
Continuous Integration of The FreeBSD Project

Li-Wen Hsu
The FreeBSD Project
lwhsu@FreeBSD.org

Abstract

The FreeBSD project [22]’s continuous integration
project started in the late 2013. We use Jenkins [17] au-
tomation server to build our continuous integration sys-
tem. It monitors the svn repository for new commits
and triggers a new build of it. In each build, the build
machine compiles the latest code, creates disk image
and creates a virtual machine to run test suite. In the
meantime, we collect the compiler warnings and perform
some further checks like clang analyzer. All these infor-
mation are published to the developers and users to im-
prove the quality of the FreeBSD project. In this paper,
we describe the details of the system implementation.

1 Introduction

The term of continuous integration (CI) is first used by
Grady Booch in 1991 [1], then Extreme programming
(XP) extends the concept of CI and suggests to integrate
as many times as possible per day. Now, CI is an impor-
tant and common practice of software engineering. The
benefits of CI are developers can know the conflicts and
bugs earlier. This reduces the cost for resolving them
later. Also, the status of the project is clearer and it is
easier to estimate progress.

There are many software designed for various CI need,
among them, the most popular one is Jenkins, an open
source automation server written in Java, created by
Kohsuke Kawaguchi. We use Jenkins as the main com-
ponent, along with some other daemons like Pure-FTPd
[20], to build FreeBSD project’s CI system.

We describe the history of FreeBSD’s CI work, how
we trigger build from changes in version control system,
do tests and publish results in the rest of this paper.

2 Automatic Build and History of CI work
in FreeBSD

Dag-Erling Smrgrav created the first pubic CI sys-
tem for the FreeBSD project: http://tinderbox.
FreeBSD.org, this can be traced back in the mail
archive in March 2002. It is believed the first contin-
uous integration service of the FreeBSD project. Tin-
derbox is an open source project, codes are available
at svn://svn.freebsd.org/base/user/des/
tinderbox. Documents can be found in FreeBSD
doc project [24] and wiki [25]. Unfortunately this ser-
vice stopped in September or October 2014, neverthe-
less, here are many scripts from this project derived or
inspiring the successive projects.

In late 2013, Craig Rodrigues founded jenkins-
admin@FreeBSD.org with several developers. The
main duty of jenkins-admin is maintaining the Jenk-
ins instance in FreeBSD cluster, https://jenkins.
FreeBSD.org. Which is an independent successor
of tinderbox.FreeBSD.org. We configure it monitors
the FreeBSD src and doc repositories, and triggers a
new build when there is new commit in each supported
branch. We created the first “build-and-test pipeline”
for the FreeBSD project. In each build triggered by a
change in repository, after compiling successes, we cre-
ate a virtual machine disk image with the latest binaries,
and spawn a new virtual machine to run tests. The test
results are collected and stored by Jenkins server.

The highlight features of jenkins.FreeBSD.org are:

• Periodically build for head, stable-11, stable-10 and
stable-9

• Architectures built against: amd64, i386, sparc64
and arm64

• Build FreeBSD with GCC, using amd64-
xtoolchain-gcc

• Experimental Jenkins 2 “pipeline as code”

mailto:lwhsu@FreeBSD.org
http://tinderbox.FreeBSD.org
http://tinderbox.FreeBSD.org
svn://svn.freebsd.org/base/user/des/tinderbox
svn://svn.freebsd.org/base/user/des/tinderbox
https://jenkins.FreeBSD.org
https://jenkins.FreeBSD.org


Shortly, jenkins.FreeBSD.org become a significant
role in the FreeBSD development.

In 2016, with the hardwares sponsored by the
FreeBSD foundation, we created https://ci.
FreeBSD.org, an experimental site for testing new
ideas. We still leverage Jenkins because it has proven
useful on jenkins.FreeBSD.org. Aditionally, we imple-
mented:

• Artifact server

• Job template

Having a centralized artifact server enables people re-
trieving the files generated from each stage of a pipeline,
which can be used for reproducing issues for debugging
purpose, or doing further tests. The details about job
template are in “open configurations” section.

Another experiment in this system is we try to make
the build pipeline more fine-grained, and introduced
more build stages. For example, we not only create vir-
tual machine disk image specialized for tests, but also try
to produce the distribution files and virtual machine disk
images the same as the official release provided by re-
lease engineering team . Also, we build LINT kernel for
more test coverage.

