
Towards oblivious sandboxing
Jonathan Anderson, Stanley Godfrey

and Robert N M Watson

For those playing along at home: https://github.com/trombonehero/sandbox-examples, https://github.com/freebsd/freebsd

This work has been sponsored by the Research & Development Corporation of Newfoundland & Labrador (contract 5404.1822.101), the NSERC

Discovery program (RGPIN-2015-06048) and the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory

(AFRL), under contract FA8650-15-C-7558. The views, opinions, and/or findings contained in this paper are those of the authors and should not

be interpreted as representing the official views or policies, either expressed or implied, of the Department of Defense or the U.S. Government.

https://github.com/trombonehero/sandbox-examples
https://github.com/freebsd/freebsd

Principled:

draws on rich history of computer
security concepts and literature

monotonic reduction of authority

Coherent:

clear, simple policies

uniform application across applications

Background: Capsicum

framework for principled, coherent compartmentalization

compartmentalization: application subdivision

Towards oblivious sandboxing (vBSDCon 2017) 2 / 40

PIDs

file paths, filesystem IDs

NFS file handles

socket protocol addresses

sysctl MIBs

POSIX, SysV IPC names

system clocks

jails, CPU sets

Hotel California

Strong isolation

Background: capability mode

No access to global namespaces:

Towards oblivious sandboxing (vBSDCon 2017) 3 / 40

filter system calls with
BPF programs

easy: check syscall
number (on same arch)

hard: check arguments
(e.g., filenames)

impossible: check
arguments meaningfully
(just like systrace)

Alternative syscall filter: seccomp(2)

#define Allow(syscall) \
 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, SYS_##syscall, 0, 1), \
 BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW)

struct sock_filter filter[] = {
 // Check architecture: syscall numbers arch-dependent!
 BPF_STMT(BPF_LD+BPF_W+BPF_ABS, ArchField),
 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, AUDIT_ARCH_X86_64, 1, 0),
 BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL),

 // Check syscall:
 BPF_STMT(BPF_LD+BPF_W+BPF_ABS, SYSCALL_NUM_OFFSET),
 Allow(brk), // allow stack extension
 Allow(close), // allow closing files!
 /* ... */
 Allow(openat), // to permit openat(config_dir), etc.
 BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_TRAP), // or die

Thanks: https://eigenstate.org/notes/seccomp

Towards oblivious sandboxing (vBSDCon 2017) 4 / 40

https://eigenstate.org/notes/seccomp

much simpler filters
e.g., stdio limits to
clock_getres(2), close(2),
dup(2), fchdir(2), read(2)...

rpath allows read-only effects
on the filesystem: chdir(2),
getcwd(3), openat(2), ...

optional path whitelisting

Still insufficient!

// Enter sandbox!
if (pledge("stdio rpath cpath flock", NULL) < 0)
{
 err(-1, "error in pledge()");
}

// Or we could've whitelisted a few specific paths
// (assuming we know them all in advance).
const char *paths[] =
{
 "foo.lock",
 "bar.lock!",
 NULL,
};

Alternative syscall filter: pledge(2)

Towards oblivious sandboxing (vBSDCon 2017) 5 / 40

+if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT) != 0)
+{
+ err(-1, "error inpledge()");
+}
+
 if (excite_file(STDIN_FILENO, // ...

+if (pledge("stdio", NULL) != 0)
+{
+ err(-1, "error in pledge()");
+}
+
 if (excite_file(STDIN_FILENO, // ...

pledge(2) and seccomp(2): the good news

Can sandbox trivial applications trivially

If your application only needs read(2), write(2), close(2), etc.:

Demo!

Towards oblivious sandboxing (vBSDCon 2017) 6 / 40

Slightly more interesting program:

[openbsd-vm jon]$./do_stuff ../conf `mktemp -d [...]`
hello!
package conf
locked.
[openbsd-vm jon]$ ls
Makefile do_stuff.c p0wnd!
do_stuff do_stuff.o scratch.MIwnTP

escape from scratch directory

With path whitelist:

const char *known_paths[] =
{
 "foo.lock",
 "bar.lock!",
 NULL,
};

enumerate all possible paths

shallow filtering (e.g., symlinks)

concurrency leads to TOCTTOU

pledge(2) and paths

It's the same story with seccomp(2), just with more complex pattern matching. MacOS Sandbox is... interesting.

