Looking Backwards
The Coming Decade of BSD

George Neville-Neil

Welcome to EuroBSD 2026!

* FreeBSD 15
* Dropped support for sparc64 and PC98

* NetBSD 11.0
* Dropped VAX, Amiga, and Atari ST Support

* OpenBSD 9.0

* First implementation of SMP!

Some Notable BSD Achievements

* Scaling to 32K CPU cores

* Single System Serving 10 Terabits/sec

* Always on Petabyte File Server

* Security Isolation Technology in Every Mobile Device
* Most commonly deployed loT OS

* The most used OS technology in the world

2017 BSD Declared Dead (again)

* 64 bit inode work complete

* First exabyte scale UFS3 deployment

* Network stack librarification continues

* Integration of Concurrency Kit primitives

* BSD API Standards Published
* LLVM Compiler Extensions Begin

2018 Linux On the Desktop

* Three new schedulers added as libraries
* Massive Multicore (MMC)
e Little John (Big/Little written by John Baldwin)
e Skimpy Sched (Power aware scheduler for embedded)
* Enhanced NUMA Awareness started in MMC Scheduler

* 1 Terabit NICs support
* VVFS system packaged as a library

* MSDOSFS first FS to be turned into a library
* Adopted as standard by most embedded systems projects

2019 Hinkley Point B Meltdown tracked to
use of Linux 2.6 kernel

* All network stack components are now libraries
* Based on pioneering work with ifLib
* Network device drivers shrink by 2/3

e Librarification of VM system starts
* First working version of LLVM assisted system configurator
e LLDB and LLVM now default for all BSD systems and CPU architectures

* All calls to printf() replaced by DTrace debugging
* NVDIMM Support Complete

* Libraries may now use memory that never goes away

2021 Google Abandons Go in Favor of Rust

* VM system as a library

* All user level configuration programs now consume and emit machine
readable output

* All BSDs now come in flavors which may or may not look like
distributions

* pkg system achieves sentience and demands a vacation

2022 DragonFly Selected as Default OS on
Open Compute

* GEOM and Storage Layers as a library
 Storage drivers shrink by 2/3

* bhyve now default virtualization system on all BSDs

e Configurator can now build kernel images between 1M and 512G

e Support for RPi10
e Support for HAL 9000

* Which is now 25 years late
* Which we know is typical

2023 OpenBSD Adopted as the primary OS at
NSA, GCHQ, FSB, etc.

* PCl as a Fabric Support Added

e Capsicumization of kernel and user space components complete
* OpenBSD adopts capsicum

* Configurator can remote or localize code
e Adoption of new X12 windowing system

 Java added to the base system of all BSDs

2025 Apple Donates to the FreeBSD, NetBSD
and OpenBSD Foundations

e Universal Peace
* World Hunger Ends
e Realization of the Human Millennium

* Everyone gets a pony!

What do we want to achieve?

* The most used OS technology in the world
 Scaling to many more CPU cores
* Single System Serving many Terabits/sec

* Always on Yottabyte File Server

 Security Isolation Technology in Every Mobile Device
* Most commonly deployed loT OS

* Or would you prefer Linux or Windows to run your next automobile?

How do we get there?

* APIs

* Design Guidelines
e Ease of remoting

e Libraries
* Shatter the kernel, and glue it back together

* Tooling
* We now have the most flexible, open source, compiler on the planet
* But we barely use its advanced features
e Or create our own extensions
* That, must, change...

Jordan Hubbard is Correct...

What is an Operating System?

A set of lego blocks

BSD Observability

Operating System Hardware .
fstat ktrace truss netstat -s RS Various:
\ A \ []1] / systat
ZN gstat \ Applications //// lockstat sysctl
/ vmstat -P

System Librari#% / / / to _p
\S\q Syéem Call Interface / / / / / | P

\ CPU
D nterconnect
dtrace % VW Sockets ‘/ Scheduler ,/ CPU
> UFS ZFS TCP/UDP ¥ <«— top ps — | 1
a) _—
2 [V ceom P V] vitual 4 Procstat . o ncstat
@ Block Device Interface Ethernet Memory Bus pcm
L o _ _ . vmstat =
N7 - Device Drivers sysctl vm g
. vmstat -z
iostat Expander Interconnect /0 Bridge tcpdump f

| . :
l [ipmitool
\\} /O Controller Network Controller y \

Interface Transporty‘
Power
Disk Disk Swap HatataE =P Port Port Supply

pstat -s / systat -ifstat

Hardware/Software Co-Evolution

* CPU Extensions effect on UNIX

* NVME — Faster than SSD

* NVDIMM — Memory that never goes away

* More cores (18/36 available in 2014)

* More caches (128 MB of L4 will available on SkyLake)

* Faster NICs
* Terabit is not as far away as you think

What was UNIX written for?