There are multiple stages in a pipelne, each is a Jenk-
ins job. The naming conversion of the build jobs is:

FreeBSD-{branch}-{target_arch}-{stage}

We create a pipeline for each supported branch and ar-
chitecture. Take head branch and amd64 architecture for
example:

• FreeBSD-head-amd64-build:
Build the world and kernel from scratch and creates
distribution files.

• FreeBSD-head-amd64-LINT:
Build the LINT kernel

• FreeBSD-head-amd64-images:
Build virtual machine disk images from distribution
files with the same configuration of official release

• FreeBSD-head-amd64-testvm:
Build virtual machine disk image from distribution
files and test files and package are pre-installed.

• FreeBSD-head-amd64-test:
Run the image from “testvm” stage in a new created
virtual machine.

Their relationship is shown in 1
The codes are available at https://github.

com/lwhsu/freebsd-ci and https:
//github.com/lwhsu/jjb-freebsd-ci,
merging back to the main freebsd-ci repository on github
or even svn://svn.freebsd.org is in progress.

3 Self Tests

In 2013 Rui Paulo created the /usr/tests hierar-
chy, with the Kyua [18] test framework by Julio Merino.
These tests can be performed by command:

cd /usr/tests && kyua test

As of January 2017, we have 6023 tests for head branch
on amd64 architecture.

As previous section mentioned, we build virtual ma-
chine disk images with the required files and packages
for running tests. We pre-install the kyua package and
put a script which runs kyua commands, and generates
the test reports after all tests are executed. Finally it is-
sues shutdown command. After the disk image ready,
for amd64 and i386 architecture, we launch a bhyve [27]
virtual machine, with an expect script for starting run-
ning tests in, and also for catching timeout in case.

After the testing virtual machine stopped, we extracted
the test results from the disk image, put to the workspace
where Jenkins slave daemon will collect them and send
back to the Jenkins master for archiving and maintaining
a trend record. The script to create test virtual machine
image is scripts/build/build-test_image.
sh, and the main script for executing tests in virtual
machines and extracting results is scripts/test/
run-tests.sh.

4 Access to Results

We configure Kyua to generate results as JUnit [4] XML
format, which is natively supported by Jenkins and many
other tools. Jenkins default plugins take outputs from
the builds, make it a friendly accessible web inter-
face at https://<job-url>/<build-number>
/testReport (fig. 2, 3), and maintains a historical
data (fig. 4). This helps us tracking the software quality
trending.

The artifact server, artifact.ci.FreeBSD.org is newly
introduced in ci.FreeBSD.org, its main responsibility is
to share files between jobs in a pipeline. The artifact
server is basically an FTP server powered by Pure-FTPd
for serving files uploading. For downloading, we use a
nginx [28] web server to provide read-only access. For
security reason, we configure FTP server can only be ac-
cessed by FTP over TLS. As a result, we also added FTP
over TLS feature in “Publish Over FTP Plugin” [?] of
Jenkins.

In the end of each stage, Jenkins uploads created
files to the artifact server, there is only one root di-
rectory “snapshots” on artifact.ci.FreeBSD.org for now.
The directory layout of it is: {branch}/{svn_
revision}/{target}/{target_arch}, for ex-
ample, head/r303226/amd64/amd64 . This layout

2

https://ci.FreeBSD.org
https://ci.FreeBSD.org
https://github.com/lwhsu/freebsd-ci
https://github.com/lwhsu/freebsd-ci
https://github.com/lwhsu/jjb-freebsd-ci
https://github.com/lwhsu/jjb-freebsd-ci
svn://svn.freebsd.org
https://<job-url>/<build-number>/testReport
https://<job-url>/<build-number>/testReport


FreeBSD-head-amd64-build

FreeBSD-head-amd64-testvm

FreeBSD-head-amd64-LINT

FreeBSD-head-amd64-images

FreeBSD-head-amd64-test

Figure 1: head-amd64 pipeline

Figure 2: Test result from a test job

Figure 3: Failed test case display

3



Figure 4: Test result trend

is compatible with the official download site. We hope
that in the future these snapshot artifacts can also be in-
cluded and be more easily accessed by users.

