Finalizing booting requirements for a guest running
under bhyvearm

Nicolae-Alexandru Ivan, Mihai Carabas
Automatic Control and Computers Faculty
University POLITEHNICA of Bucharest
Emails: nicolae.ivan@stud.acs.upb.ro.ro, mihai.carabas@cs.pub.ro

Abstract—

Keeping track of time is an invaluable resource in modern
software systems. The vast majority of existing CPUs posses
various clocks and timers in order to accommodate time related
mechanisms required by software. These same needs apply to
virtualized environments, where the guest operating system uses
time based events. To this end, a virtualized timer is required.
This research project describes implementing such a timer in
FreeBSD for the ARMv7 architecture.

Index Terms—FreeBSD, bhyve, hypervisor, ARMv7, GIC, vGIC,
interrupts, Cubieboard2, Allwinner A20

I. INTRODUCTION

In the current stage, a guest running under the ARM FreeBSD
hypervisor (bhyve-arm) isn’t able to boot due to lack of a
virtual timer implementation and issues with VFP (vector
floating point) and WFI instruction. This paper will tackle
mainly the timer virtualization and also the remaining issues
to boot a guest.

Timed events are a core element of many software systems.
Their utility ranges from pre-empting processes while in kernel
space to scheduling events in high level programming in user
space. It is clear that these types of functionality are also
desirable when running software in a virtualized environment.

The need for keeping time has brought about the introduction
of new timer hardware, such as the Programmable Interval
Timer(PIT), the Real Time Clock(RTC), the Advanced Con-
figuration and Power Interface(ACPI) and the High Precision
Event Timer(HPET), each with their own utility.

The above mentioned as well as most other hardware timers
have the same basic functionality, as described by Figure 1.
An oscillator produces a precise frequency signal. Each cycle
of the oscillator updates the counter. When reaching a specific
value, it generates an output signal. Usually, this signal is a
interrupt that lets the CPU know that some amount of time has
passed. Depending on the specific type of timer, there may be
additional components.[9]

In the next sections, the following topics are discussed: sec-
tion two describes the state of the art - how other systems
virtualize timers, section three goes into detail concerning the
implementation, and the final section concludes with results
and plans for further development.

Interrupt

Counter

Oscillator

Figure 1.

Timer functionality

II. STATE OF THE ART

Timer virtualization depends heavily on the underlying ar-
chitecture. Some hardware platforms have virtualization ex-
tensions meant to facilitate guest interaction with hardware
features as the timer. Other platforms lack such support and,
in this case, the hardware device must be emulated entirely.

A. Platforms without Timer Virtualization Extension

Platforms such as the widely used x86 have no support
for timer virtualization. This means that the virtualization
infrastructure must emulate all access to the timer, as well
as the all interrupts produced by it. Various techniques can be
used to achieve this, as follows.

1) VMware: VMware uses proprietary technology, allowing
the guest operating system to fall behind and catch up as
necessary, without losing functionality. The time which is
visible to guest systems is called apparent time. An in-depth
description of the functioning of each of the virtual timers
present in VMware can be found in the following VMware
paper.[9]

2) Xen: Xen approaches this issue differently. It uses paravir-
tualization - the guest is aware that it is functioning inside

a virtualized environment. The guest kernel is modified to
contain a Clock Event Device which schedules events trough
the use of hypercalls. The resulting interrupt will be caught
in the hypervisor and delivered to the appropriate virtual
machine.[3]

3) Linux KVM: KVM supports both fully virtualized and
paravirtualized virtual timers. The fully emulated virtual timer
uses high resolution timers in the Linux kernel to keep track
of guest timer events. When a timer is fired inside KVM, it is
flagged that timers have to be taken into consideration upon
entering the guest.

As an alternative, KVM also provides a paravirtualized kvm-
clock which may be used as a clocksource by guest operating
systems.[7]

4) bhyve: bhyve, the FreeBSD hypervisor, supports fully
emulated timers for platforms that have no hardware support
for virtual timers. Similar to KVM, the bhyve implementation
uses the existing high performance event timers from kernel
space to handle guest timer events.

B. ARMv7

ARMYV7 offers hardware support for virtual timers, thus ren-
dering both the performance penalty on the guest and the
amount of work required inside the hypervisor minimal. The
guest is allowed to interact directly with the hardware, with
no intervention from the hypervisor. Still, the virtualization in-
frastructure must perform certain operations to ensure correct
functionality of the guest.

