The Realities of DTrace on FreeBSD

Jonathan Anderson, Brian Kidney, George Neville-Neil,
Arun Thomas, Robert Watson

gnn@freebsd.org

BSDTW
201711 H11H
=EEE

Overview

History

Motivation

Recent DTrace Improvements
How People use DTrace

Future Improvements

11/12/17

BSDTW

Obligatory History

Developed at Sun for Solaris before 2005

Ported to FreeBSD in 2008
Ported to Mac OS for 10.5

Maintained separately with some cross patching

11/12/17 BSDTW 3

Motivations

Improve the state of tracing on large systems

Expand tracing into the Distributed Systems
Use tracing to teach about complex systems
Make it production ready

Do it in open source

11/12/17 BSDTW 4

Crisis Meeting

11/12/17 BSDTW 5

CADETS: Causal, Adaptive, Distributed and
Efficient Tracing System

Analyze, refine

Instrument,

Reduce, persist
compute, trace

11/12/17 BSDTW 6

Ground-Up Local Instrumentation

\
/ Loom A /DTrace scriptable
specification- Compilep ~ 0S full-system
driven program S &f:@ﬁ dynamic tracing
instrumentation o framework
\ % - N_ /
DTrace

C

=
LLVM IR fat \Free BS[X/ FreeBSD open- \
binaries support source OS
JIT (re-) extended for
instrumentation transparency

A 4

11/12/17 BSDTW 7

How We Use DIlrace

_everage DTrace for Distributed Instrumentation

Meaning?
o DTrace is now always on
o DTrace protections can used against us
o Some improvements necessary

https://github.com/cadets/freebsd

11/12/17 BSDTW 3

DTrace Design Principles

No overhead when not in use

Never panic the kernel
Protect the kernel at all costs

D is like C but safe

11/12/17 BSDTW <)

DTrace, Resources and Tuning

DTrace Built in 2005

A simpler time
With smaller memories

And slower CPUs

11/12/17 BSDTW 10

Your Grandparents Computers

Key feature highlights

* 64-bit Chip Multithreading (CMT)
UltraSPARC® IV technology

e Scales up to 8 x 1.2-GHz UltraSPARC IV
CPUs with 16 MB L2 cache per processor

* Up to 16 simultaneous compute threads
with up to 64 GB memory

¢ Solaris™ 8, Solaris 9, and Solaris 10
Operating System

* 9.6-GB/second Sun™ Fireplane interconnect

* N+1 hot-swap power supplies/
hot-pluggable disks

e Sun™ Remote System Control for secure
server management

11/12/17

Where Enterprise Computing Meets Entry-Level Pricing

More users and services are dramatically increasing the demands placed on today’s IT infrastructures
and systems. Sun meets this challenge with the Sun Fire™ V890 server. The Sun Fire V890 server
features the new UltraSPARC IV 64-bit processor with Chip Multithreading (CMT) processor
technology, as well as Solaris Operating System, the industry’s most robust, secure, and popular
UNIX® operating system.

With up to eight UltraSPARC IV CMT processors executing 16 concurrent threads, and up to
64 GB of memory, the Sun Fire V890 server delivers extreme levels of throughput for your most
demanding departmental and enterprise applications. The Sun Fire V890 platform is an ideal
system for an extensive range of applications, including Application Serving, Business Processing,
Database, Collaboration, High-Performance Technical Computing (HPTC), and Application
Development.

With a potential of nearly two terabytes of internal storage and standard networking
support, the Sun Fire V890 server is designed to complement IT operations at prices below
traditional data center servers. The 9.6-GB/sec. system bus, integrated 1/0 adapters, and nine
PCl slots help ensure a highly scalable, well-balanced system for Application Serving, 1/0-
intensive, and compute-intensive workloads.

