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Unix Questions

Q: How big was the first PDP-11 Unix kernel we have?

A: About 9k (8960 bytes) (snapshot between V1 and V2)

Q: How big is FreeBSD/i386 11.1 GENERIC kernel?
A: Almost 24MB! (23757224 bytes)

Q: How fast has the FreeBSD/i386 kernel grown?
A: About 20% per year – About half the Moore’s Law rate
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Motivation for Work

I GENERIC size
I Grown from 0.5M to 26MB in 25 years

I Compile time growth

I Load time growth (especially netboot)
I Reduce redundancy

I Most monolithic drivers also built as modules
I Build system has not evolved as promised

I Eases integration of 3rd party drivers

I Why not – It’s Cool



Outline

Motivation

Kernel Size

Background
Newbus and Modules
kldxref(8)
rc.d(8) and devd(8)

Design
Newbus and Modules
kldxref(8) Extensions
devmatch(8) Program
rc.d and devd Scripts

Problems Encountered

Results



Kernels Grow

I Unix Kernel size has grown

I Growth rate has been exponential
I Proliferation of drivers

I V7 Unix had 22 drivers
I FreeBSD 12 has ∼ 1700 drivers (∼ 380 FDT, ∼ 330 PCI)

I Proliferation of technology stacks
I Research Unix barely had networking
I FreeBSD has TCP/IP, sockets, SATA, SCSI, NVMe, IPv6,

DMA, IPSEC, firewalls, iSCSI, ATM, PCIe, Crypto, etc

I Compilers have gotten better (eg, more inlining makes faster
code)

I Most of the kernel functions can come from modules



Research Unix

I Original PDP-11 Unix from Bell Labs

I Not all early versions are still extant

I Limit for V1, V2 and V3 was 16k due to C compiler
constraints

I Rewrite from assembler to C happened in v3-v4

I Size constrained by extreme memory prices

I No GENERIC-like kernel, config was compiled in.

I BSD 2.x and System III/V included

I Spans 30 years: Growth rate 15%/year

I V2–V7 growth rate 28%/year

I Data from TUHS (http://www.tuhs.org)

http://www.tuhs.org


PDP-11 Kernel Size



BSD Unix

I VAX Releases from 32V onward

I Very fast growth to accommodate paging and sockets /
networking

I Exponential growth from 4.2BSD onward

I No 4.4BSD VAX image

I NetBSD/vax used post CSRG disbanding

I Spans almost 40 years: Growth rate 10%/year



VAX Kernel Size



FreeBSD/i386

I Size of GENERIC kernel from release media
I GENERICBH used before 2.0

I No GENERIC, kernel too big for 640k
I Limited driver support

I Size not normalized to a specific compiler

I Size dipped between 11.0 and 11.1 due to clang bump

I Spans almost 30 years: growth rate 20%

I Grew faster, proportionally, betweeen 1.0 and 3.2 (31%/year)



FreeBSD/i386 Kernel Size



Normalized Kernel Growth



FreeBSD Commits To Date



Kernel Size Redux

Kernel Series Years Rate Doubling Time
Research (V1–V7) Unix 7 28% 2.5 Years
AT&T PDP-11 28 10% 7 Years
Early BSD VAX 29 11% 6.8 Years
BSD VAX 4.5 43% 19 Months
FreeBSD/i386 1.0 – 3.0 5.5 31% 27 Months
FreeBSD/i386 3.0 – 11.0 18 15% 4.6 years
FreeBSD/i386 1.0 – 11.0 24 20% 3.5 years
Moore’s Law 50? 35% 24 Months
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Newbus details

I Tree hierarchy
I A bus is just a driver with children
I Buses supply pnpinfo

I Self enumerating bus
I All have per–device matching drivers to devices
I Generically called pnpinfo

I Hinted bus
I Probe routines

I Examine pnpinfo to see if driver matches
I Some buses centralize probe, others are ad-hoc



Simplified Newbus Device Tree



Typical Probe Routine (good)

static const struct ral_pci_ident ral_ids [] = {

{ 0x1432 , 0x7708 , "Edimax RT2860" },

... };

static int ral_pci_probe(device_t dev)