Currently we have these artifacts for each pipeline:

• *.txz

– From *-build jobs

– Distribution files just like what on https://
download.FreeBSD.org

• disk.img.xz

– From *-images jobs

– Virtual machine disk image file, installed from
above *.txz files

• disk-test.img.xz

– From *-testvm jobs

– Virtual machine disk image file, with test
script and test case

All files are publicly available at http:
//artifact.ci.freebsd.org.

5 Open Configurations

It is very important to make public can setup a highly
identical instance of a public service, and security is
also need to be considered. In the past, Jenkins job
can only be edited on web interface, which is not easy

to tracking the changes and reproduce. Users who
has no administrative permission cannot see exactly
configurations. Jenkins 2’s “pipeline as code”’ is
a very promising to solve this problem. On jenk-
ins.FreeBSD.org, we have tested it for the jobs which
build head and stable-10 branch. The source code is
available at https://github.com/freebsd/
freebsd-ci/blob/master/scripts/build/
build-test.groovy. However, currently not all
the required Jenkins plugins of ci.FreeBSD.org supports
this. We will look into this again and may switch it later.

We use an approach used by other project for a long
time, Jenkins job builder [10], which converts YAML
files to Jenkins XML configurations. And manipulate
Jenkins instance via web service. With Jenkins job
builder, the configuration of Jenkins is trackable and re-
producible, and we can separate security credentials to
other storage.

While working with other developers, we found the
fact that not everyone knows (and has to know) how to
configure Jenkins. So adding new build jobs requires
Jenkins administrators configure and test build scripts by
hand. This is a bottleneck of the development. We also
found that most of the build jobs are just having differ-
ent build scripts, other parts of the configurations such as
repository URL and notification settings are the same. It
inspired us to create a “job template” for similar jobs. A
typical job contains following steps:

1. Environment setup

(a) Check out latest source code

4

https://download.FreeBSD.org
https://download.FreeBSD.org
http://artifact.ci.freebsd.org
http://artifact.ci.freebsd.org
https://github.com/freebsd/freebsd-ci/blob/master/scripts/build/build-test.groovy
https://github.com/freebsd/freebsd-ci/blob/master/scripts/build/build-test.groovy
https://github.com/freebsd/freebsd-ci/blob/master/scripts/build/build-test.groovy


(b) Setup needed version of FreeBSD

(c) Install required packages

2. Execute specified build script for that job

3. Environment cleanup

The respective job definition (of Jenkins job builder)
is very simple (listing 1):

Listing 1: Job definition
- job:

name: FreeBSD-head-scan_build
scm:

- FreeBSD-src-head
builders:

- checkout-scripts
- setup-jail
- execute-in-jail

publishers:
- clean-jail

wrappers:
- timestamps

And we use jail to ensure the freshness of the build
environment, and we can install “sudo” [21] program in-
side jail, with full privileges granted, for maximum the
things user can do for testing. As a result, “build-in-
jail script sets” is created, they are currently developed
at https://github.com/lwhsu/freebsd-ci/
tree/jjb/scripts/jail. It’s first job is simplify
environment setup and job execution, we have three
scripts for each builder and publishers in definition of
Jenkins job builder:

• setup.sh
setup-jail builder, setup a jail jail and install require
packages

• execute.sh
execute-in-jail builder, execute build scripts from
user

• clean.sh
clean-jail publisher, clean the used jail to release re-
source

A typical job configuration contains three files:

• build.sh
Main build script, which is executed by execue.sh
in the jail

• jail.conf
Jail environment configuration: version, arch, etc.

• pkg-list
Package needs to be installed (from pkg.
FreeBSD.org)

With these, adding a new job is much simplified. Sub-
mitter can just test their tested build script (build.sh),
with some job definitions (jail.conf, pkg-list), and other
configuration files, for example, src.conf or make.conf.
Then jenkins-admin merges scripts to freebsd-ci/
jobs/<jobname>/, and jenkins-admin creates a new
job entry in jenkins job builder, push the new configu-
ration to the Jenkins server. Everything is done. Our
Jenkins server will execute it around the clock.

