
23 years of software side channel attacks

Colin Percival
Tarsnap Backup Inc.

cperciva@tarsnap.com

September 22, 2019

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Who am I?

FreeBSD developer since 2004.

Author of FreeBSD Update and Portsnap.
Maintainer of the FreeBSD/EC2 platform.

FreeBSD Security Officer 2005–2012.

Occasional cryptographer.

Best known for a side channel attack on shared L1 caches
(2005) and scrypt (2009).

Author of Tarsnap.

Online backups for the truly paranoid.
This is my day job, and it’s paying for me to be here.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Software side channel attacks

Black boxes tend to leak information in many ways.

Electromagnetic radiation.
Power consumption.
Sound.
Time before the output is produced.
Internal state which can be retrieved later.

If you leak information deliberately, it’s a covert channel.

If you leak information accidentally, it’s a side channel.

Software side channels are those which can be exploited
without needing special hardware or physical access.

If you can obtain secrets via a side channel, you have a side
channel attack.

Typically the secrets we’re concerned with are cryptographic.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Early modern cryptography

1977: Rivest, Shamir, and Adleman publish RSA.

Mostly a mathematical curiosity given computers of the era.

June 1991: Phil Zimmermann releases PGP.

RSA is suddenly available to the general public!
The US Government is NOT happy.
Very hard to target with side channel attacks due to offline
usage.

February 1995: SSL 2.0 is released.

RSA is now being used interactively.
Web servers are connected to the internet and respond
promptly to incoming packets.
This creates an opening for timing attacks.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Kocher 1996

“Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”

Straightforward implementations of these used
non-constant-time modular multiplication routines.
If you can predict which multiplications will complete faster
than others, you can time operations on chosen inputs to gain
information about the private key being used.
The private key can be extracted one or two bits at a time
based on which inputs yield the fastest operations.
Requires timing ≈ 103 RSA operations.

At the time, one RSA private key operation typically took 400
ms, while a “fast” modular multiplication was ≈ 20 µs faster
than a “slow” multiplication.

IEEE 802.3u “Fast Ethernet” was introduced in 1995; a 1500
byte packet took 120 µs to transmit.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Boneh / Brumley 2003

“Remote timing attacks are practical”.

Perform a binary search for one of the factors of an RSA
modulus, relying on a timing channel in Montgomery reduction
with the Chinese Remainder Theorem.
Rather than measuring how long one cryptographic operation
takes, measure how long many cryptographic operations take.
Averaging the times taken by N operations increases the
signal:noise ratio by a factor of

√
N.

Rather than timing ≈ 103 RSA operations, we now time a
total of ≈ 2× 106 operations.
“a typical attack takes approximately 2 hours”.

That attack which was “purely theoretical”? It’s real. Fix
your side channels!

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Defense: Blinding

The Kocher and Boneh / Brumley attacks make use of chosen
inputs in order to find the secret exponent or prime.

Rather than calculating

xd mod N

pick a random value r and calculate

(xr e)d r−1 mod N

Since e ≪ d , calculating r e and r−1 is fast compared to
calculating xd .

As long as a new random value r is chosen for each
exponentiation, the inputs are unpredictable and cannot reveal
information to the attacker.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Bernstein 2004

“Cache-timing attacks on AES”.

Straightforward implementations on AES perform “S-box”
table lookups.

Table lookups are performed using the bytes in key⊕ input as
indices.

If certain table offsets take longer to access than others, you
can try many different inputs and find the key which
correlates best with the observed timings.

Cache occupancy, load/store conflicts, cache-bank conflicts...

Attack typically requires timing ≈ 109 random inputs to AES.

Defense: Use hardware AES circuits rather than software AES
whenever possible!

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Percival 2005

“Cache missing for fun and profit”.

Attack on Symmetric Multi-Threading (e.g., Intel
Hyperthreading):

1. Pull data into the L1 cache.
2. A moment later, measure how long it takes to re-access the

same data.
3. Time taken for memory access reveals whether it was evicted

from the L1 cache by the other hyperthread.

We never measure how long a cryptographic operation takes
— this is not a timing attack!

New family of attacks: Microarchitectural side channels.

Microarchitectural side channels can be much higher
bandwidth since they can reveal information while an operation
is being performed.
An RSA private key can be stolen by observing a single
operation.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Percival 2005

x := x
2
mod p

x := x
2
mod p

x := x
2
mod p

x := x
2
mod p

x := x
2
mod p

x := x · a2k+1
mod p

x := x
2
mod p

x := x
2
mod p

x := x
2
mod p

x := x
2
mod p

x := x
2
mod p

x := x · a2k+1
mod p

x := x
2
mod p

x := x
2
mod p

x := x
2
mod p

x := x
2
mod p

x := x · a2k+1
mod p

x := x
2
mod p

x := x
2
mod p

x := x
2
mod p

T
im

e
(c
y
cl
es
)

Cache congruency class

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105
0 31

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Osvik / Shamir / Tromer 2005

Uses the same approach of timing data re-accesses to
determine the “cache footprint” of an AES operation.

