
devmatch – Matching Devices to Modules

M. Warner Losh

Netflix, Inc.

BSDCan 2018

http://people.freebsd.org/~imp/talks/bsdcan2018/bsdcan2018.pdf

http://people.freebsd.org/~imp/talks/bsdcan2018/bsdcan2018.pdf

Unix Questions

Q: How big was the first PDP-11 Unix kernel we have?

A: About 9k (8960 bytes) (snapshot between V1 and V2)

Q: How big is FreeBSD/i386 11.1 GENERIC kernel?
A: Almost 24MB! (23757224 bytes)

Q: How fast has the FreeBSD/i386 kernel grown?
A: About 20% per year – About half the Moore’s Law rate

Unix Questions

Q: How big was the first PDP-11 Unix kernel we have?
A: About 9k (8960 bytes) (snapshot between V1 and V2)

Q: How big is FreeBSD/i386 11.1 GENERIC kernel?
A: Almost 24MB! (23757224 bytes)

Q: How fast has the FreeBSD/i386 kernel grown?
A: About 20% per year – About half the Moore’s Law rate

Unix Questions

Q: How big was the first PDP-11 Unix kernel we have?
A: About 9k (8960 bytes) (snapshot between V1 and V2)

Q: How big is FreeBSD/i386 11.1 GENERIC kernel?

A: Almost 24MB! (23757224 bytes)

Q: How fast has the FreeBSD/i386 kernel grown?
A: About 20% per year – About half the Moore’s Law rate

Unix Questions

Q: How big was the first PDP-11 Unix kernel we have?
A: About 9k (8960 bytes) (snapshot between V1 and V2)

Q: How big is FreeBSD/i386 11.1 GENERIC kernel?
A: Almost 24MB! (23757224 bytes)

Q: How fast has the FreeBSD/i386 kernel grown?
A: About 20% per year – About half the Moore’s Law rate

Unix Questions

Q: How big was the first PDP-11 Unix kernel we have?
A: About 9k (8960 bytes) (snapshot between V1 and V2)

Q: How big is FreeBSD/i386 11.1 GENERIC kernel?
A: Almost 24MB! (23757224 bytes)

Q: How fast has the FreeBSD/i386 kernel grown?

A: About 20% per year – About half the Moore’s Law rate

Unix Questions

Q: How big was the first PDP-11 Unix kernel we have?
A: About 9k (8960 bytes) (snapshot between V1 and V2)

Q: How big is FreeBSD/i386 11.1 GENERIC kernel?
A: Almost 24MB! (23757224 bytes)

Q: How fast has the FreeBSD/i386 kernel grown?
A: About 20% per year – About half the Moore’s Law rate

Outline

Motivation

Kernel Size

Background
Newbus and Modules
kldxref(8)
rc.d(8) and devd(8)

Design
Newbus and Modules
kldxref(8) Extensions
devmatch(8) Program
rc.d and devd Scripts

Problems Encountered

Results

Outline

Motivation

Kernel Size

Background
Newbus and Modules
kldxref(8)
rc.d(8) and devd(8)

Design
Newbus and Modules
kldxref(8) Extensions
devmatch(8) Program
rc.d and devd Scripts

Problems Encountered

Results

Motivation for Work

I GENERIC size
I Grown from 0.5M to 26MB in 25 years

I Compile time growth

I Load time growth (especially netboot)
I Reduce redundancy

I Most monolithic drivers also built as modules
I Build system has not evolved as promised

I Eases integration of 3rd party drivers

I Why not – It’s Cool

Outline

Motivation

Kernel Size

Background
Newbus and Modules
kldxref(8)
rc.d(8) and devd(8)

Design
Newbus and Modules
kldxref(8) Extensions
devmatch(8) Program
rc.d and devd Scripts

Problems Encountered

Results

Kernels Grow

I Unix Kernel size has grown

I Growth rate has been exponential
I Proliferation of drivers

I V7 Unix had 22 drivers
I FreeBSD 12 has ∼ 1700 drivers (∼ 380 FDT, ∼ 330 PCI)