For example, FreeBSD-head-arm64-build contains
files as listing 2, 3, 4:

Listing 2: Job configuration: jail.conf
TARGET=amd64
TARGET_ARCH=amd64
WITH_32BIT=0
OSRELEASE=10.3-RELEASE

Listing 3: Job configuration: pkg-list
aarch64-binutils

Listing 4: Job configuration: build.sh
#!/bin/sh
env \
JFLAG=${BUILDER_JFLAG} \
TARGET=arm64 \
TARGET_ARCH=aarch64 \
sh -x freebsd-ci/scripts/build/build-world-kernel.sh

We also add a “quarantine mode” of “build-in-
jail script sets”, just specify “QUARANTINE=1” in
jail.conf, the the internet connection is removed after jail
environment is setup, and resource is also strictly limited,
such as execution time.

The other ci.FreeBSD.org setup can be found
at https://wiki.freebsd.org/Jenkins/
Setup.

6 Other Integrations

The best feature of Jenkins is its features can be extended
by many plugins, we selected several plugins which con-
sidered useful for us and integrated into our system.

6.1 Notification
Make sure related developers can know the latest project
status is very important. We use both Email and IRC
notifications. The status for sending out notifications are:

• Build failed

• Build unstable (compile successfully, but some test
cases failed)

• Build back to stable

5

https://github.com/lwhsu/freebsd-ci/tree/jjb/scripts/jail
https://github.com/lwhsu/freebsd-ci/tree/jjb/scripts/jail
pkg.FreeBSD.org
pkg.FreeBSD.org
https://wiki.freebsd.org/Jenkins/Setup
https://wiki.freebsd.org/Jenkins/Setup


And for notification email, we attach following infor-
mation:

• Changes since last build (who & what)

• Tail of the console output

• What are the test cases failed

• Related URLs

Email notification is considered a “double-edged
sword”, once we send out too many mails and peo-
ple will consider them as spam. If nobody reads
the notification mails and takes action, it is totally
no use. So use carefully created a pre-send script
with “Email-ext plugin” [7], for filter out the internal
errors of the jenkins cluster, to reduce false alert.
The script is available at: https://github.
com/freebsd/freebsd-ci/blob/master/
scripts/email-ext/pre-send.groovy .

6.2 Code Review System
The FreeBSD project owns a code review system
at https://reviews.FreeBSD.org, which
is setup with Phabricator [19], and jenkins has a
“Phabricator Differential Plugin” [11] plugin. It
currently supports only git, we patched it to support
subversion: https://github.com/lwhsu/
phabricator-jenkins-plugin/tree/scm,
and are also preparing to upstream it.

On ci.FreeBSD.org, we have two jobs:

• FreeBSD-head-amd64-build-phabric

• FreeBSD-doc-head-igor-phabric

They are using “quarantine mode” of the “build-in-jail
script sets”, and are triggered when a new patch is up-
loaded to reviews.FreeBSD.org (fig. 5).

And reports the build result back to reviews.
FreeBSD.org (fig. 6).

6.3 Clang Static Analyzer
We created a “clang scan-build” job with Clang
Static Analyzer [3] and the build script leveraged the
“bsd.clang-analyzed.mk” from NetBSD [23], simply
build the whole world and kernel with command in list-
ing 5.

Listing 5: Command to perform clang scan-build
make analyze \
CLANG_ANALYZE_OUTPUT_DIR=clangScanBuildReports \
CLANG_ANALYZE_OUTPUT=html

The result is taken cared by “Clang Scan-Build Plu-
gin” [6], which generates good web interface and history
tracking (fig. 7, 8, 9)

6.4 Igor and Checkstyle
For document build, we use igor [26] by Warren Block,
and Checkstyle [2] for checking the style of document
XML. We worked with Warren and added a new option
(-X) to igor, to output checkstyle XML. The respective
job is FreeBSD-doc-head-igor. “Checkstyle Plugin” [5]
of Jenkins also provides good web interface and history
tracking. (fig 10, 11, 12)

6.5 Compiler Warnings
We also collect compiler warnings with “Warnings Plu-
gin” [16]. For showing the trend of compiler warnings
and this pushes developers produce higher quality code.
(fig. 13, 14)

6.6 Build Status Badge
We provide build status badge for embedding in external
web pages through “Embeddable Build Status Plugin”
[8]. For example, on https://wiki.FreeBSD.
org/arm64 , we have badge as fig. 15

To show the latest status of each branch. The badge
URLs are:

• https://<job-url>/badge/icon

• https://<joburl>
/lastCompletedBuild/badge/icon

6.7 Others
We also use some other plugins for improving the inter-
face and helping the maintenance task:

• SCM Sync configuration [14]

– Use post-commit hook to notify administra-
tors

• SafeRestart [15]

– Schedule restart jenkins when all current jobs
complete

– Save and resume the build queue

• Green balls [9]

– To replace blue status ball with green ones, to
fulfill the convention for most culture.

