	verb?
• What	are	the	nouns?
• Are	we	writing	English	or	Hebrew,	or	Japanese	or?

void *memcpy(void *dst, const void *src, size_t len);

void bcopy(const void *src, void *dst, size_t len);



API	Tractability:	Goldilocks	and	the	three	APIs

• Too	Big
• Most	Windows	APIs
• X11	is	classically	terrible

• Too	Small
• ioctl()	considered	harmful

• What	does	it	mean?		I	can’t	easily	tell.
• Use	as	a	last	resort

• Just	Right
• Between	5	and	7	arguments



API	Forwarding

• In	2026	all	systems	are	distributed	systems
• It	was	true	in	2016	but	we	ignored	that	truth

• Deep	structures	are	hard	to	pack
• What	if	this	API	was	an	RPC?
• Pointers	become	more	fun	to	deal	with

• Go	shallow
• Split	structures	into	local	and	remote	components



API	to	Resource	Relationship	

• Passing	Pointers
• Who	allocates?
• Who	frees?

• Sharing	Locks
• Who	locks?
• Who	unlocks?

• More	about	Goldilocks
• Too	big?
• Too	Small
• Just	right?



A	worked	example



Literally	Littered	with	Libraries



Optimist	or	Pessimist?

Opponents	point	out	that	no	such	
program	has	ever	been	
constructed	and	that	experience	
would	indicate	that	even	if	it	could	
be	built,	it	would	be	rife	with	
untestable	and	undetectable	
errors.

Proponents	say	the	software	
could	be	assembled	in	smaller	
pieces,	which	could	probably	be	
tested	adequately	or	otherwise	
made	“fault-tolerant.”

It	has	been	estimated	by	experts	that	the	necessary	software	program	
would	involve	ten	million	(1x10^7)	or	more	lines	of	code.



Pervasive Tracing	and	Debug

• Death	to	printf()	!!!
• Tracing	Features	Must	Be	Pervasive
• Easy	to	use
• Produce	Machine	Readable	Output

How big is an	OS	kernel?
Files																Lines

C 5,685 5,140,567
C	Header	Files 5,356 2,271,425



Unify	the	Control	Plane

• Machine	readable	output
• Machine	controllable	input
• Address	both	humans	and	programmers
• Increase	and	improve	automation
• If	you’re	doing	it	by	hand,	you’re	doing	it	wrong!

“The	study	of	computer	science	is	the	study	of	what	can	be	
automated.”	D.	Knuth



Putting	the	Pieces	Together

• Humpty	Dumpty	Kernel
• Not	a	micro-kernel
• Though	it	could	be

• Need	the	Configurator
• Tooling,	tooling,	tooling
• “In	the	80s	people	got	paid	to	
add	features	to	the	kernel,	and	
in	the	90s	they	got	paid	to	take	
the	same	features	out	of	it.”	– H.	
Massalin



Operating	Systems	Are	Like	Legos

• The	BSDs	have	always	
built	solid	architectures
• Small	and	Flexible	
Components
• Well	defined	APIs
• Built	into	libraries
• Come	in	many	colors!



Comments?		Questions?


