
GELI Support for UEFI

Eric L. McCorkle

September 9, 2017



Disclaimer

The content of this presentation does not constitute a statement
on behalf of or represent the position of any company or
organization. The work described herein was not carried out on
behalf of any company or organization, including any employer.



Background

I geli is a block-level disk encryption scheme for FreeBSD.

I Support for booting in X86 BIOS mode from geli volumes
added by Allan Jude.

I UEFI boot is very different from X86 BIOS.

I GELI support for UEFI necessary to support modern hardware,
UEFI features (secure boot, UEFI variables, etc.)



UEFI Boot Process

I UEFI specification provides a number of APIs for device I/O,
memory allocation, driver registration, etc.

I No direct access to devices, control over addresses, etc.

I Firmware looks for EFI System Partition (ESP), loads boot
application from standard location

I UEFI spec calls for minimum 200Mib ESP, can be larger

I FreeBSD UEFI boot process has two steps

I boot1 is a UEFI application installed to ESP, looks for boot
partition, loads loader.efi

I loader.efi presents the standard FreeBSD boot shell



Table of Contents

Disclaimer

Background

Core Issues

Project History
Initial Work
EFIzation
Keys and Crypto
Second Unification
Testing and Review

Future Plans



UEFI Benefits and Challenges

I Benefit: (mostly) free from space constraints, unlike X86
BIOS

I Challenge: level of abstraction precludes safely passing
arbitrary memory from boot1 to loader.efi

I Challenge: harder to properly implement GELI driver

I Challenge: split code base between boot1 and loader.efi

I Benefit: a lot more tools to work with



Issue: Key Transmission

I User should only input password once

I Näıve implementation would require three separate times

I Need to transmit keys from boot1 to loader.efi, then to
kernel

I X86 BIOS pushed password onto loader’s stack, then as an
environment variable for the kernel

I UEFI has stronger separation between stages

I Want to support multiple passwords

I Hashed passwords better (only incurs one hashing delay)

I Ideally, provide straightforward migration to hardware key
storage mechanisms



Issue: Split Codebase

I loader.efi uses libstand API with UEFI backend

I boot1 used completely separate codebase with its own
interface

I Codebases were almost completely independent, significant
duplication

I boot1 codebase tended towards minimality, difficult to
maintain and improve

I Any change would require two separate implementations with
different underlying designs

I This code duplication hampered both current as well as
planned future work



Issue: GELI Driver Architecture

I GELI is designed around GEOM, a multi-layered device
interface

I Can support arbitrarily-complex schemes (GPT/GELIs inside
GELIs, and so on)

I Boot loader support is more limited

I boot1 would require complete overhaul to support GELI-like
structures

I loader.efi has ability to support “one-layer” schemes
(GELIs on partitions)



Table of Contents

Disclaimer

Background

Core Issues

Project History
Initial Work
EFIzation
Keys and Crypto
Second Unification
Testing and Review

Future Plans



Timeline of Work

I Attempt to refactor boot1

I First attempt at unifying boot1 and loader.efi codebases
(EFIzation)

I First working GELI driver!

I Time in code review, use on real hardware

I ZFS boot environment issues identified, non-trivial changes to
HEAD

I Design revision, simplification, establishment of new branches

I Key intake buffers go into kernel

I Full-disk root-on-ZFS under GELI working on real hardware



Table of Contents

Disclaimer

Background

Core Issues

Project History
Initial Work
EFIzation
Keys and Crypto
Second Unification
Testing and Review

Future Plans



First Refactor of boot1

I Purpose was to “rough out” a PoC

I Introduced a “providers” API to compliment boot modules

I Created even more code duplication, highlighted need to unify
codebases

I Abandoned in favor of unification



Table of Contents

Disclaimer

Background

Core Issues

Project History
Initial Work
EFIzation
Keys and Crypto
Second Unification
Testing and Review

Future Plans



UEFI Driver Primer

I EFI DRIVER BINDING API allows registration of new drivers

I Drivers have probe/attach functions for EFI HANDLEs

I Can attach various interfaces to an EFI HANDLE

I Can also create new EFI HANDLEs to represent virtual devices

I New devices will be automatically probed by all registered
drivers

I UEFI spec guarantees GPT/MSDOSFS drivers



EFIzation Effort

Observation: UEFI provides an API with the same functionality as
libstand; use it instead!

I First effort to unify boot1 and loader.efi

I boot1 and loader.efi would use EFI SIMPLE FILE SYSTEM

interface

I Produced “shim” drivers: UEFI-to-libstand,
libstand-to-UEFI

I libstand drivers sat under EFI SIMPLE FILE SYSTEM

interface

I boot1 directly utilized EFI SIMPLE FILE SYSTEM to find and
load loader.efi

I loader.efi continued to use libstand interface, which
talked through the other shim to UEFI API



UEFI Drivers

I GELI was implemented directly as a UEFI driver

I GELI used EFI DRIVER BINDING API to register itself as a
driver, created new device handles for GELI volumes it detects

I Benefit: this carries over across the boot1/loader.efi
boundary

I efipart mostly converted to a UEFI driver

I Issues with bcache prevented full conversion



Table of Contents

Disclaimer

Background

Core Issues

Project History
Initial Work
EFIzation
Keys and Crypto
Second Unification
Testing and Review

Future Plans



Managing Keys in the Loader

I UEFI driver interface solves one half of the problem raised by
the boot1/loader.efi gap

I EFI HANDLEs registered in boot1 are available in loader.efi

I This provides access

I Still need keys to pass into the kernel



UEFI KMS Interface

I UEFI defines a key management system (KMS) interface

I Implemented a simple in-memory key database as a driver
which provides this interface.