7 Conclusion

In this paper, we described about the history and how
we setup the latest CI system of the FreeBSD project.
CI does help the development of the FreeBSD project,
and we hope these experience and codes can also help
downstream projects.

6

https://github.com/freebsd/freebsd-ci/blob/master/scripts/email-ext/pre-send.groovy
https://github.com/freebsd/freebsd-ci/blob/master/scripts/email-ext/pre-send.groovy
https://github.com/freebsd/freebsd-ci/blob/master/scripts/email-ext/pre-send.groovy
https://reviews.FreeBSD.org
https://github.com/lwhsu/phabricator-jenkins-plugin/tree/scm
https://github.com/lwhsu/phabricator-jenkins-plugin/tree/scm
reviews.FreeBSD.org
reviews.FreeBSD.org
https://wiki.FreeBSD.org/arm64
https://wiki.FreeBSD.org/arm64
https://<job-url>/badge/icon
https://<job url>/lastCompletedBuild/badge/icon
https://<job url>/lastCompletedBuild/badge/icon


Figure 5: Build triggerd by a patch

Figure 6: Rsult of a build triggerd by a patch

7



Figure 7: Clang scan-build result

8 Future Work

The most important future work is: have more people to
work on testing FreeBSD, providing more build and test
scripts. And there are some other ideas:

• CI for ports
Collaboration with “redports”
Automatically “exp-run”

• Check for reproducible build

• More tests, even some are not enabled by default
Dtrace

• Build for project branches
Make testing feature branches easier

• Performance tests

• Work with other projects

We hope these work can make the quality of FreeBSD
even better.

Acknowledgments
We want to thank following people, for sponsoring en-
ergy, idea and hardware:

• jenkins-admin@FreeBSD.org

• The FreeBSD Foundation

• clusteradmin@FreeBSD.org

• phabic-admin@FreeBSD.org

• People on -testing, -current, -stable mailing lists

References

[1] Benjamin Cummings, Booch, Grady, Object Ori-
ented Design: With Applications,
1991

[2] Checkstyle,
http://checkstyle.sourceforge.net

[3] Clang Static Analyzer,
https://clang-analyzer.llvm.org

[4] JUnit,
http://junit.org

[5] Jenkins Checkstyle Plugin,
https://wiki.jenkins-ci.org/
display/JENKINS/Checkstyle+Plugin

8

http://checkstyle.sourceforge.net
https://clang-analyzer.llvm.org
http://junit.org
https://wiki.jenkins-ci.org/display/JENKINS/Checkstyle+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Checkstyle+Plugin


Figure 8: Clang scan-build result explanation

Figure 9: Clang scan-build trend

9



Figure 10: Igor + Checksytle - result

Figure 11: Igor + Checkstyle - comparing with previous build

Figure 12: Igor + Checkstyle - trend

10



Figure 13: Compiler Warnings - result

Figure 14: Compiler Warnings - trend

Figure 15: Build satus badge

11



[6] Jenkins Clang Scan-Build Plugin,
https://wiki.jenkins-ci.org/
display/JENKINS/Clang+Scan-Build+
Plugin

[7] Jenkins Email-ext plugin,
https://wiki.jenkins-ci.org/
display/JENKINS/Email-ext+plugin

[8] Jenkins Embeddable Build Status Plugin,
https://wiki.jenkins-ci.org/
display/JENKINS/Embeddable+Build+
Status+Plugin

[9] Jenkins Green Balls Plugin,
https://wiki.jenkins-ci.org/
display/JENKINS/Green+Balls

[10] Jenkins Job Builder,
http://docs.openstack.org/infra/
jenkins-job-builder/

[11] Jenkins Phabricator Differential Plugin,
https://wiki.jenkins-ci.org/
display/JENKINS/Phabricator+
Differential+Plugin

[12] Jenkins Publish Over FTP Plugin,
https://wiki.jenkins-ci.org/
display/JENKINS/Publish+Over+
FTP+Plugin