Towards oblivious sandboxing (vBSDCon 2017) 7 / 40

It's not enough to:

filter on system call numbers/names

filter on system call arguments

Authorization must be done:

atomically with authorized operations

deep within the kernel (not a wrapper)

Fundamental limitation for:

systrace

seccomp w/BPF

pledge

Authorizing security-sensitive operations

Towards oblivious sandboxing (vBSDCon 2017) 8 / 40

Background: capabilities

Historic idea:

identifier for an object + operations that can be performed on it

Dennis and Van Horn (1966): index into supervisor-maintained C-list

Historic capabilities PSOS Multics Unix

Towards oblivious sandboxing (vBSDCon 2017) 9 / 40

lots of implicit rights

lack of monotonic reduction

int fd = open("my-data.dat", O_RDONLY);
if (fchmod(fd, 0777) < 0)
 err(-1, "unable to chmod"); // usually doesn't run

Background: file descriptors

Like capabilities:

index into supervisor-maintained list of objects

identifiers with operations: read(2), write(2), etc.

Unlike capabilities:

Towards oblivious sandboxing (vBSDCon 2017) 10 / 40

struct filedescent {
 struct file *fde_file;
 struct filecaps fde_caps;
 uint8_t fde_flags;
 seq_t fde_seq;
}

open(2) gives all rights, cap_rights_limit(2) limits, *at(2), accept(2) derive from others

Background: capabilities

Rigorous focus on allowed operations

proc filedesc fdescenttbl filedescent filecaps
{cap_rights_t fc_rights, fc_ioctls, fc_fcntls}

allowed syscalls, ioctls, fcntls

CAP_READ, CAP_FTRUNCATE, CAP_MMAP, CAP_FCHMOD...

fget(td, fd, cap_rights_init(&rights, CAP_FSTAT), &fp);

Towards oblivious sandboxing (vBSDCon 2017) 11 / 40

--- a/true/true.c
+++ b/true/true.c
@@ -28,7 +28,11 @@
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");

+#include <sys/capsicum.h>
+
+#include <capsicum_helpers.h>
 #include <err.h>
+#include <errno.h>
 #include <stdbool.h>

 #include <true.h>

(see zxombie/libtrue:#5)

@@ -37,6 +41,12 @@ int
 main(int argc, char *argv[])
 {

+ if (caph_limit_stdio() != 0)
+ errx(1, "Failed to limit std{in,out,err}");
+
+ if (cap_enter() != 0 && errno != ENOSYS)
+ errx(1, "Failed to enter capability mode");
+
 if (!get_true())
 errx(1, "Bad true value");

Background: Capsicum in practice

But more seriously...

Towards oblivious sandboxing (vBSDCon 2017) 12 / 40

https://github.com/zxombie/libtrue/pull/5

 if (lpc_bootrom())
 fwctl_init();

+#ifndef WITHOUT_CAPSICUM
+caph_cache_catpages();
+
+if (caph_limit_stdout() == -1 || caph_limit_stderr() == -1)
+ errx(EX_OSERR, "Unable to apply rights for sandbox");
+
+if (cap_enter() == -1 && errno != ENOSYS)
+ errx(EX_OSERR, "cap_enter() failed");
+#endif

 /*
 * Change the proc title to include the VM name.
 */
 setproctitle("%s", vmname);

Background: Capsicum in practice

limitation: requires
voluntary self-
compartmentalization

Long-term goals:

compartmentalization
without modification

protecting ourselves from
vulnerable applications
whether they like it or not

Towards oblivious sandboxing (vBSDCon 2017) 13 / 40

Sandboxing as she is played today

1. open resources

2. cap_enter(2)

3. compute

4. (profit???)

