pkgbase: Are we there yet ?

Emmanuel Vadot
manu@FreeBSD.org

y <
d FreeBSD

EuroBSDCon
Lillehammer, Norway
September 19 — 22, 2019

manu@FreeBSD.org

Who am |

v

Emmanuel Vadot (manu@FreeBSD.Org)
FreeBSD user since 2004

FreeBSD src commiter since 2016

v

v

v

FreeBSD ports commiter since 2018

v

Freelance developer

§ FreeBSD

What is pkgbase ?

» Using pkg(8) for packaging and updating base

[
d FreeBSD

What is pkgbase ?

» Using pkg(8) for packaging and updating base
» pkg(8) is the default package manager since FreeBSD 10.0

What is pkgbase ?

» Using pkg(8) for packaging and updating base
» pkg(8) is the default package manager since FreeBSD 10.0

» Splits base into multiple packages

What is pkgbase ?

v

Using pkg(8) for packaging and updating base

v

pkg(8) is the default package manager since FreeBSD 10.0

v

Splits base into multiple packages
Started in 2015 (yeah ...) by bapt@

v

§ FreeBSD

Goals

» Binary upgrades for RELEASE, STABLE and CURRENT

Goals

» Binary upgrades for RELEASE, STABLE and CURRENT
» Fine grain installation (no sendmail, no toolchain etc ...)

@b rrccssD

Goals

» Binary upgrades for RELEASE, STABLE and CURRENT
» Fine grain installation (no sendmail, no toolchain etc ...)
» Let pkg(8) deal with conf file updates

@b rrccssD

Goals

v

v

v

v

Binary upgrades for RELEASE, STABLE and CURRENT
Fine grain installation (no sendmail, no toolchain etc ...)
Let pkg(8) deal with conf file updates

Allow developers to provide package for users to test

§ FreeBSD

Goals (2)

> In the build system (make packages)

[
d FreeBSD

Goals (2)

> In the build system (make packages)

» Run as user

[=,
d FreeBSD

Goals (2)

> In the build system (make packages)
» Run as user

» Cross arch creation of packages

Y g
| FreeBSD

Goals (2)

v

In the build system (make packages)

» Run as user

v

Cross arch creation of packages

v

| want people to create FreeBSD “distros”

| v,
| FreeBSD

How packages are generated

» Install a “fake” root during target worldstage/kernelstage

How packages are generated

» Install a “fake” root during target worldstage/kernelstage
» Uses -DNO_ROOT and METALOG (mtree file)

How packages are generated

» Install a “fake” root during target worldstage/kernelstage
» Uses -DNO_ROOT and METALOG (mtree file)
» Add tags into the METALOG with the destination package

How packages are generated

v

Install a “fake” root during target worldstage/kernelstage
Uses -DNO_ROOT and METALOG (mtree file)

Add tags into the METALOG with the destination package
Defaults to FreeBSD-utilities package

v

v

v

§ FreeBSD

How packages are generated

v

Install a “fake” root during target worldstage/kernelstage
Uses -DNO_ROOT and METALOG (mtree file)

Add tags into the METALOG with the destination package
Defaults to FreeBSD-utilities package

Makefiles can override the package with PACKAGE=XXX

v

v

v

v

@b rrccssD

How packages are generated

» Install a “fake” root during target worldstage/kernelstage
» Uses -DNO_ROOT and METALOG (mtree file)

» Add tags into the METALOG with the destination package
» Defaults to FreeBSD-utilities package

» Makefiles can override the package with PACKAGE=XXX

» ucls (package definition) are in release/packages

How packages are generated

» Install a “fake” root during target worldstage/kernelstage
» Uses -DNO_ROOT and METALOG (mtree file)

» Add tags into the METALOG with the destination package
» Defaults to FreeBSD-utilities package

» Makefiles can override the package with PACKAGE=XXX
» ucls (package definition) are in release/packages

» plist (package content) automatically generated

§ FreeBSD

How packages are generated

» Install a “fake” root during target worldstage/kernelstage
» Uses -DNO_ROOT and METALOG (mtree file)

» Add tags into the METALOG with the destination package
» Defaults to FreeBSD-utilities package

» Makefiles can override the package with PACKAGE=XXX
» ucls (package definition) are in release/packages