[13] Jenkins SCM Sync configuration plugin,
https://wiki.jenkins-ci.org/
display/JENKINS/SCM+Sync+
configuration+plugin

[14] Jenkins SCM Sync configuration plugin,
https://wiki.jenkins-ci.org/
display/JENKINS/SCM+Sync+
configuration+plugin

[15] Jenkins SafeRestart Plugin,
https://wiki.jenkins-ci.org/
display/JENKINS/SafeRestart+
Plugin

[16] Jenkins Warnings Plugin,
https://wiki.jenkins-ci.org/
display/JENKINS/Warnings+Plugin

[17] Jenkins,
https://jenkins.io

[18] Merino, Julio, Kyua, Testing framework for in-
frastructure software,
https://github.com/jmmv/kyua

[19] Phabricator,
https://www.phacility.com/
phabricator/

[20] Pure-FTPd,
https://www.pureftpd.org

[21] Sudo,
http://www.sudo.ws

[22] The FreeBSD Project,
https://www.FreeBSD.org

[23] The NetBSD Project,
http://www.netbsd.org

[24] Tinderbox, FreeBSD Developers’ Handbook,
https://www.freebsd.org/doc/
en/books/developers-handbook/
testing-tinderbox.html

[25] Tinderbox, FreeBSD Wiki,
https://wiki.freebsd.org/
Tinderbox

[26] Warren Block, igor, FreeBSD Documentation
Project sanity check script,
http://www.wonkity.com/˜wblock/
igor/

[27] bhyve(8), FreeBSD System Manager’s Manual,
https://man.freebsd.org/bhyve

[28] nginx,
https://nginx.org/

12

https://wiki.jenkins-ci.org/display/JENKINS/Clang+Scan-Build+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Clang+Scan-Build+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Clang+Scan-Build+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin
https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin
https://wiki.jenkins-ci.org/display/JENKINS/Embeddable+Build+Status+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Embeddable+Build+Status+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Embeddable+Build+Status+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Green+Balls
https://wiki.jenkins-ci.org/display/JENKINS/Green+Balls
http://docs.openstack.org/infra/jenkins-job-builder/
http://docs.openstack.org/infra/jenkins-job-builder/
https://wiki.jenkins-ci.org/display/JENKINS/Phabricator+Differential+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Phabricator+Differential+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Phabricator+Differential+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Publish+Over+FTP+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Publish+Over+FTP+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Publish+Over+FTP+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/SCM+Sync+configuration+plugin
https://wiki.jenkins-ci.org/display/JENKINS/SCM+Sync+configuration+plugin
https://wiki.jenkins-ci.org/display/JENKINS/SCM+Sync+configuration+plugin
https://wiki.jenkins-ci.org/display/JENKINS/SCM+Sync+configuration+plugin
https://wiki.jenkins-ci.org/display/JENKINS/SCM+Sync+configuration+plugin
https://wiki.jenkins-ci.org/display/JENKINS/SCM+Sync+configuration+plugin
https://wiki.jenkins-ci.org/display/JENKINS/SafeRestart+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/SafeRestart+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/SafeRestart+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Warnings+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Warnings+Plugin
https://jenkins.io
https://github.com/jmmv/kyua
https://www.phacility.com/phabricator/
https://www.phacility.com/phabricator/
https://www.pureftpd.org
http://www.sudo.ws
https://www.FreeBSD.org
http://www.netbsd.org
https://www.freebsd.org/doc/en/books/developers-handbook/testing-tinderbox.html
https://www.freebsd.org/doc/en/books/developers-handbook/testing-tinderbox.html
https://www.freebsd.org/doc/en/books/developers-handbook/testing-tinderbox.html
https://wiki.freebsd.org/Tinderbox
https://wiki.freebsd.org/Tinderbox
http://www.wonkity.com/~wblock/igor/
http://www.wonkity.com/~wblock/igor/
https://man.freebsd.org/bhyve
https://nginx.org/

	Introduction
	Automatic Build and History of CI work in FreeBSD
	Self Tests
	Access to Results
	Open Configurations
	Other Integrations
	Notification
	Code Review System
	Clang Static Analyzer
	Igor and Checkstyle
	Compiler Warnings
	Build Status Badge
	Others

	Conclusion
	Future Work