Resources are:

statically-enumerable
or
externally-provided

Towards oblivious sandboxing (vBSDCon 2017) 14 / 40

http://qwantz.com/index.php?comic=2047

Resource dependencies

Explicit resources

files, directories, sockets...

can pre-open files or directories (for openat(2))
pre-opened file descriptors are preserved across exec(2) boundary

parent process can fork(2), open directory descriptors, setenv(3), cap_enter(2)...

external services (e.g., libcasper, powerbox service*, ...)

* Ka-Ping Yee, "Aligning security and usability", IEEE Security and Privacy 2(5), 2004 , "App Sandbox in Depth", Apple Developer Guides, 2016

.

Towards oblivious sandboxing (vBSDCon 2017) 15 / 40

https://dx.doi.org/10.1109/MSP.2004.64
https://developer.apple.com/library/content/documentation/Security/Conceptual/AppSandboxDesignGuide/AppSandboxInDepth/AppSandboxInDepth.html

Resource dependencies (2)

Implicit resources

locale data (can be pre-cached; see Mariusz' r306657)

shared libraries: even cat(1) and echo(1) need libc

but neither exec(2) nor run-time linking work in capability mode!

Towards oblivious sandboxing (vBSDCon 2017) 16 / 40

https://svnweb.freebsd.org/base?view=revision&revision=306657

exec(2) without a name

Traditional approach:

fork(2) child process

exec(2) binary
cleans up memory mappings,
closes O_CLOEXEC files

preserves other open files,
environment variables

finds binary by name, mmap's,
transfers control to linker

Towards oblivious sandboxing (vBSDCon 2017) 17 / 40

exec(2) without a name (2)

Problematic line:

finds binary by name, mmap's, transfers control to linker

first problem: "finds binary by name"
solution: fexecve(2) takes already-open file descriptor for binary*

fexecve(binary /* pre-opened? */, args, environ)

next problem: "mmap's"
but wait... isn't mmap(2) allowed in capability mode?

yes, but what are we mapping?

* ask me about fexecve on Linux, it's kind of funny.

Towards oblivious sandboxing (vBSDCon 2017) 18 / 40

How do we exec(2) binaries?

exec(2), execve(2), fexecve(2) kern_execve()
(supports lots of binary image formats)

try process-specific image activator (p_sysent)

try each execsw[i]->ex_imgact in turn (a.out, ELF, ...)

ELF: exec_elfXX_imgact @ sys/kern/imgact_elf.c:

static int
__CONCAT(exec_, __elfN(imgact))(struct image_params *)
{
 /* ... */
}

Towards oblivious sandboxing (vBSDCon 2017) 19 / 40

Image activation

ELF image activator encodes knowledge of run-time
linker (a.k.a., run-time "interpreter")

binaries can also encode a run-time linker path:
PT_INTERP field in ELF program header table

ELF image activator maps both interpreter and binary
into memory, starts running the interpreter

what's the problem?

Linker always specified by path!

Towards oblivious sandboxing (vBSDCon 2017) 20 / 40

see sys/kern/vfs_lookup.c:350:

if (error == 0 && IN_CAPABILITY_MODE(td) &&
 (cnp->cn_flags & NOCAPCHECK) == 0) {
 ndp->ni_lcf |= NI_LCF_STRICTRELATIVE;

NI_LCF_STRICTRELATIVE

don't allow '/', AT_FDCWD or ".."

explicit kernel override: NOCAPCHECK
flag (only used for coredumps)

desirable property of Capsicum's
deep-in-the-kernel approach

Finding the linker

in capability mode, open(2) syscall disallowed

more fundamentally, all name lookups in capability mode are restricted in namei()

if (cnp->cn_flags & ISDOTDOT) {
 if ((ndp->ni_lcf & (NI_LCF_STRICTRELATIVE |
 == NI_LCF_STRICTRELATIVE) {
 error = ENOTCAPABLE;
 goto bad;
 }

Towards oblivious sandboxing (vBSDCon 2017) 21 / 40

The problem:

can't look up the default RTLD path

can't use the PT_INTERP path

where can we get a run-time linker?

The solution:

punt!*

Finding the linker (2)

"Dear user, you tell me what linker to use! kthxbye."

Towards oblivious sandboxing (vBSDCon 2017) 22 / 40

Finding the linker (3)

applications that launch binaries from sandboxes need
some knowledge of ABIs

library? ("dear binutils, what sort of binary is this?")

system service? ("what linker should this binary use?")