As before, a hyperthread can monitor an operation sharing the
L1 cache.

Also demonstrated stealing AES keys used by Linux dm-crypt

after kernel returns to userland — having simultaneous access
to the cache is not necessary.

Attack takes between 102 and 106 AES operations depending
on the CPU and method of attack.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Defense: Oblivious code + data accesses

No secret-dependent conditional branches (if, ?:, or
for/while conditions).

No secret-dependent array indexing.

This may require extra operations; e.g., replacing

x = condition ? foo() : bar();

with

x = foo() * condition + bar() * (1 - condition);

and executing “both sides” of the conditional.

Side benefit: In addition to preventing microarchitectural side
channels, this protects against timing side channels.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



More attacks followed...

Over the years more attacks targetting shared CPU resources
piled up.

Intel, 2005: L2 cache (unpublished).
Aciiçmez / Koç / Seifert, 2006: CPU branch predictors.
Aciiçmez, 2007: L1 instruction cache.
Liu / Yarom / Ge / Heiser / Lee, 2015: L3 cache.
Gras / Razavi / Bos / Giuffrida, 2018: TLB.
Aldaya / Brumley / Hassan / Garca / Tuveri, 2018: CPU
execution ports.
... probably many more that I’ve forgotten.

Code which follows guidelines from 2005 is also immune to all
of these attacks.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



CPU architecture

CPU Pipelining has been used since the IBM Stretch (1961).

Improves performance by allowing the CPU to start processing
the next instruction before it finishes the previous one.
Classic RISC pipeline: Instruction fetch, Instruction decode,
Execute, Memory access, Commit.
Modern x86 pipelines typically have ≈ 15 stages.

Out-of-order execution became common starting with IBM
POWER1 (1990).

The start (instruction fetch/decode) and end (commit) of the
pipeline remains in order.
Particularly important on x86 due to small number of registers.

The instructions must flow!

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Speculative execution

All modern CPUs start handling instruction #N + 1 before
instruction #N has completed.

Unless you insert a serializing instruction.

Pipeline flushes can happen for many reasons.

Branch misprediction.
Indirect branch target misprediction.
Exceptions.
Data hazards.
Self-modifying code.

When a pipeline flush occurs, the speculatively executed
instructions are not committed — the architectural state of
the CPU is unchanged.

Unfortunately the microarchitectural state might be changed.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Meltdown

Meltdown attack:
1. Try to read from an unreadable address.
2. Use the value read as an index for an array access.
3. Intel handles traps at time of instruction commit.
4. Pipeline is flushed and memory access in step 2 “never

happened”.
5. ... but you can measure its effects on the cache anyway.

Rogue System Register Read: Same as Meltdown except using
RDMSR.

Lazy FPU state switching attack: Same as Meltdown except
reading the SSE registers.

SWAPGS attack is also similar.

Delayed exception handling makes it possible to speculate
through faulting instructions.

AMD and other non-Intel CPUs are (mostly?) not affected
since they identify faults earlier and do not speculate through
them.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



More CPU design issues

Speculative Store Bypass:

1. Affects ≈all modern CPUs.
2. Write to a memory location.
3. Read from that same memory location.
4. Do something using the value you read.
5. If the CPU realizes “too late” that it’s the same memory

location, the pipeline will be flushed.
6. But you can measure side effects from the old value in memory

anyway.

Microarchitectural buffer sampling:

1. Several of these vulnerabilities on Intel CPUs.
2. Data is forwarded from internal temporary buffers to upcoming

instructions.
3. Processor realizes “too late” that the data should not have

been forwarded, and the pipeline is flushed after the data has
been leaked.

4. In some cases leak occurs between hyperthreads.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Spectre

Bounds check bypass: CPU mispredicts branch; data is
speculatively read (and used) from beyond the end of a buffer.

Branch target injection: CPU mispredicts the target of an
indirect branch; code (of your choice!) is speculatively
executed.

General issue with speculative execution: If the processor
mis-speculates, you might speculatively run code you didn’t
expect to run.

Affects all modern CPUs.
Branches mispredictions happen even in good times.
Will not bypass OS-level privilege boundaries — sandboxes are
your friend!

Many possible exploit paths; e.g., switch(opcode) in p-code
machines might mispredict with dangerous results.

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Many ways of leaking state!

Attacks to date have leaked speculated information by leaving
footprints in the L1 data cache.

You can also leak information via the L1 instruction cache, via
branch predictors, via the TLB, via CPU execution port
contention...

You can even leak information without executing instructions:

Instruction pre-decode loads data from the L1 code cache,
leaving a measurable footprint behind.
Instruction pre-decode performance varies depending on the
bytes being decoded.
How much code gets loaded into the L1 code cache before the
CPU pipeline is flushed reveals information about the code...

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks



Questions?

Colin Percival Tarsnap Backup Inc. cperciva@tarsnap.com 23 years of software side channel attacks


