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Who am I

I Emmanuel Vadot (manu@FreeBSD.Org)

I FreeBSD user since 2004

I FreeBSD src commiter since 2016

I FreeBSD ports commiter since 2018

I Freelance developer
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I Defaults to FreeBSD-utilities package

I Makefiles can override the package with PACKAGE=XXX

I ucls (package definition) are in release/packages

I plist (package content) automatically generated

I Package and repository are created by make packages target
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How base is split

I Current split isn’t final

I FreeBSD-kernel-$kernconf : Each Kernel in its own package
(based on the config)

I FreeBSD-bootloader contain bootloaders and configuration
files (lua or forth)

I FreeBSD-clibs contain the C runtime (ld-elf.so.1, libc, libthr
etc ...)

I FreeBSD-runtime contain everything for booting to single user
and repair an installation

I FreeBSD-rc contain the rc subsystem

I FreeBSD-utilities is the default package so contain a lot of
different thing

I Some stuff will be moved out of it
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How base is split (cont.)

I Every package is split with -debug -development -profile
package

I On 64 bits arch with 32 bits support some -lib32 packages are
created

I Every lib/programs from contrib/ in their own package (Easier
for SA/EN)

I FreeBSD-tests contain all the testsuite (should we put kyua
there ?)

I Other packages are application or lib specifics, e.g. :
FreeBSD-bluetooth/FreeBSD-wpa/FreeBSD-ssh/FreeBSD-
libarchive
...

I Will continue to move things out of utilities when it make
sense (nfs ? kerberos ?)
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I It apparently matters to some people

I It matters to me only for time spent installing/upgrading
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I Current count without -debug/-development/-profile/-lib32 :
80 (150MB with xz compression)
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WITH /WITHOUT interaction

I WITH and WITHOUT control what we build (see
src.conf(7))

I Some simply exclude one componant from the system
(WITHOUT APM or WITHOUT AMD)

I Some change binaries (WITHOUT KERBEROS or
WITHOUT CAPSICUM)

I No real solution for this now, we would need flavors like in
ports
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I Define SOURCE DATE EPOCH in env (same one as the
bootstrap one)

I Pass PKG VERSION to make(1) (same value as the bootstrap
one)

I Use a temporary REPODIR
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I Regenerate package with new SOURCE DATE EPOCH and
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I rm packages from original repo, copy new ones and re-run pkg
repo
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by the SA/EN
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I Test installing a minimal FreeBSD based pkgbase and install
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Thanks

I Baptiste Daroussin (bapt@FreeBSD.Org)

I Glen Barber (gjb@FreeBSD.Org)



Questions ?
Emmanuel Vadot
manu@freebsd.org

Twitter: @manuvadot