Future work☺
initial approach: ffexecve(2) (specify linker, binary by FD)

final approach: directly-executable linker

Towards oblivious sandboxing (vBSDCon 2017) 23 / 40

Directly-executable linker

Usage: /libexec/ld-elf.so.1 [-h] [-f <FD>] [--] <binary> [<args>]

Options:
 -h Display this help message
 -f <FD> Execute <FD> instead of searching for <binary>
 -- End of RTLD options
 <binary> Name of process to execute
 <args> Arguments to the executed process

as before: fork(2), open directory descriptors, setenv(3), cap_enter(2)
the new bit: fexecve(the_linker, args + ["-f", the_binary], environ)

r319135 | kib | 2017-05-29 MFC direct execution mode for rtld.
r318431 | jonathan | 2017-05-17 Allow rtld direct-exec to take a file descriptor.
r318380 | kib | 2017-05-16 Pretend that there is some security when executing in direct mode.
r318313 | kib | 2017-05-15 Make ld-elf.so.1 directly executable.

Towards oblivious sandboxing (vBSDCon 2017) 24 / 40

int rtld = open("/libexec/ld-elf.so.1", O_RDONLY);
int binary = open(name, O_RDONLY);

char *args[argc + 4];
args[0] = strdup(name);
args[1] = "-f";
asprintf(args + 2, "%d", binary);
args[3] = "--";
args[argc + 3] = NULL;

for (int i = 0; i < argc - 1; i++)
 args[i + 4] = argv[i + 1];

fexecve(rtld, args, environ);

note: error handling removed for space reasons

Demo: run(1)

The opposite of sudo(8)

find the ELF interpreter

find a binary

execute it in a sandbox

This solves all our problems...

right?

Er, not quite.

Towards oblivious sandboxing (vBSDCon 2017) 25 / 40

Linking within compartments

The story so far:

most applications need dynamic libraries*

run-time linker is "just" code in a process
same address space / security domain

runs before main, opens needed libraries

Actual linking can happen at run-time, even in capability mode...
but libraries cannot be open(2)'ed from capability mode!

* Other than the FreeBSD-derived MacOS, which doesn't support statically-linked binaries...

Towards oblivious sandboxing (vBSDCon 2017) 26 / 40

Finding libraries

How it normally works:

(see find_library at libexec/rtld-elf/rtld.c:1586)

DT_RPATH (with rules about DSO, DT_RUNPATH...)

LD_LIBRARY_PATH

DT_RUNPATH

ldconfig hints (with rules aroudn -z nodefaultlib)

STANDARD_LIBRARY_PATH (/lib32:/usr/lib32, /lib/casper:/lib:/usr/lib...)

... followed by open(2) ... which isn't allowed in capability mode!

Towards oblivious sandboxing (vBSDCon 2017) 27 / 40

Shared libraries in capability mode

r267678: LD_LIBRARY_PATH_FDS
like LD_LIBRARY_PATH, but with file descriptors

directory descriptors for /lib, /usr/lib, /usr/local/share/myapp/plugins...

then openat(2), then fstat(2)...

Towards oblivious sandboxing (vBSDCon 2017) 28 / 40

https://svnweb.freebsd.org/base?view=revision&revision=267678

int rtld = open("/libexec/ld-elf.so.1", O_RDONLY);
int binary = open(name, O_RDONLY);

char *args[argc + 4];
args[0] = strdup(name);
args[1] = "-f";
asprintf(args + 2, "%d", binary);
args[3] = "--";
args[argc + 3] = NULL;

for (int i = 0; i < argc - 1; i++)
 args[i + 4] = argv[i + 1];

fexecve(rtld, args, environ);

note: error handling removed for space reasons

The story so far

We can run RTLD

RTLD can find libraries

RTLD can run binaries

Profit???

Not quite!

Towards oblivious sandboxing (vBSDCon 2017) 29 / 40

The story so far (2)

Libraries are not enough:

$ cc run.c -o run && ./run /bin/cat /etc/passwd
cat: /etc/passwd: Not permitted in capability mode

Also need support for traditional resource access

Towards oblivious sandboxing (vBSDCon 2017) 30 / 40

Accessing file resources

Existing applications like to use:

access(2)

stat(2)

open(2)

... none of which are allowed!

