
Integrating
ZStandard
into ZFS

Allan Jude -- allanjude@freebsd.org

Introduction

● 16 Years as FreeBSD Sysadmin
● FreeBSD committer (ZFS, installer, boot loader)
● FreeBSD Core Team (July 2016 - 2018)
● Co-Author of “FreeBSD Mastery: ZFS” and

“FreeBSD Mastery: Advanced ZFS”
● Architect of the ScaleEngine Video CDN
● Host of BSDNow.tv Podcast
● Over 1PB of ZFS across 30 locations

What is ZStandard
● New compression algorithm out of Facebook
● Created by Yann Collet, author of LZ4
● Designed to beat gzip and be faster
● multiple compression techniques: Finite

State Entropy coder, Huffman encoder
● 22 levels (speed & memory tradeoff)

○ New in 2018: Negative (faster) levels of compression
● Dictionary Training

Ratio vs Speed Comparison (4.0GHz)

 Compressor Ratio Compress Decompress

Zstd 1.3.4 (-1) 2.877 470 MB/s 1380 MB/s

Zlib 1.2.11 (-1) 2.743 110 MB/s 400 MB/s

Brotli 1.0.2 2.701 410 MB/s 430 MB/s

Quicklz 1.5.0 2.238 550 MB/s 710 MB/s

Lzo1x 2.0.9 2.108 650 MB/s 830 MB/s

Lz4 1.8.1 2.101 750 MB/s 3700 MB/s

Snappy 1.1.4 2.091 530 MB/s 1800 MB/s

Lzf 3.6 2.077 400 MB/s 860 MB/s

Start of the Project
● Aug 31 2016: ZSTD 1.0.0 released
● ZSTD used many large stack variables
● This caused seemingly random crashes

(kernel stack overflow)
● PoC: Increases kstack_pages from 4 to 12
● Work Around: ‘HEAPMODE’, use malloc()

for large stack variables
● Early returns often made this very messy

Timeline
● Oct 2016: Project stalled. #Ifdef soup for

HEAPMODE was ugly and unmaintainable
● ZFS Dev summit conflicts with EuroBSDcon
● Saso Kiselkov works on ZSTD at Hackathon,

Nothing seems to comes of it
● Dec: ZSTD 1.1.2 much reduced stack usage
● Jan 2017: FreeBSD Storage Summit

rekindles interest in ZSTD in ZFS

Early Progress

● Update my working tree with newer ZSTD
● Resolve merge conflicts, remove most of

HEAPMODE as it is no longer needed
● Build new ZFS kernel module and try it out
● Crashes with use-after-free -- my fault
● ZSTD custom malloc interface, you can

bring your own. Not used “everywhere”
though. Trying to fix that did not go well.

Solution

● Replace few remaining ZSTD raw-malloc()
calls with #ifdef _KERNEL to use kernel
malloc (different prototype, extra arguments)
○ Eventually this was replaced with a macro

● Patch ends up relatively minor
● Talking with Yann Collet about fixing this
● Yann interested in any API suggests we

have to better integrate with Kernel and ZFS

Integration with ZFS

● ZFS has a very clean API to integrate
additional compression algorithms

● ZSTD provides a mechanism to use your
own memory allocator, with an opaque
pointer for tracking. This fits the FreeBSD
kernel memory allocator very nicely.

● Code Review Open:
● https://reviews.freebsd.org/D11124

https://reviews.freebsd.org/D11124

Integration with FreeBSD

● Import ZSTD to sys/contrib/zstd
● Has been upgraded a few times already
● The zstd command line tools are included in

the FreeBSD base system for normal use
● Modify zfs.ko to borrow from libzstd-private
● Future: Integration with libstand (boot loader

and related tools) so you can have ZFS boot
pools compressed with ZSTD

Other Uses for ZSTD

● ZSTD is now a supported compressor for
newsyslog(8), our log rotator

● ZSTD is now part of the FreeBSD kernel,
used for compressed kernel crash dumps

● Working on replacing gzip & bzip2 in loader
for compressed kernel & mfsroot (ramdisk)

● Maybe one day: ram or swap compression
● What other uses do you see for ZSTD?

Memory Management
● Currently an array of kmem_caches per major

record size and compression level (avoid using
a #19 kmem cache to compress #3)

● Could use ZSTD_initStaticCCtx() + locking?
● Decompression context is 152K

Record Size zstd 1 zstd 3 zstd 19

16K 136K 200K 488K

128K 524K 1,004K 2,804K

1024K 556K 1,260K 13,556K

8192K 556K 1,260K 50,420K

How to Handle Levels?

● ZSTD has 19 (or 22 w/ ultra mode) levels
● ZSTD has added unbounded negative levels
● Adding all of these as unique compression

types to the compress= property would eat
up the enum used in the block pointer

● Discussed at the OpenZFS Developer
Summit 2017 with rm@ and skiselkov@

Solution for Levels

● A new hidden zstd_complevel= property
● User still does: zfs set compress=zstd-7
● As it crosses the IOCTL boundary, it is split

into: compress=zstd + zstd_complevel=7
● Put back together on the way back to

userspace, so ‘zfs get’ displays as expected
● Block Pointer only needs to know which

decompression function to use, not level

Further Challenges

● Matt reviews prototype, spots a problem!
● Compressed ARC disabled + L2ARC= no go
● Writes to L2ARC must be recompressed to

have same checksum as the on-disk BP
● This requires knowing the compression level

that was used, but the BP only says ‘zstd’
● Now we must store the compression level on

disk, in the top 6 bits of the logical size

Becoming a Yak Farmer

● FreeBSD NUMA improvements
○ A bug caused the ARC to constantly try to free itself