Your Grandparents Computer

Key Features

1. Dual Intel® 64-bit Xeon™ Support,
up to 3.60 GHz, 800 MHz FSB

2. Intel® E7520 (Lindenhurst) Chipset
3. Up to 16GB DDRII 400 SDRAM

4. Intel® 82546GB dual-port Gigabit
Ethernet Controller

5. Adaptec AIC-9410 8-Port Serial
Attached SCSI (SAS) Controller

6. 2x SATA Ports via Intel ICH5R
_ ' (g SATA Controller

OP g bt 7.2 (x8) PCI-Express,

1x 64-bit 133MHz PCI-X,

1x 64-bit 100MHz PCI-X

8. IPMI 2.0 Socket

. Highest Data Bandwidth Solution
. High-End SAS / NAS Storage Solution

Specifications

11/12/17

Running out
of steam

11/12/17

dtrace: 2179050 drops on CPU O
dtrace: 2113052 drops on CPU O
dtrace: 3104101 drops on CPU O

III

“DTrace is broken!

BSDTW 13

DTrace Tuning

bufsize
o Defaults to 4M and was severely limited on FreeBSD
° Increase if you are having too many drops

switchrate
o Defaults to 1Hz

° Increase if you have drops

dynvarsize
o Defaults to 1M

° Increase if you have variable drops
o dtrace: 103 dynamic variable drops

11/12/17 BSDTW

14

Recent DIrace Improvements

Machine-Readable Output

New Providers

o audit

o mac and mac_framwork
o opencrypto

° sctp

° xbb

Performance Analysis

Documenting the Internals
o Not just what, but also how and why

11/12/17 BSDTW 15

Machine-Readable Output

dtrace —n 'syscall::write:entry'

dtrace: description

CPU ID
0 59780
0 59780

'syscall::

write:entry' matched 2 probes
FUNCTION : NAME

write:entry

write:entry

dtrace -0 json -n
dtrace: description
CPU ID

{

"probe": {

'syscall::
'syscall::

write:entry'
write:entry' matched 2 probes
FUNCTION:NAME

"timestamp": 3594774042481656,

"Cpu n : 1 ,

"id": 59780,
"func": "write",
"name": "entry"

11/12/17

BSDTW

16

D Language Improvements

C-like language that supports all C operators

Structured like awk
Supports thread and clause local variables

Subroutines to handle common tasks

11/12/17 BSDTW 17

copyoutmbuf

Allows for reading chained mbufs in D

Important for BSD derived network stacks

dtrace -n

dtrace: description ':::tcp_input:entry '
CPU ID FUNCTION:NAME
3 34345 tcp_input:entry

0 1 2 3 4 5 6 7 8 9 a b c
O0: 45 10 00 34 46 £f4 40 00 40 06 70 Oa cO
10: cO a8 01 64 3d 3c 00 16 70 7d fa 57 c2
20: 80 10 04 10 b5 a5 00 00 01 01 08 Oa 3a
30: 94 3c 09 5f 00 00 00 00 00 00 00 00 OO

d e £
a8 01 01
cc f1 4b
c8 04 ae
00 00 0O

:::tcp_input:entry { tracemem(copyoutmbuf (*args[0], 64), 64); }'
matched 1 probe

0123456789abcdef

11/12/17

D Language Improvements

if statements
° D has ternary operator

hexval = (¢ >= '0' & c <= '9') 2 ¢ - '0'" : (c >= 'a' &&
c<='z')y 2 ¢c+ 10 - 'a' :t ¢c+ 10 - 'A";

o if statement improves readability
o Syntactic sugar imported from Solaris

11/12/17 BSDTW 19

For want of an if

vdev_queue_pending_remove:entry {

if (stringof(args[l]->io_spa->spa_name) == §$$1)
if (args[l]->io_type == ZIO_TYPE_READ) {

@bytes_read = sum(args[l]->io_size);

else if (args[l]->io_type == ZIO_TYPE_WRITE

&& args[1l]->io_bookmark.zb level != 2) {

@bytes_written = sum(args[l]->io_size);

* Example by Matthew Ahrens

11/12/17

A Spoonful of Syntactic Sugar

dtrace:: :ERROR{ self-> XD error = 0Oxl; }

::vdev_queue_pending remove:entry{ self-> XD error = 0x0; }
::vdev_queue_pending remove:entry /!self-> XD error/

{ this-> XD conditionl = 0xl1l && stringof(args[l]->io_spa->spa_name) == $$1; }
::vdev_queue_pending remove:entry /!self-> XD error/