I Proliferation of technology stacks
I Research Unix barely had networking
I FreeBSD has TCP/IP, sockets, SATA, SCSI, NVMe, IPv6,

DMA, IPSEC, firewalls, iSCSI, ATM, PCIe, Crypto, etc

I Compilers have gotten better (eg, more inlining makes faster
code)

I Most of the kernel functions can come from modules

Research Unix

I Original PDP-11 Unix from Bell Labs

I Not all early versions are still extant

I Limit for V1, V2 and V3 was 16k due to C compiler
constraints

I Rewrite from assembler to C happened in v3-v4

I Size constrained by extreme memory prices

I No GENERIC-like kernel, config was compiled in.

I BSD 2.x and System III/V included

I Spans 30 years: Growth rate 15%/year

I V2–V7 growth rate 28%/year

I Data from TUHS (http://www.tuhs.org)

http://www.tuhs.org

PDP-11 Kernel Size

BSD Unix

I VAX Releases from 32V onward

I Very fast growth to accommodate paging and sockets /
networking

I Exponential growth from 4.2BSD onward

I No 4.4BSD VAX image

I NetBSD/vax used post CSRG disbanding

I Spans almost 40 years: Growth rate 10%/year

VAX Kernel Size

FreeBSD/i386

I Size of GENERIC kernel from release media
I GENERICBH used before 2.0

I No GENERIC, kernel too big for 640k
I Limited driver support

I Size not normalized to a specific compiler

I Size dipped between 11.0 and 11.1 due to clang bump

I Spans almost 30 years: growth rate 20%

I Grew faster, proportionally, betweeen 1.0 and 3.2 (31%/year)

FreeBSD/i386 Kernel Size

Normalized Kernel Growth

FreeBSD Commits To Date

Kernel Size Redux

Kernel Series Years Rate Doubling Time
Research (V1–V7) Unix 7 28% 2.5 Years
AT&T PDP-11 28 10% 7 Years
Early BSD VAX 29 11% 6.8 Years
BSD VAX 4.5 43% 19 Months
FreeBSD/i386 1.0 – 3.0 5.5 31% 27 Months
FreeBSD/i386 3.0 – 11.0 18 15% 4.6 years
FreeBSD/i386 1.0 – 11.0 24 20% 3.5 years
Moore’s Law 50? 35% 24 Months

Outline

Motivation

Kernel Size

Background
Newbus and Modules
kldxref(8)
rc.d(8) and devd(8)

Design
Newbus and Modules
kldxref(8) Extensions
devmatch(8) Program
rc.d and devd Scripts

Problems Encountered

Results

Newbus details

I Tree hierarchy
I A bus is just a driver with children
I Buses supply pnpinfo

I Self enumerating bus
I All have per–device matching drivers to devices
I Generically called pnpinfo

I Hinted bus
I Probe routines

I Examine pnpinfo to see if driver matches
I Some buses centralize probe, others are ad-hoc

Simplified Newbus Device Tree

Typical Probe Routine (good)

static const struct ral_pci_ident ral_ids [] = {

{ 0x1432 , 0x7708 , "Edimax RT2860" },

... };

static int ral_pci_probe(device_t dev)

{

const struct ral_pci_ident *ident;

for (ident = ral_ids; ident ->name != NULL; ident ++) {

if (pci_get_vendor(dev) == ident ->vendor &&

pci_get_device(dev) == ident ->device) {

device_set_desc(dev , ident ->name);

return (BUS_PROBE_DEFAULT);

}

}

return ENXIO;

}

Typical Probe Routine (bad)

static int nvme_probe (device_t device)

{

...

while (ep->devid) {

if (nvme_match(devid , subdevice , ep)) {

device_set_desc(device , ep->desc);

return (BUS_PROBE_DEFAULT);

}

++ep;

}

if (pci_get_class(device) == PCIC_STORAGE &&

pci_get_subclass(device) == PCIS_STORAGE_NVM &&

pci_get_progif(device) == NVM_NVMHCI_1_0) {

device_set_desc(device , "Generic NVMe Device");

return (BUS_PROBE_GENERIC);