» plist (package content) automatically generated

» Package and repository are created by make packages target

[=,
d FreeBSD

How base is split

@ fFreeBSD

How base is split

» Current split isn't final

How base is split

» Current split isn't final

» FreeBSD-kernel-$kernconf : Each Kernel in its own package
(based on the config)

How base is split

» Current split isn't final

» FreeBSD-kernel-$kernconf : Each Kernel in its own package
(based on the config)

» FreeBSD-bootloader contain bootloaders and configuration
files (lua or forth)

How base is split

v

Current split isn't final

v

FreeBSD-kernel-$kernconf : Each Kernel in its own package
(based on the config)

v

FreeBSD-bootloader contain bootloaders and configuration
files (lua or forth)

FreeBSD-clibs contain the C runtime (Id-elf.so.1, libc, libthr
etc ...)

v

How base is split

» Current split isn't final

» FreeBSD-kernel-$kernconf : Each Kernel in its own package
(based on the config)

» FreeBSD-bootloader contain bootloaders and configuration
files (lua or forth)

» FreeBSD-clibs contain the C runtime (Id-elf.so.1, libc, libthr
etc ...)

» FreeBSD-runtime contain everything for booting to single user
and repair an installation

How base is split

» Current split isn't final

» FreeBSD-kernel-$kernconf : Each Kernel in its own package
(based on the config)

» FreeBSD-bootloader contain bootloaders and configuration
files (lua or forth)

» FreeBSD-clibs contain the C runtime (Id-elf.so.1, libc, libthr
etc ...)

» FreeBSD-runtime contain everything for booting to single user
and repair an installation

> FreeBSD-rc contain the rc subsystem

How base is split

» Current split isn't final

» FreeBSD-kernel-$kernconf : Each Kernel in its own package
(based on the config)

» FreeBSD-bootloader contain bootloaders and configuration
files (lua or forth)

» FreeBSD-clibs contain the C runtime (Id-elf.so.1, libc, libthr
etc ...)

» FreeBSD-runtime contain everything for booting to single user
and repair an installation

> FreeBSD-rc contain the rc subsystem

> FreeBSD-utilities is the default package so contain a lot of

different thing
w freeBSD

How base is split

» Current split isn't final

» FreeBSD-kernel-$kernconf : Each Kernel in its own package
(based on the config)

» FreeBSD-bootloader contain bootloaders and configuration
files (lua or forth)

» FreeBSD-clibs contain the C runtime (Id-elf.so.1, libc, libthr
etc ...)

» FreeBSD-runtime contain everything for booting to single user
and repair an installation

> FreeBSD-rc contain the rc subsystem

> FreeBSD-utilities is the default package so contain a lot of

different thing
» Some stuff will be moved out of it r—
d freeBSD

How base is split (cont.)

@ fFreeBSD

How base is split (cont.)

» Every package is split with -debug -development -profile
package

[
d FreeBSD

How base is split (cont.)

» Every package is split with -debug -development -profile
package

» On 64 bits arch with 32 bits support some -1ib32 packages are
created

How base is split (cont.)

» Every package is split with -debug -development -profile

package

» On 64 bits arch with 32 bits support some -1ib32 packages are
created

» Every lib/programs from contrib/ in their own package (Easier
for SA/EN)

How base is split (cont.)

» Every package is split with -debug -development -profile
package

» On 64 bits arch with 32 bits support some -1ib32 packages are
created

» Every lib/programs from contrib/ in their own package (Easier
for SA/EN)

» FreeBSD-tests contain all the testsuite (should we put kyua
there 7)

How base is split (cont.)

» Every package is split with -debug -development -profile
package

» On 64 bits arch with 32 bits support some -1ib32 packages are
created

» Every lib/programs from contrib/ in their own package (Easier
for SA/EN)

» FreeBSD-tests contain all the testsuite (should we put kyua
there 7)

» Other packages are application or lib specifics, e.g. :
FreeBSD-bluetooth /FreeBSD-wpa/FreeBSD-ssh /FreeBSD-
libarchive

[=,
d FreeBSD

How base is split (cont.)