I GELI driver attempts to locate a KMS during initialization

I GELI stores/retrieves keys from its KMS

I Kernel metadata step also locates the KMS, transfers all keys
into the kernel via the keybuf interface



Kernel Key Intake Buffer (keybuf)

I Provide a better way of getting keys into the kernel

I Uses kernel metadata functionality to deliver (by default) up
to 64 keys, each up to 4096 bits long

I Keys have a type code indicating their format

I Picked up by crypto, then subsequently available to other
drivers for initialization

I GELI passes in hashed passwords

I Designed to be extended to work with hardware crypto



Boot Crypto Framework (boot crypto)

I Inherited code from X86 BIOS implementation, but created a
separate codebase

I X86 BIOS is space-constrained and only supports AES; UEFI
is not space-constrained

I boot crypto is designed around a generic algorithm interface
with pluggable backends

I Designed to anticipate overhaul of crypto framework

I Also designed to support hardware crypto device
implementations



If/When Trustworthy Hardware KMS/Crypto Exists. . .

Thinking ahead to a time when there is a trustworthy hardware
KMS implementation was a consideration in this design

I In-memory KMS detection aborts if it detects another KMS
device (this also deals with boot1 and loader.efi both
having to attempt to register the in-memory KMS device)

I GELI should “just work”, as it talks through the KMS and
boot crypto interfaces

I boot crypto would need to add support

I “Keys” would likely consist of ID numbers for keys stored in
KMS

I keybuf interface could easily add another key type for key IDs



Table of Contents

Disclaimer

Background

Core Issues

Project History
Initial Work
EFIzation
Keys and Crypto
Second Unification
Testing and Review

Future Plans



Benefits of EFIzed Approach

I boot1 reduced to a very minimal program, uses same
codebase as loader.efi

I Seamless integration with firmware-provided drivers

I Dropped MSDOSFS driver

I Provided framework for hot-plugging support (bcache got in
the way of full implementation)

I Laid groundwork for exporting driver code to others



Drawbacks of EFIzed Approach

I UEFI does a bad job at supporting non-Microsoft systems and
interfaces

I EFI SIMPLE FILE SYSTEM interface is designed around
MSDOSFS, sits uncomfortably in a VFS interface

I Difficult to present the same information in boot shell as in
current loader

I ZFS boot environments lost when talking over UEFI interfaces

Personal takeaway: started with moderately positive views on
UEFI, ended with moderately negative views.



Simplified Unification

Eventually, code changes in HEAD broke the patches in non-trivial
ways, and the drawbacks of EFIzed approach were becoming clear.

I Moved UEFI-to-libstand shim out to an independent review
(still up for review)

I Dropped libstand-to-UEFI shim altogether

I Refactored boot1 to use libstand

I Recovered simplicity, information at boot shell, ZFS boot
environments

I Casualty: progress towards hot-pluggable devices at boot time



Refurbishing Efforts

I efipart had moved away from a static-numbered,
array-based storage scheme for device handles (right move)

I efipart had also split up device handles by drive type (also
right move)

I Found an integer overflow bug in efipart realstrategy

when attempting to read past the end of a device (caused
crash)

I efipart was manually parsing partition tables and using base
device handles

I This didn’t work at all with GELI, so had to revert to direct
access through partition device handles



Table of Contents

Disclaimer

Background

Core Issues

Project History
Initial Work
EFIzation
Keys and Crypto
Second Unification
Testing and Review

Future Plans



Kernel gets keybuf Interface

I keybuf patch went into kernel first

I X86 BIOS GELI support started using keybuf

I Legacy environment variable method still supported,
eventually to be phased out

I Definitely the right move to put keybuf in first

I Anyone using a recent kernel can use UEFI GELI without a
kernel update



Testing on QEMU and Real Hardware

I QEMU testing setup had a large number of GELI disks,
including encrypted/unencrypted UFS, ZFS, also an X86
BIOS setup

I Tested all combinations on QEMU

I I had also been using a root-on-ZFS laptop with its
L2ARC/Intent log stored on GELI volumes since the EFIzed
version

I Finally, converted a laptop over to a full GELI root-on-ZFS
setup

I Works perfectly (except I forgot the -R when taking the ZFS
snapshots. . . )



Table of Contents

Disclaimer

Background

Core Issues

Project History
Initial Work
EFIzation
Keys and Crypto
Second Unification
Testing and Review

Future Plans



Plans for GRUB/Coreboot

I GRUB is (reportedly) the best way to achieve a Coreboot
setup

I Coreboot is arguably a better option (where it’s supported)

I GRUB already supports GELI, but needs to be updated to use
the keybuf interface

I Initial conversations with GRUB developers indicates this
shouldn’t be hard



My Long-Term Plans

My overall agenda can be described as “OS-level
tamper-resilience”

I Full-disk encryption (GELI)

I Trust framework and kernel/module signing

I Active use of coreboot/setup guides

I Secure suspend/resume

I Other uses of trust framework


	Disclaimer
	Background
	Core Issues
	Project History
	Initial Work
	EFIzation
	Keys and Crypto
	Second Unification
	Testing and Review

	Future Plans