}

return (ENXIO);

}

Crazy Probe Routine

static int

tulip_pci_probe(device_t dev)

{

const char *name = NULL;

if (pci_get_vendor(dev) != DEC_VENDORID)

return ENXIO;

if (pci_get_subvendor(dev) == 0x1376)

return ENXIO;

switch (pci_get_device(dev)) {

case CHIPID_21040: name = "21040 Ethernet"; break;

case CHIPID_21041: name = "21041 Ethernet"; break;

case CHIPID_21140: name = "21140A Fast Ethernet"; break;

case CHIPID_21142: name = "21143 Fast Ethernet"; break;

}

if (name) {

device_set_desc(dev , name);

return BUS_PROBE_LOW_PRIORITY;

}

return ENXIO;

}

Module details

I Metadata placed in the code to mark modules

I What version, what depends, how to connect to newbus

I Metadata post-processed by kldxref(8)

I SYSINITs that force a probe on kldload(8) and kldunload(8)

Typical Module Marking

MODULE_DEPEND(ral , pci , 1, 1, 1);

MODULE_DEPEND(ral , firmware , 1, 1, 1);

MODULE_DEPEND(ral , wlan , 1, 1, 1);

MODULE_DEPEND(ral , wlan_amrr , 1, 1, 1);

DRIVER_MODULE(ral , pci , ral_pci_driver , ral_devclass ,

NULL , NULL);

kldxref(8)

I Parses module metadata out of .ko files
I Creates /boot/kernel/linker.hints

I Contains module name to file name mapping
I Contains module dependency information
I Contains module version information
I Contains newbus attachment information

I Usually run at ‘make installkernel’ time.
I Now run at boot since kldxref(8) is only native

kldxref data flow

driver foo.c

foo.ko

MODULE *

/boot/kernel/*.ko

linker.hints

buildkernel

installkernel

kldxref

Information Flows

rc.d(8)

I FreeBSD’s init scripting system

I Scripts run in dependency order at boot to start services

I Flexible and extensible

I Post–boot modules currently installed

devd(8)

I Reacts to generic events from the kernel

I Runs scripts when devices found, GEOM devices appear, etc

I One event is ‘driver NOMATCH’ when no driver claims a
device

Outline

Motivation

Kernel Size

Background
Newbus and Modules
kldxref(8)
rc.d(8) and devd(8)

Design
Newbus and Modules
kldxref(8) Extensions
devmatch(8) Program
rc.d and devd Scripts

Problems Encountered

Results

Data Flow for Changes

driver foo.c

foo.ko

MODULE PNP INFO

/boot/kernel/*.ko

linker.hints

devmatch

tables from linker.hints

kldload

list of modules

buildkernel

installkernel

kldxref

newbus driver tree

Information Flows

Design Overview

I Mark driver’s PNP information

I Extend kldxref(8) to understand new markings

I Write program to parse linker.hints and compare to system
(devmatch)

I Write new rc.d script to glue it together

I Write new devd.conf rules

I Fix module penalty

I Extensions to newbus

I Tune MINIMAL and transition to reduced GENERIC

PNP Info Decoration

I Assumes we have a table
I Describes the table

I Size of each entry
I Number of entries
I Format of each entry

I Leverages off the module marking system

I Designed for smooth transition

I Buses with centralized probe have wrapper macro

Table Description Details

I ASCII string

I One or more instances of ‘TYPE:FIELD;’

I TYPE on next slide and MODULE PNP INFO

I FIELD is either the name of bus specific pnpinfo item or ‘#’
I Examples:

I U16:vendor;U16:device;
I W32:vendor/device;
I D:#;V32:manufacturer;V32:product;Z:cisvendor;Z:cisproduct;

Type Language

Type Description

U8 uint8 t element
V8 uint8 t but 0xff matches all
G16 uint16 t greater than or equal
L16 uint16 t less than or equal
M16 uint16 t mask of fields that follow to use
U16 uint16 t
V16 uint16 t but 0xffff matches all
U32 uint32 t
V32 uint32 t but 0xffffffff matches all
W32 two uint16 t field/field as one word host order
Z ASCII string terminated by NUL
D Description NUL terminated
P Pointer sized thing that’s ignored