{

const struct ral_pci_ident *ident;

for (ident = ral_ids; ident ->name != NULL; ident ++) {

if (pci_get_vendor(dev) == ident ->vendor &&

pci_get_device(dev) == ident ->device) {

device_set_desc(dev , ident ->name);

return (BUS_PROBE_DEFAULT );

}

}

return ENXIO;

}



Typical Probe Routine (bad)

static int nvme_probe (device_t device)

{

...

while (ep->devid) {

if (nvme_match(devid , subdevice , ep)) {

device_set_desc(device , ep->desc);

return (BUS_PROBE_DEFAULT );

}

++ep;

}

if (pci_get_class(device) == PCIC_STORAGE &&

pci_get_subclass(device) == PCIS_STORAGE_NVM &&

pci_get_progif(device) == NVM_NVMHCI_1_0) {

device_set_desc(device , "Generic NVMe Device");

return (BUS_PROBE_GENERIC );

}

return (ENXIO );

}



Crazy Probe Routine

static int

tulip_pci_probe(device_t dev)

{

const char *name = NULL;

if (pci_get_vendor(dev) != DEC_VENDORID)

return ENXIO;

if (pci_get_subvendor(dev) == 0x1376)

return ENXIO;

switch (pci_get_device(dev)) {

case CHIPID_21040: name = "21040 Ethernet"; break;

case CHIPID_21041: name = "21041 Ethernet"; break;

case CHIPID_21140: name = "21140A Fast Ethernet"; break;

case CHIPID_21142: name = "21143 Fast Ethernet"; break;

}

if (name) {

device_set_desc(dev , name);

return BUS_PROBE_LOW_PRIORITY;

}

return ENXIO;

}



Module details

I Metadata placed in the code to mark modules

I What version, what depends, how to connect to newbus

I Metadata post-processed by kldxref(8)

I SYSINITs that force a probe on kldload(8) and kldunload(8)



Typical Module Marking

MODULE_DEPEND(ral , pci , 1, 1, 1);

MODULE_DEPEND(ral , firmware , 1, 1, 1);

MODULE_DEPEND(ral , wlan , 1, 1, 1);

MODULE_DEPEND(ral , wlan_amrr , 1, 1, 1);

DRIVER_MODULE(ral , pci , ral_pci_driver , ral_devclass ,

NULL , NULL);



kldxref(8)

I Parses module metadata out of .ko files
I Creates /boot/kernel/linker.hints

I Contains module name to file name mapping
I Contains module dependency information
I Contains module version information
I Contains newbus attachment information

I Usually run at ‘make installkernel’ time.
I Now run at boot since kldxref(8) is only native



kldxref data flow

driver foo.c

foo.ko

MODULE *

/boot/kernel/*.ko

linker.hints

buildkernel

installkernel

kldxref

Information Flows



rc.d(8)

I FreeBSD’s init scripting system

I Scripts run in dependency order at boot to start services

I Flexible and extensible

I Post–boot modules currently installed



devd(8)

I Reacts to generic events from the kernel

I Runs scripts when devices found, GEOM devices appear, etc

I One event is ‘driver NOMATCH’ when no driver claims a
device
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Data Flow for Changes

driver foo.c

foo.ko

MODULE PNP INFO

/boot/kernel/*.ko

linker.hints

devmatch

tables from linker.hints

kldload

list of modules

buildkernel

installkernel

kldxref

newbus driver tree

Information Flows



Design Overview

I Mark driver’s PNP information

I Extend kldxref(8) to understand new markings

I Write program to parse linker.hints and compare to system
(devmatch)

I Write new rc.d script to glue it together

I Write new devd.conf rules

I Fix module penalty

I Extensions to newbus

I Tune MINIMAL and transition to reduced GENERIC



PNP Info Decoration

I Assumes we have a table
I Describes the table

I Size of each entry
I Number of entries
I Format of each entry

I Leverages off the module marking system

I Designed for smooth transition

I Buses with centralized probe have wrapper macro



Table Description Details

I ASCII string

I One or more instances of ‘TYPE:FIELD;’