KVM has a working implementation of virtual timers for
ARM. This implementation was used as a reference when
implementing the FreeBSD virtual timer.[6]

III. IMPLEMENTATION

Before discussing the actual implementation, the architecture
of ARMv7 timer is presented and, also, a very high level
overview of the Generic Interrupt Controller is made. These
are necessary in order to understand the implementation.
Additionally, a summary of encountered issues is made in the
ending of this section.

A. ARMv7 Generic Timer Architecture

The Generic Timer present on the ARMv7 platform is a
standardized timer which can be used as a system clock. Aside
from the usual counter, which in this case is referred to as
physical counter, the ARM Generic Timer may also contains
a virtual counter, which can be used by virtual machines for
time-keeping purposes. The physical counter is at least 56
bits wide and updates at a constant frequency in the range
1-50MHz. The virtual counter holds the value of the physical
counter minus a 64-bit offset.

An implementation of the Generic Timer with Virtualization
Extension provides four timers per CPU[5]:

e Non-secure PL1 physical timer
o Secure PL1 physical timer

o Non-secure PL2 physical timer
e Virtual timer

Each of the above provides an interrupt signal. Additionally,
each has a set of three registers: a CompareValue register -
which is a 64-bit unsigned upcounter, a TimerValue register
- which is a 32-bit signed downcounter, and a 32-bit Control
register.[5]

B. Virtual Generic Interrupt Controller

ARMV7 platforms use a Generic Interrupt Controller in order
to manage interrupts. The GIC keeps track of which interrupts
are enabled, prioritizes incoming interrupts and delivers them
to the appropriate CPU.[4] Since there is no hardware support
for a virtual GIC, it must be emulated by the hypervisor. This
means that any access to the GIC from within the guest, as
well as any interrupt that should be delivered to the guest must
pass through the emulated controller, also called vGIC.

C. Virtual Timer Implementation

Before describing the implementation, the table below de-
scribes the registers used.[5]

Name Description
CNTV_CTL Virtual Timer Control register. Used by

the guest to interact with the

timer hardware
CNTV_CVAL Virtual Timer CompareValue register
CNTHCTL Controls access to the physical registers.

In particular, the PLIPCTEN

and PL1PCEN are used to disable

access to the physical timer registers
CNTVOFF Virtual Offset register - specifies value to be

subtracted from physical counter in order
to obtain virtual counter

Figure 2 constitutes an overview of the workflow.

The workflow of the virtualization process is as follows:

1) At guest initialization (state 0), the CNTVOFF register is
initialized with the current value of the physical timer,
rendering the virtual counter O for the newly created
virtual machine

2) Before entering the guest (transition from state 1 to state
2), the hypervisor internal state for the virtual timer is
checked in order to determine whether any interrupts

Restore guest
registers

Figure 2. Virtual Timer Workflow

should have been triggered by the timer and need to be
injected by the vGIC

3) Upon entering the guest (state 2), the hypervisor en-
ables the virtual timer if necessary, disables access to
the physical timer, and restores the CNTVOFF register
for the current virtual machine, as well as restoring
CNTV_CVAL and CNTV_CTL

4) While running, the guest accesses the virtual timer
with no intervention from the hypervisor (state 3); any
interrupts triggered here are sent to the vGIC, which will
inject them accordingly

5) When exiting the guest, the CNTV_CVAL and CNTV_-
CTL registers are saved (state 4) and the hypervisor
internal state is updated (transition from state 4 to state
1

6) The host continues to use the physical timer until the
guest is run again, when the process resumes at step 2

Notice that only the CompareValue register is saved. This is
because both read and write operations on the TimerValue reg-
ister are translated into reads and writes on the CompareValue.

The implementation of the aforementioned flow is relatively
straight forward. The internal structure for a virtual machine
is used to memorize whether the virtual timer is enabled in
the respective guest and to store the value of CNTVOFE.
Similarly, the values for CNTV_CVAL and CNTV_CTL are
stored within a per-cpu structure.

One noteworthy aspect is determining whether an interrupt
needs to be injected upon re-entering a guest. When syncing
the internal bhyve state with the hardware state, it is first
checked whether the counter has reached the CompareValue
already. If so, the interrupt is injected on the next guest entry.
Otherwise, the remaining number of cycles is calculated and a
callout[1] event is scheduled. If the callout is executed before
running the virtual machine again, the interrupt is injected. In
the case where the guest is executed again before the callout,
the latter is simply cancelled.