Typical Change (Centralized Probe)

static const STRUCT_USB_HOST_ID uark_devs [] = {

{USB_VPI(USB_VENDOR_ARKMICRO ,

USB_PRODUCT_ARKMICRO_ARK3116 , 0)},

};

DRIVER_MODULE(uark , uhub , uark_driver , uark_devclass ,

NULL , 0);

MODULE_DEPEND(uark , ucom , 1, 1, 1);

MODULE_DEPEND(uark , usb , 1, 1, 1);

MODULE_VERSION(uark , 1);

+USB_PNP_HOST_INFO(uark_devs);

Typical Change (Ad Hoc Probe)

static struct _pcsid

{

uint32_t type;

const char *desc;

} pci_ids [] =

{

{ 0x140111f6 , "Compex RL2000" },

...

{ 0x00000000 , NULL }

};

...

+MODULE_PNP_INFO("W32:vendor/device;D:#", pci , ed , pci_ids , sizeof(pci_ids [0]),

nitems(pci_ids) - 1);

Typical Change (Crazy Probe)

Typical Change (Crazy Probe)

pci_ids [] = {

{ (CHIPID_21040 << 16) | DEC_VENDORID , "21040 Ethernet" },

{ (CHIPID_21041 << 16) | DEC_VENDORID , "21041 Ethernet" },

{ (CHIPID_21140 << 16) | DEC_VENDORID , "21140A Ethernet" },

{ (CHIPID_21142 << 16) | DEC_VENDORID , "21143 Ethernet" },

{ 0x00000000 , NULL }

};

static int tuplip_pci_probe(device_t dev) {

uint32_t type = pci_get_devid(dev);

struct _pcsid *ep =pci_ids;

while (ep ->type && ep ->type != type)

++ep;

if (ep->desc == NULL)

return (ENXIO);

device_set_desc(dev , ep ->desc);

return (BUS_PROBE_DEFAULT);

}

...

+MODULE_PNP_INFO("W32:vendor/device;D:#", pci , de , pci_ids , sizeof(pci_ids [0]),

nitems(pci_ids) - 1);

newbus Freeze and Thaw

I Enhance newbus to understand deferring of probing

I Need to wait for all drivers to load

I For each module loaded, add to deferred probe list

I When thawed add all drivers in the list to the system

I Once all new drivers are added, trigger driver added callbacks

kldxref(8) Changes

I Add code to parse new MODULE PNP INFO nodes in .ko’s

I Convert the tables to a simplified form

I Write out the new tables extracted from the binary to
linker.hints

linker.hints Type Info

Type Description

I int
J int (-1 means ignore)
G int (greater than or equal)
L int (less than or equal)
M int (mask)
D Description
Z Ascii string
T value true for all elements in table

devmatch(8) Program

I Parses linker.hints

I Gets driver tree from kernel
I Walks the tree looking for different issues

I Unattached devices that may match one or more modules
I Attached drivers that don’t match a module
I All device
I Dump linker.hints file

I Defaults to /boot/kernel/linker.hints, but can look at any
linker.hints file (.ko’s need not be present)

I Can run with just the devmatch NOMATCH string

devmatch rc.d script

I Simple script running devmatch

I Sorts the output and discards duplicates

I Freezes newbus

I loads all the .kos

I thaws newbus

devmatch devd script

I Simple NOMATCH script that passes the NOMATCH string
to devmatch

Generic NOMATCH event

nomatch 100 {

action "/etc/rc.d/devmatch start ’?$_ ’";

};

MINIMAL kernel

I Removes all drivers that aren’t root or console devices

I Root devices could be found by /boot/loader, but aren’t today

I Root devices may have other dependencies (eg root is on
MPT card, but also needs CAM)

I Console devices can’t be loaded modules because cninit() runs
before module list from loader processed

Boot Loader Futures

I linker.hints is read in by /boot/loader today

I We skip the pnp info tables

I Future versions could load all storage devices as possible
sources of root.