» Every package is split with -debug -development -profile
package

» On 64 bits arch with 32 bits support some -1ib32 packages are
created

» Every lib/programs from contrib/ in their own package (Easier
for SA/EN)

» FreeBSD-tests contain all the testsuite (should we put kyua
there 7)

» Other packages are application or lib specifics, e.g. :
FreeBSD-bluetooth /FreeBSD-wpa/FreeBSD-ssh /FreeBSD-
libarchive

» Will continue to move things out of utilities when it make

sense (nfs 7 kerberos ?) e,
d freeBSD

Number of packages

> It apparently matters to some people

Number of packages

> It apparently matters to some people

» It matters to me only for time spent installing/upgrading

)

Number of packages

> It apparently matters to some people
» It matters to me only for time spent installing/upgrading
» Total : 392 (529MB with xz compression)

¥ FreeBSD

Number of packages

> It apparently matters to some people

v

It matters to me only for time spent installing/upgrading
Total : 392 (529MB with xz compression)

Current count without -debug/-development/-profile : 118
(158MB with xz compression)

v

v

§ FreeBSD

Number of packages

> It apparently matters to some people

v

It matters to me only for time spent installing/upgrading
Total : 392 (529MB with xz compression)

Current count without -debug/-development/-profile : 118
(158MB with xz compression)

v

v

v

Current count without -debug/-development/-profile/-1ib32 :
80 (150MB with xz compression)

[=,
d FreeBSD

Number of packages

> It apparently matters to some people
» It matters to me only for time spent installing/upgrading
» Total : 392 (529MB with xz compression)

» Current count without -debug/-development/-profile : 118
(158MB with xz compression)

» Current count without -debug/-development/-profile/-1ib32 :
80 (150MB with xz compression)

» Number of packages will only go up starting now

[=,
d FreeBSD

WITH_/WITHOUT_ interaction

» WITH_ and WITHOUT_ control what we build (see
src.conf(7))

[
d FreeBSD

WITH_/WITHOUT_ interaction

» WITH_ and WITHOUT_ control what we build (see
src.conf(7))

» Some simply exclude one componant from the system
(WITHOUT_APM or WITHOUT_AMD)

WITH_/WITHOUT_ interaction

» WITH_ and WITHOUT_ control what we build (see
src.conf(7))

» Some simply exclude one componant from the system
(WITHOUT_APM or WITHOUT_AMD)

» Some change binaries (WITHOUT_KERBEROS or
WITHOUT_CAPSICUM)

Y g
| FreeBSD

WITH_/WITHOUT_ interaction

» WITH_ and WITHOUT_ control what we build (see
src.conf(7))

» Some simply exclude one componant from the system
(WITHOUT_APM or WITHOUT_AMD)

» Some change binaries (WITHOUT_KERBEROS or
WITHOUT_CAPSICUM)

» No real solution for this now, we would need flavors like in
ports

[=,
d FreeBSD

How to bootstrap packages (the correct way)

@ fFreeBSD

How to bootstrap packages (the correct way)

> Define WITH.REPRODUCIBLE_BUILD in src.conf

[
d FreeBSD

How to bootstrap packages (the correct way)

> Define WITH.REPRODUCIBLE_BUILD in src.conf
» Define SOURCE_DATE_EPOCH in env

[=,
d FreeBSD

How to bootstrap packages (the correct way)

» Define WITH_.REPRODUCIBLE_BUILD in src.conf
» Define SOURCE_DATE_EPOCH in env
» Pass REPODIR to make(1)

Y <72
d FreeBSD

How to bootstrap packages (the correct way)

v

Define WITH_.REPRODUCIBLE_BUILD in src.conf
Define SOURCE_DATE_EPOCH in env
Pass REPODIR to make(1)

make packages

v

v

v

How to generate packages for -p updates

@ fFreeBSD

How to generate packages for -p updates

» Define WITH_REPRODUCIBLE_BUILD in src.conf

[
d FreeBSD

How to generate packages for -p updates

» Define WITH_REPRODUCIBLE_BUILD in src.conf

» Define SOURCE_DATE_EPOCH in env (same one as the
bootstrap one)

How to generate packages for -p updates

» Define WITH_REPRODUCIBLE_BUILD in src.conf

» Define SOURCE_DATE_EPOCH in env (same one as the
bootstrap one)