{ this-> XD condition2 = this-> XD conditionl && args[l]->io_type ==
ZIO_TYPE_READ; }

::vdev_queue_pending_remove:entry /(!self->_XD error) && this-> XD condition2/
{ @bytes_read = sum(args[l]->io_size); }

::vdev_queue_pending remove:entry /!self-> XD error/

{ this-> XD condition3 = this-> XD conditionl && !this-> XD condition2; }
::vdev_queue_pending remove:entry /!self-> XD error/

{ this-> XD condition4 = this-> XD condition3 && args[l]->io_type ==
ZIO_TYPE_WRITE

&& args[l]->io_bookmark.zb_level != 2; }

11/12/17

Audit Provider

Subsystem for logging security related events

Government Common Criteria security standards

Optional component of FreeBSD since 2004

11/12/17 BSDTW 22

Audit Provider

What is a provider?
o DTrace code that collects together a set of trace points

What does the provider get us?
o Access to audit framework data in DTrace...

o ... with filtering and statistics through D.

11/12/17 BSDTW

23

DTrace Performance

DTrace shouldn’t degrade performance
o Drops Records

o Kernel can kill tracing under high load

Solutions
o Our monitoring cycle

[¢]

Buffer Sizes now configurable with sysctl

o Update your memory parameters from 2005
Improve the D compiler

JIT

Leverage LLVM

[¢]

[¢]

o

11/12/17 BSDTW 24

Aside — Loom

Loom is a instrumentation framework
o Based on LLVM toolchain

o Weaves instrumentation into LLVM IR

o Instrumentation defined in Policy files

o Instrumentation can be done at any time
° Aslong as LLVM IR is available

We want to use Loom for DTrace probes in Userspace

11/12/17 BSDTW 25

Userland Statically Defined
Tracing (USDT)

(binary)

11/12/17 BSDTW 26

USDT Performance

Probes disabled when not tracing
o Probe site replaced with NOP/function pointer
o Near zero overhead — theoretically

Problems
o DTrace tool modifies binaries

o Doesn’t play well with Make
o Makes heavy use of relocations

11/12/17 BSDTW

27

Loom Base Userland Tracing

app.c

compile

v
app.bco
or IR Fat

Binary
Loom
A \ 4
app provider_x.
(binary) d

BSDTW 28

11/12/17

Dynamic Userland Tracing

Very Early Stages of Development!
o Prototype system call (dt_probe)

° |nstrumentation via Loom
> No change to binary when no instrumentation

To be complete
o Performance/Overhead testing
o Provider Generation

11/12/17 BSDTW 29

DTrace is not the Only One

eBPF

At the lowest level far too primitive

bcec — A C-like front end

ply — Python front end

Has feature parity with DTrace — Brendan Gregg 2017

11/12/17

DTrace Source Flow

OpenDTrace

Cross Platform
Highly Portable
RFD Process

github.com/orgs/opendtrace

11/12/17

BSDTW

32

OpenDTrace Specification

DTrace Specification of DIF, DOF and CTF in progress
Better testing of Framework

Support new execution substrates (JIT)

Make it easier to make future extension

Allow for clean room re-implementation

11/12/17 BSDTW

33

OpenDTrace Futures

Basic Blocks

Bounded Loops

Modules

Higher Performance
Improved Test Suite

More OS Ports

Broad Architecture Support
Finer Grained Libraries

Usable from other languages
o Python, Rust, Go

11/12/17 BSDTW 34

OpenDTrace on a Spectrum

35

BSDTW

11/12/17

Distributed DTrace

11/12/17

Applying OpenDTrace

Enhanced kernel trace points on FreeBSD (and others)
o |PSEC

o Network Link Layer
o GEOM/CAM
o Drivers

User Space Tools
o Schedgraph
o Lockgraphing
o Performance of various subsystems
o Flamegraph all the things

11/12/17 BSDTW 37

OpenDTrace

OpenDTrace

\

11/12/17 BSDTW 38

MacOS [llumo FreeBSD NetBSD

How you can help

Look at the opendtrace organization on github

Check out the documentation and source

Send pull requests

Please help us find a new logo!

11/12/17 BSDTW 39