Google Summer of Code

I Lakhan Kamireddy

I https://wiki.freebsd.org/SummerOfCode2018Projects/

ConvertPCIdriverAttachmentsToTables

I Good progress. Commits in tree. 30 more changes after talk.

I About 380 PCI drivers in tree

I About 300 are entirely table driven, 50 more are close, 30
others are troublesome (eg if de) in some way.

https://wiki.freebsd.org/SummerOfCode2018Projects/ConvertPCIdriverAttachmentsToTables
https://wiki.freebsd.org/SummerOfCode2018Projects/ConvertPCIdriverAttachmentsToTables

Outline

Motivation

Kernel Size

Background
Newbus and Modules
kldxref(8)
rc.d(8) and devd(8)

Design
Newbus and Modules
kldxref(8) Extensions
devmatch(8) Program
rc.d and devd Scripts

Problems Encountered

Results

Long PNP Info

I Old interface truncated pnpinfo at 128 characters

I Parts of lost strings needed for many USB devices

I Fix is to export strings in string table rather than fixed sized
array

I libdevinfo ABI didn’t need to change

Multiple Instances of Devices

I First iterations lacked sort / unique step

I Modules loaded many times

I Partially backed out to fix USB issues with ums/uhid

Multiple Matching Drivers

I Sometimes multiple drivers match

I Without Freeze/Thaw, first one will win

I Freeze/Thaw pending testing

Lots of Legacy Drivers

I We have lots of legacy drivers in the tree

I Many of them are not table driven

I Many PCI drivers don’t use centralized routine

I GSoC student converting PCI drivers

I About 40 / 380 drivers done

384 FDT Drivers

I Still have lots of FDT drivers that need conversion

I NO GSoC student converting FDT drivers

I You can help! Ask me how.

Source: http://mimiandeunice.com/2010/08/02/d-i-y/

http://mimiandeunice.com/2010/08/02/d-i-y/

Module Penalty

I Modules that load have small performance penalty

I atomics not inlined

I locking not inlined

I On amd64, code is pic, which runs slower

I People that have measured say there’s little difference despite
these things

ATA PCI Driver

I Matches on class, subclass and any revid

I PCI publishes class, subclass and revid as one number

I Need a mask to specify which part of the PCI ’class’ to match

I ATA PCI devices use revid as a bitmask, so all combos valid

I Likely need to create a new type to mask a field (existing
mask type is mask of which fields are valid)

I Sadly, it’s not the only weird edge case

Open Issues

I Newbus freeze/thaw

I Lingering uhid/ums issues

I ata pci mask issue

I 64-bit W64 may be needed, other types too

I Multiple linker.hints files

I Lots of drivers need a small amount of love

I MINIMAL tuning and testing (replace GENERIC?)

I Module Penalty?

I Cross build support for kldxref(8)

I Multiple MODULE PNP INFO entries

Outline

Motivation

Kernel Size

Background
Newbus and Modules
kldxref(8)
rc.d(8) and devd(8)

Design
Newbus and Modules
kldxref(8) Extensions
devmatch(8) Program
rc.d and devd Scripts

Problems Encountered

Results

FreeBSD kernel Size Redux

FreeBSD kernel Size Redux

Kernel Size % Smaller Wayback

Minimal all roots head 12170464 54% Mid 8.x
Minimal popular roots head 10633696 59% Late 7.x
Minimal reduced options 8818214 66% Early 7.x
GENERIC 11.1 23757224
GENERIC head 26211080

Questions

Questions?
Comments?

Warner Losh

wlosh@netflix.com

imp@FreeBSD.org

@bsdimp

http://people.freebsd.org/~imp/talks/bsdcan2018/bsdcan2018.pdf

http://people.freebsd.org/~imp/talks/bsdcan2018/bsdcan2018.pdf

	Motivation
	Kernel Size
	Background
	Newbus and Modules
	kldxref(8)
	rc.d(8) and devd(8)

	Design
	Newbus and Modules
	kldxref(8) Extensions
	devmatch(8) Program
	rc.d and devd Scripts

	Problems Encountered
	Results