PROCESSOR DATA PATHS

SHF|
[es lﬂlﬂ
!
sR] (DR ‘7_r1

A 1T = x CACHE DATA

2

il |z

a

¥y

DATA FROM FPP

MEMORY MGMT

—— L3} —f — —| |- { - —————

NIBUS MAP

5

SAPA SAPB SAP SAPE SAPF.
UB MAP REGS
; 8
87:00 CACHE CACHE
CONTROL DATA
" REG DATA
3
A
3
) = o~ o
@ & 3 e
H H M CACHE
H =
H H 2 I S DATA
« 8 g LATCH
A H @ & MAPH
A s B € DRIVERS
REG MUX & DRIVERS
SSRY
Scch MAP REG MUX

MAPY

UB DATA

DRIVERS
APy

SYS SIZ HI

CPU ERR REG
SYS SIZ LO
K==

»

c
MUX 8 DRIVERS
SCCM,N.

L S A

INTERNAL DATA BUS I

MAPH
MAPC, D

v ¢

n-34aa

Figure A-2 PDP-11/70 Data Paths
Block Diagram (Sheet 1 of 2)

Hot, bed time, reading

EK-KB11C-TM-001

KB11-C PROCESSOR
MANUAL (PDP-11/70)

digital equipment corporation - maynard. massachusetts

LINE

CUT OUT ON DOT

A company that cared

KB11-C PROCESSOR (PDP-11/70)
EK-KB11C-TM-001

Reader’s Comments

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of
our publications.

— — =—— — —— — — — Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

Digital Equipment Corporation
Technical Documentation Department
146 Main Street

Maynard, Massachusetts 01754

What is your general reaction to this manual? In your judi tis it pl well ized, well
written, etc.? Is it easy to use?
What features are most useful?
What faults do you find with the manual?
Does this manual satisfy the need you think it was i ded to satisfy?
Does it satisfy your nceds? Why?
Would you please indicate any factual errors you have found.
Please describe your positi -
Name O
Street Department

City State Zip or Country

Behold! The Pentium 4!

Pentium 4 Block Diagram

System Bus
Qut-of-order L1 instruction Instruction
«—] «— «—
execufion cache (12K mops) fetch/decode
logic unit
%9 64 YV
/
bits
L3 cache
(1 MB)
Y
| Integer register file |<T->| FP register file |

N I 2 v v 1 I

Load Store Simple Simple Complex FP/ FP
address address integer integer integer MMX move
unit unit ALU ALU ALU unit unit L2 cache

(512 KB)

Py - ! rw

256
bits

Current CPU Technology

14-18 Core (HCC)

Core

Core

Cache

LLC
2.5MB

Core

Core

LLC
2.5MB

Core

Core

LLC
25MB

Core

Core

LLC
2.5M8

Core

Home Agent
DDR DDR
Mem Ctir

DDR

Core

Home Agent

Mem Ctir

DDR

Scheduler Upgrades

* |s already pluggable!
* Many more cores

* NUMA

* |/O Scheduling

* Cache Awareness

* Power

* Avoid the pitfalls

The Linux Scheduler: a Decade of Wasted Cores

NUMA Awareness

* We know the memory topology

* Memory must be allocated near the process

* And processes ought to be started where there is memory
* |/O Complicates the problem

* Extend the scheduler to know about the 1/0 layout

Scheduling for Cache

* Instructions are cheap, cache misses are expensive

* Now the overwhelming source of most bottlenecks

* Teach the scheduler about cache layout and constraints
* Optimize for cache coherency

* Feed hwpmec samples into the scheduling decisions

Power

* Big/Little Will Become More Common
* Need to understand the compute power of each core

* Do we schedule for...
* Quickest to complete
* Earliest deadline
* Lowest power consumption

From monolith to building blocks
Librarification

* NetBSD’s RUMP kernels

* libuinet

* ifLib

* Must have good API standards

* Documentation standard for APIs

Need to keep going

| want one of these!

APl Design

* Regularity

* Tractability

* Composability

* Assisted by the compiler toolchain
* Withered Drivers

* Easily forwardable APIs

* Better building blocks!

API Regularity

* The position of arguments matter
e What is the verb?
e What are the nouns?

* Are we writing English or Hebrew, or Japanese or?

void *memcpy(void *dst, const void #*src, size t len);

void bcopy(const void *src, void #*dst, size t len);

API Tractability: Goldilocks and the three APIs

* Too Big
* Most Windows APIs
e X11 is classically terrible

 Too Small

e joctl() considered harmful

* What does it mean? | can’t easily tell.
e Use as a last resort

e Just Right
* Between 5 and 7 arguments

APl Forwarding

* In 2026 all systems are distributed systems
* |t was true in 2016 but we ignored that truth

* Deep structures are hard to pack
 What if this APl was an RPC?

e Pointers become more fun to deal with

e Go shallow

* Split structures into local and remote components

API| to Resource Relationship

* Passing Pointers

* Who allocates?
e Who frees?

* Sharing Locks
* Who locks?
e Who unlocks?

* More about Goldilocks
* Too big?
* Too Small
 Just right?