» Pass PKG_VERSION to make(1) (same value as the bootstrap
one)

How to generate packages for -p updates

Define WITH_REPRODUCIBLE_BUILD in src.conf

Define SOURCE_DATE_EPOCH in env (same one as the
bootstrap one)

Pass PKG_VERSION to make(1) (same value as the bootstrap
one)

» Use a temporary REPODIR

v

v

v

How to generate packages for -p updates

» Define WITH_REPRODUCIBLE_BUILD in src.conf

» Define SOURCE_DATE_EPOCH in env (same one as the
bootstrap one)

» Pass PKG_VERSION to make(1) (same value as the bootstrap
one)

» Use a temporary REPODIR

» Compare packages with the bootstrap ones

How to generate packages for -p updates

» Define WITH_REPRODUCIBLE_BUILD in src.conf

» Define SOURCE_DATE_EPOCH in env (same one as the
bootstrap one)

» Pass PKG_VERSION to make(1) (same value as the bootstrap
one)

» Use a temporary REPODIR
» Compare packages with the bootstrap ones

» Regenerate package with new SOURCE_DATE_EPOCH and
new PKG_VERSION

[=,
d FreeBSD

How to generate packages for -p updates

» Define WITH_REPRODUCIBLE_BUILD in src.conf

» Define SOURCE_DATE_EPOCH in env (same one as the
bootstrap one)

» Pass PKG_VERSION to make(1) (same value as the bootstrap
one)

» Use a temporary REPODIR
» Compare packages with the bootstrap ones

» Regenerate package with new SOURCE_DATE_EPOCH and
new PKG_VERSION

» rm packages from original repo, copy new ones and re-run pkg
repo

[=,
d FreeBSD

How to generate packages for -p updates

» Define WITH_REPRODUCIBLE_BUILD in src.conf

» Define SOURCE_DATE_EPOCH in env (same one as the
bootstrap one)

» Pass PKG_VERSION to make(1) (same value as the bootstrap
one)

» Use a temporary REPODIR
» Compare packages with the bootstrap ones

» Regenerate package with new SOURCE_DATE_EPOCH and
new PKG_VERSION

» rm packages from original repo, copy new ones and re-run pkg
repo

» User now only have to download/install package(s) affected

by the SA/EN o
d FreeBSD

pkg groups

» Meta-pkg at the repo level

[
d FreeBSD

pkg groups

» Meta-pkg at the repo level

> Installer install “FreeBSD-base” “FreeBSD-debug”
“FreeBSD-1ib32" etc ...

pkg groups

» Meta-pkg at the repo level

> Installer install “FreeBSD-base” “FreeBSD-debug”
“FreeBSD-1ib32" etc ...

» New packages are installed automatically on update

§ FreeBSD

pkg groups

v

Meta-pkg at the repo level

Installer install “FreeBSD-base” “FreeBSD-debug”
“FreeBSD-1ib32" etc ...

New packages are installed automatically on update

v

v

v

Multitiple candidates for one package (-noman, -nocapsicum)

[=,
d FreeBSD

Current work

» bsdinstall support

Current work

» bsdinstall support

> release image support

Current work

» bsdinstall support
> release image support
» kernel-select

Current work

v

bsdinstall support

v

release image support
kernel-select

v

v

more packages split

Y g
| FreeBSD

Future work

» Talk to re@ so we have official packages

Future work

» Talk to re@ so we have official packages
> “freebsd-update”

Y <72
d FreeBSD

Future work

» Talk to re@ so we have official packages
> “freebsd-update”

» poudriere image support

Y g
| FreeBSD

Are we there yet 7

@ fFreeBSD

Are we there yet 7

» Not yet but close

[
d FreeBSD

Are we there yet 7

» Not yet but close
» Wanna help ?
» Still a few bugs in bsd.*.mk

> Test installing a minimal FreeBSD based pkgbase and install
each package separatly to test if everything is working

> pkgbase@freebsd.org

Thanks

» Baptiste Daroussin (bapt@FreeBSD.Org)
» Glen Barber (gjb@FreeBSD.Org)

Questions ?
Emmanuel Vadot
manu®freebsd.org

Twitter: @manuvadot