We could rewrite the application to assume it will be given a directory descriptor and
use openat(2), etc. ... but that wouldn't be very oblivious!

Towards oblivious sandboxing (vBSDCon 2017) 31 / 40

libpreopen

Transparent filesystem proxying

libpreopen's struct po_map maps virtual paths to capabilities

libc wrappers provide Capsicum-aware versions of, e.g., open(2):
LD_PRELOAD libpreopen* to take precedence over system calls†

take given (absolute) path, search through struct po_map:
on success: translate "/usr/local/share/my_app/foo.conf" (FD 3,"foo.conf");
these can be passed to accessat(2), openat(2), statat(2)...

no suitable pre-opened path: translate to (FD -1,NULL), return error

* This works in capability mode iff libpreopen.so is reachable via LD_LIBRARY_PATH_FDS — if not, we always fail closed.

† System calls are defined as weak symbols in libc to allow overriding.

Towards oblivious sandboxing (vBSDCon 2017) 32 / 40

https://github.com/musec/libpreopen

(in most cases) fork(2)

pre-open any required resources

populate a struct po_map

pack the po_map into POSIX SHM

set LD_LIBRARY_PATH_FDS, LD_PRELOAD

set LIB_PO_MAP

fexecve(2) the linker

let libc wrappers unwrap/use LIB_PO_MAP

libpreopen (2)

But where does a po_map come from?

Our overall objective: launch an unmodified application from a sandbox

Who pre-opens files and directories?
It's the responsibility of the thing (process) doing the launching.

Towards oblivious sandboxing (vBSDCon 2017) 33 / 40

capsh: a capability-enhanced shell

Available from github.com/musec/capsh

Towards oblivious sandboxing (vBSDCon 2017) 34 / 40

https://github.com/musec/capsh

capsh status

Where are we today?

Not a real shell: only usable as capsh <args> for direct execution.

Not very sophisticated: we can do a little more than echo, but not much*!

But: it does execute execute unmodified software.

We can run /usr/bin/true, banner, pom, primes...

Towards oblivious sandboxing (vBSDCon 2017) 35 / 40

The goal

Sandboxing programs

by default

Services required:

static pre-opened files:
CLI arguments

package policies

dynamic provisioning:
UI interaction

user/system policies

Towards oblivious sandboxing (vBSDCon 2017) 36 / 40

Static policies*

services:
 exec:
 paths: [/usr/local/llvm39, /bin, /usr/bin]

 filesystem:
 - root: /usr/local/llvm39
 preopen: true # we always need the llvm39 dir
 rights: [read, seek, lookup]
 - root: /usr/local/bin
 globs: ["clang*", "ll*"]
 rights: [read, seek, exec]

 network:
 https:
 hostname: llvm-crashreporter.freebsd.org
 certificate-policy: # ...

* Policy syntax is suggestive of future directions: this stuff doesn't exist yet.

Towards oblivious sandboxing (vBSDCon 2017) 37 / 40

Dynamic services

application-level services
TLS handling

worker processes

session-level services
D-Bus

UI powerboxes

user data provisioning

system-level services
names, syslog..

shared data and configuration

Towards oblivious sandboxing (vBSDCon 2017) 38 / 40

Towards oblivious sandboxing

From a Capsicum sandbox, we can:

pre-open libraries and resources

run RTLD directly
use library directory FDs

map, run binary

wrap ambient-authority system calls
retrieve FDs from anonymous shared memory

convert access(2) to accessat(2), open(2) to openat(2)...

provide access to named system services

Towards oblivious sandboxing (vBSDCon 2017) 39 / 40

Conclusion

Capsicum provided kernel-level
foundation for principled, coherent
compartmentalization
new work provides application-level
foundation for:

running unmodified applications

providing application services

stage set for deeper exploration of
oblivious sandboxing
movement towards applications that
just work and are secure by default

Towards oblivious sandboxing (vBSDCon 2017) 40 / 40