I TYPE on next slide and MODULE PNP INFO

I FIELD is either the name of bus specific pnpinfo item or ‘#’
I Examples:

I U16:vendor;U16:device;
I W32:vendor/device;
I D:#;V32:manufacturer;V32:product;Z:cisvendor;Z:cisproduct;



Type Language

Type Description

U8 uint8 t element
V8 uint8 t but 0xff matches all
G16 uint16 t greater than or equal
L16 uint16 t less than or equal
M16 uint16 t mask of fields that follow to use
U16 uint16 t
V16 uint16 t but 0xffff matches all
U32 uint32 t
V32 uint32 t but 0xffffffff matches all
W32 two uint16 t field/field as one word host order
Z ASCII string terminated by NUL
D Description NUL terminated
P Pointer sized thing that’s ignored



Typical Change (Centralized Probe)

static const STRUCT_USB_HOST_ID uark_devs [] = {

{USB_VPI(USB_VENDOR_ARKMICRO ,

USB_PRODUCT_ARKMICRO_ARK3116 , 0)},

};

DRIVER_MODULE(uark , uhub , uark_driver , uark_devclass ,

NULL , 0);

MODULE_DEPEND(uark , ucom , 1, 1, 1);

MODULE_DEPEND(uark , usb , 1, 1, 1);

MODULE_VERSION(uark , 1);

+USB_PNP_HOST_INFO(uark_devs );



Typical Change (Ad Hoc Probe)

static struct _pcsid

{

uint32_t type;

const char *desc;

} pci_ids [] =

{

{ 0x140111f6 , "Compex RL2000" },

...

{ 0x00000000 , NULL }

};

...

+MODULE_PNP_INFO("W32:vendor/device;D:#", pci , ed , pci_ids , sizeof(pci_ids [0]),

nitems(pci_ids) - 1);



Typical Change (Crazy Probe)



Typical Change (Crazy Probe)

pci_ids [] = {

{ (CHIPID_21040 << 16) | DEC_VENDORID , "21040 Ethernet" },

{ (CHIPID_21041 << 16) | DEC_VENDORID , "21041 Ethernet" },

{ (CHIPID_21140 << 16) | DEC_VENDORID , "21140A Ethernet" },

{ (CHIPID_21142 << 16) | DEC_VENDORID , "21143 Ethernet" },

{ 0x00000000 , NULL }

};

static int tuplip_pci_probe(device_t dev) {

uint32_t type = pci_get_devid(dev);

struct _pcsid *ep =pci_ids;

while (ep ->type && ep ->type != type)

++ep;

if (ep->desc == NULL)

return (ENXIO );

device_set_desc(dev , ep ->desc);

return (BUS_PROBE_DEFAULT );

}

...

+MODULE_PNP_INFO("W32:vendor/device;D:#", pci , de , pci_ids , sizeof(pci_ids [0]),

nitems(pci_ids) - 1);



newbus Freeze and Thaw

I Enhance newbus to understand deferring of probing

I Need to wait for all drivers to load

I For each module loaded, add to deferred probe list

I When thawed add all drivers in the list to the system

I Once all new drivers are added, trigger driver added callbacks



kldxref(8) Changes

I Add code to parse new MODULE PNP INFO nodes in .ko’s

I Convert the tables to a simplified form

I Write out the new tables extracted from the binary to
linker.hints



linker.hints Type Info

Type Description

I int
J int (-1 means ignore)
G int (greater than or equal)
L int (less than or equal)
M int (mask)
D Description
Z Ascii string
T value true for all elements in table



devmatch(8) Program

I Parses linker.hints

I Gets driver tree from kernel
I Walks the tree looking for different issues

I Unattached devices that may match one or more modules
I Attached drivers that don’t match a module
I All device
I Dump linker.hints file

I Defaults to /boot/kernel/linker.hints, but can look at any
linker.hints file (.ko’s need not be present)