● 8856 arc_cksum_is_equal() doesn't take into
account ABD-logic
○ Fixed 2 days before I found it, an hour after my pull

● 9321 arc_loaned_bytes can underflow
○ No one had ever zfs recv’d a compressed stream

while having compressed ARC disabled?
○ My patch has been merged upstream

Level Comparison ZSTD (3.6GHz)
zstd -b --fast=8 -e19 silesia.txt

Lvl Ratio Comp Decomp
Zstd-8 1.849 661 MB/s 1595 MB/s
Zstd-4 2.068 542 MB/s 1427 MB/s
Lz4 1 2.101 592 MB/s 2716 MB/s
Zstd-3 2.152 511 MB/s 1427 MB/s
Zstd-1 2.430 400 MB/s 1233 MB/s
Lz4 3 2.606 90.2 MB/s 2553 MB/s
gzip1 2.743 83.1 MB/s 246 MB/s
Zstd 1 2.877 348 MB/s 917 MB/s
Zstd 2 3.021 264 MB/s 858 MB/s
gzip6 3.106 28.9 MB/s 260 MB/s
gzip9 3.133 11.9 MB/s 265 MB/s
Zstd 3 3.164 204 MB/s 816 MB/s
Zstd 4 3.196 189 MB/s 811 MB/s
Zstd 5 3.273 114 MB/s 798 MB/s

Lvl Ratio Comp Decomp
Zstd 6 3.381 88.9 MB/s 828 MB/s
Zstd 7 3.432 67.3 MB/s 847 MB/s
Zstd 8 3.473 51.0 MB/s 875 MB/s
Zstd 9 3.492 43.4 MB/s 875 MB/s
Zstd 10 3.522 31.6 MB/s 904 MB/s
Zstd 11 3.561 23.4 MB/s 904 MB/s
Zstd 12 3.585 18.5 MB/s 935 MB/s
Zstd 13 3.627 12.7 MB/s 935 MB/s
Zstd 14 3.647 10.1 MB/s 935 MB/s
Zstd 15 3.686 7.6 MB/s 935 MB/s
Zstd 16 3.761 6.0 MB/s 903 MB/s
Zstd 17 3.816 5.2 MB/s 903 MB/s
Zstd 18 3.888 4.3 MB/s 858 MB/s
Zstd 19 3.926 3.7 MB/s 853 MB/s

Real World: Compressed Databases

● Last fall, I was doing some performance
analysis for a European payment processor

● They use 128kb record size for their MySQL
database. The database is over 25TB, all on
SSDs, they rely on high compression ratios
to keep up with the demand for SSDs

● Write amplification is less of an issue since it
is basically an append-only database

** Estimated, negative levels are not yet supported

Our Pay-Per-View Database (2.6GHz)
MySQL database: 45.9G uncompressed

Algorithm 16K 128K 1024K

Size Ratio Rate Time Size Ratio Rate Time Size Ratio Rate Time

lz4 19.3G 2.23x 58.9 12:29 9.50G 4.56x 145 5:04 8.29G 5.53x 182 4:18

gzip-6 15.4G 2.81x 49.4 14:51 7.38G 5.87x 75.6 9:46 6.34G 7.23x 82.8 9:27

zstd-fast-1** - - - - - - - - 4.48G 10.22x 381 2:03

zstd-1 13.8G 3.14x 60.8 11:57 6.08G 7.13x 160 4:37 4.35G 10.55x 208 3:46

zstd-3 12.8G 3.38x 53.3 13:47 5.86G 7.40x 136 5:24 4.16G 11.02x 176 4:26

zstd-10 11.9G 3.65x 22.4 32:51 5.60G 7.74x 26.5 27:55 3.93G 11.67x 25.2 31:05

zstd-19 11.6G 3.73x 13.0 56:23 5.38G 8.07x 10.2 72:13 3.64G 12.60x 8.6 90:48

Dictionary Compression
● ZSTD has a special custom dictionary mode
● Designed for compression of structured data,

such as multiple JSON messages with the
same key names. Train ZSTD with the template
and compresses/decompress better and faster

● Would need some API to provide ZFS with 1 or
more dictionaries per dataset (like crypto keys)

● Could this be used to compress arrays of block
pointers? Or Indirect Blocks?

ZSTD Adaptive Compression
● ZSTD has grown an adaptive compression

feature, automatically adjusts the level for
maximum throughput on constrained pipe

● Typical use case: zfs send|zstd|ssh|unzstd|zfs recv
● Change level based on volume of dirty data?
● Could be combined with Nexenta “smart

compress” feature to “learn” about a file and
get best compression without blocking

ZSTD APIs
● What new APIs might we want?
● stream compression vs block compression?
● Reduced memory modes for small blocks
● Does decompression context need to be >

150K if blocks are never more than 8M?
● More tuning for small blocks 4k-16k records
● ZSTD API that understand ABD / SGL

BSDNow.tv
● Weekly video podcast about the latest news in the

BSD and IllumOS world
● Always looking for developers to interview
● Our archives are full of goodies (100+ Interviews):

○ Matt Ahrens Kirk McKusick
○ George Wilson Josh Paetzel
○ Bryan Cantrill Justin Gibbs
○ Adam Leventhal Paweł Jakub Dawidek
○ Richard Yao Sean Chittenden
○ Alex Reese Ryan Zezeski