A worked example

NAME

ROUTINES

DESCRIPTION

INCLUDE FILES

arpLib

R
arpLib — Address Resolution Protocol (ARP) table manipulation library

arpAdd() — add an entry to the system ARP table
arpDelete() — delete an entry from the system ARP table
arpFlush() - flush all entries in the system ARP table

This library provides functionality for manipulating the system Address Resolution
Protocol (ARP) table (cache). ARP is used by the networking modules to map
dynamically between Internet Protocol (IP) addresses and physical hardware (Ethernet)
addresses. Once these addresses get resolved, they are stored in the system ARP table.

Two routines allow the caller to modify this ARP table manually: arpAdd() and
arpDelete(). Use arpAdd() to add new or modify existing entries in the ARP table. Use
arpDelete() to delete entries from the ARP table. Use arpShow() to show current entries
in the ARP table.

arpLib.h

Literally Littered with Libraries

cacheLib — cache management libIary ... 1-37
cacheMb930Lib - Fyjitsu MB86930 (SPARClite) cache management libraryccccoevvvrnennnnnne. 1-46
cacheMicroSparcLib — microSPARC cache management libraryccccovivvniiiininnniniicinicce, 1-46
cacheR3kALib — MIPS R3000 cache management assembly routinesccoouevnerncninennencnennen. 1-47
cacheR3kLib — MIPS R3000 cache management library ..., 1-47
cacheR4kLib — MIPS R4000 cache management Hbrary ... X.......cccoeemrneeeeernenseieieeeesse e 1-48
cacheR33kLib — MIPS R33000 cache management librarycccccevveviniiiinniincnniincncisccnnes 1-48
cacheR333x0Lib — MIPS R333x0 cache management library ..., 1-49
cacheSun4Lib - Sun-4 cache management library ... 1-49
cacheTiTms390Lib - TI TMS390 SuperSPARC cache management library ... 1-50
¢d2400Sio — CL-CD2400 MPCC serial drivVer ... ssesssssnens 1-52
cdromFsLib - IS0 9660 CD-ROM read-only file system library ..o 1-52
cisLib = PCMCIA CIS LDIATY ..cucviiiiiciictiecie ittt sa s s 1-56
cisShow — PCMCIA CIS ShOW HDIary ... 1-57
clockLib — clock library (POSIX)ccoeimiiiiiiniiiciiiiiis it ss s sa s s 1-57
cplusLib — basic run-time support for C++ ... 1-58
dbgArchLib — architecture-dependent debugger library ..., 1-59
dbgLib — debugging facilities ...t 1-60
dec21x4xEnd — END style DEC 21x4x PCI Ethernet network interface drivercccccccoeueuenenee. 1-63
dec21x40End — END-style DEC 21x40 PCI Ethernet network interface driverccccccccueuueee. 1-67
dhcpcBootLib — DHCP boot-time client library ..., 1-71
dhcpcLib - Dynamic Host Configuration Protocol (DHCP) run-time client APT 1-72
dhcpcShow — DHCP run-time client information display routinescccccoeurviiivvineriencncnnnen. 1-74
dhcprLib — DHCP relay agent Hbrary ..ot 1-74
dhcpsLib — Dynamic Host Configuration Protocol (DHCP) server libraryccccccuvvinunneee. 1-75
dirLib — directory handling library (POSIX)ccccovinimiiiiiiiiicciccrcc e 1-80

dosFsLib — MS-DOS media-compatible file system library ..., 1-82

Optimist or Pessimist?

It has been estimated by experts that the necessary software program
would involve ten million (1x1077) or more lines of code.

Opponents point out that no such Proponents say the software

program has ever been could be assembled in smaller
constructed and that experience pieces, which could probably be
would indicate that even if it could tested adequately or otherwise
be built, it would be rife with made “fault-tolerant.”

untestable and undetectable
errors.

Pervasive Tracing and Debug

* Death to printf() !!!

* Tracing Features Must Be Pervasive
* Easy to use

* Produce Machine Readable Output

How big is an OS kernel?

Files
C 5,685
C Header Files 5,356

Lines
5,140,567
2,271,425

Unity the Control Plane

* Machine readable output

* Machine controllable input

e Address both humans and programmers

* Increase and improve automation

* If you're doing it by hand, you’re doing it wrong!

“The study of computer science is the study of what can be
automated.” D. Knuth

Putting the Pieces Together

* Humpty Dumpty Kernel

* Not a micro-kernel
* Though it could be

* Need the Configurator
* Tooling, tooling, tooling

* “In the 80s people got paid to
add features to the kernel, and
in the 90s they got paid to take
the same features out of it.” — H.
Massalin

Operating Systems Are Like Legos

* The BSDs have always
built solid architectures

* Small and Flexible
Components

e Well defined APIs
e Built into libraries
 Come in many colors!

Comments? Questions?

FIRST CLASS

PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation
Technical Documentation Department
146 Main Street

Maynard, Massachusetts 01754