I Can run with just the devmatch NOMATCH string



devmatch rc.d script

I Simple script running devmatch

I Sorts the output and discards duplicates

I Freezes newbus

I loads all the .kos

I thaws newbus



devmatch devd script

I Simple NOMATCH script that passes the NOMATCH string
to devmatch

# Generic NOMATCH event

nomatch 100 {

action "/etc/rc.d/devmatch start ’?$_ ’";

};



MINIMAL kernel

I Removes all drivers that aren’t root or console devices

I Root devices could be found by /boot/loader, but aren’t today

I Root devices may have other dependencies (eg root is on
MPT card, but also needs CAM)

I Console devices can’t be loaded modules because cninit() runs
before module list from loader processed



Boot Loader Futures

I linker.hints is read in by /boot/loader today

I We skip the pnp info tables

I Future versions could load all storage devices as possible
sources of root.



Google Summer of Code

I Lakhan Kamireddy

I https://wiki.freebsd.org/SummerOfCode2018Projects/

ConvertPCIdriverAttachmentsToTables

I Good progress. Commits in tree. 30 more changes after talk.

I About 380 PCI drivers in tree

I About 300 are entirely table driven, 50 more are close, 30
others are troublesome (eg if de) in some way.

https://wiki.freebsd.org/SummerOfCode2018Projects/ConvertPCIdriverAttachmentsToTables
https://wiki.freebsd.org/SummerOfCode2018Projects/ConvertPCIdriverAttachmentsToTables
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Long PNP Info

I Old interface truncated pnpinfo at 128 characters

I Parts of lost strings needed for many USB devices

I Fix is to export strings in string table rather than fixed sized
array

I libdevinfo ABI didn’t need to change



Multiple Instances of Devices

I First iterations lacked sort / unique step

I Modules loaded many times

I Partially backed out to fix USB issues with ums/uhid



Multiple Matching Drivers

I Sometimes multiple drivers match

I Without Freeze/Thaw, first one will win

I Freeze/Thaw pending testing



Lots of Legacy Drivers

I We have lots of legacy drivers in the tree

I Many of them are not table driven

I Many PCI drivers don’t use centralized routine

I GSoC student converting PCI drivers

I About 40 / 380 drivers done



384 FDT Drivers

I Still have lots of FDT drivers that need conversion

I NO GSoC student converting FDT drivers

I You can help! Ask me how.

Source: http://mimiandeunice.com/2010/08/02/d-i-y/

http://mimiandeunice.com/2010/08/02/d-i-y/


Module Penalty

I Modules that load have small performance penalty

I atomics not inlined

I locking not inlined

I On amd64, code is pic, which runs slower

I People that have measured say there’s little difference despite
these things



ATA PCI Driver

I Matches on class, subclass and any revid

I PCI publishes class, subclass and revid as one number

I Need a mask to specify which part of the PCI ’class’ to match

I ATA PCI devices use revid as a bitmask, so all combos valid

I Likely need to create a new type to mask a field (existing
mask type is mask of which fields are valid)

I Sadly, it’s not the only weird edge case



Open Issues

I Newbus freeze/thaw

I Lingering uhid/ums issues

I ata pci mask issue

I 64-bit W64 may be needed, other types too

I Multiple linker.hints files

I Lots of drivers need a small amount of love

I MINIMAL tuning and testing (replace GENERIC?)

I Module Penalty?

I Cross build support for kldxref(8)

I Multiple MODULE PNP INFO entries
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FreeBSD kernel Size Redux



FreeBSD kernel Size Redux

Kernel Size % Smaller Wayback

Minimal all roots head 12170464 54% Mid 8.x
Minimal popular roots head 10633696 59% Late 7.x
Minimal reduced options 8818214 66% Early 7.x
GENERIC 11.1 23757224
GENERIC head 26211080



Questions

Questions?
Comments?

Warner Losh

wlosh@netflix.com

imp@FreeBSD.org

@bsdimp

http://people.freebsd.org/~imp/talks/bsdcan2018/bsdcan2018.pdf

http://people.freebsd.org/~imp/talks/bsdcan2018/bsdcan2018.pdf
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