D. Encounterd Issues

One major issue encountered was caused by desynchronising
a number of assembly symbols from the C code. The saving
and restoring of the timer registers is done directly in assembly
code, in which the respective symbols are used to calculate the
memory locations of various fields from the hypervisor internal
structures. The incorrect offsets used in these calculations
corrupted other internal fields and eventually caused the virtual
machine to crash.

Another blocking issue, which at the time of writing this paper
has not yet been solved, concerns the vGIC. Although the
interrupt injection flow is triggered and executes correctly,
the guest does not receive the interrupt. Most likely, not all
necessary guest registers are updated.

E. Vector Floating Point

Another kernel subsystem which needs to be initialized as part
of the boot process is the Vector Floating Point (VFP) module.

Vector Floating Point is a coprocessor which supports arith-
metic operations on floating point numbers. It has a set of
control registers, as well as a bank of registers which are used
to store operands.

When changing worlds between host and guest, the state
of this coprocessor needs to be saved. However, due to the
limited use of the VFP architecture, it can be assumed that
saving/restoring its state is not required at every entry/exit.
Instead, the trapping mechanism is once again used. When
an access to the floating point coprocessor occurs, the current
state is saved and the saved state for the guest is loaded. When
returning from the guest, the reverse operation is performed.

F. WFI Handler

At the very end of the boot process, FreeBSD executes a wait
for interrupt (WFI) instruction. This blocks the execution until
an interrupt is received by the CPU. Normally, this happens
very quickly due to the timer interrupt arriving.

On the virtualized system, this instruction requires special
handling. The simple method is to ignore the instruction and
continue execution. However, taking into account that both
the virtual interrupt controller and virtual timer were already
implemented, there was no reason to choose this option.

Therefore, the hardware behaviour was mimicked as closely
as possible: the virtual cpu was set to sleep and wake up
periodically in order to check whether any new interrupts had
arrived. While the virtual cpu is asleep, the hypervisor yields
control of the cpu so that other processes may execute[2].
Upon receiving an interrupt, the virtual cpu resumes normal
execution.

IV. RESULTS

Timed events are a core element of many software systems.
Their utility ranges from preempting processes while in kernel
space to scheduling events in high level programming in user
space. It is clear that these types of functionality are also
desirable when running software in a virtualized environment.

Through the virtualization of the ARM Generic Timer de-
scribed in the previous section, the guest operating system
is able to achieve time-keeping and scheduling functionality
close to what a system running directly on the underlying
hardware.

Therefore, a key part of the operating system has been
implemented with behavior which closely mimics that of the
physical component.

The final result is to boot a minimal FreeBSD guest. Below is
the output for each of the steps of running a virtual machine.

First, the kernel module needs to be loaded.

Listing 1. Loading the vmm module

kldload boot/kernel/vmm.ko

vgicO: <Virtual Generic Interrupt
Controller> on gicO

vgic0O: Cannot setup Maintenance Interrupt
. Disabling Hyp-Mode... 0O

There is still an unresolved issue regarding registering the
maintenance interrupt. The issue is circumvented by executing
the handler upon switching from guest to host context. Also,
until the issue is resolved, hyp-mode is not disabled by this
failure, as it would prevent the rest of the guest execution.

The second step is creating the virtual machine. This is done
using the bhyveload utility. At the end of this step, the
virtual machine is set up and the guest code is loaded into
memory.

Listing 2. Creating the virtual machine

bhyveload -k kernel.bin test
lpae_vmmmap_set n: 4096 27904
lpae_vmmmap_set n: 4096 23808
lpae_vmmmap_set n: 4096 19712
lpae_vmmmap_set n: 4096 15616
lpae_vmmmap_set n: 4096 11520
lpae_vmmmap_set n: 4096 7424
lpae_vmmmap_set n: 4096 3328
lpae_vmmmap_set n: 4096 4096

Finally, the bhyve utility is used to commence the execution
of the guest.

Listing 3.
bhyve -b test
initarm: console initialized
argl kmdp = 0Oxcl70£fbd0
boothowto = 0x00000000

Booting the virtual machine

dtbp = 0xcl654568
lastaddrl: 0xcl1734000
loader passed (static) kenv:
no env, null ptr
KDB: debugger backends: ddb

KDB: current backend: ddb

Copyright (c) 1992-2017 The FreeBSD Project.

Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989,
1991, 1992, 1993, 1994

The Regents of the University of California.
All rights reserved.

FreeBSD is a registered trademark of The FreeBSD
Foundation.

FreeBSD 12.0-CURRENT #0 52c583799 (projects/bhyvearm)
—-dirty: Fri Jul 14 20:23:04 EEST 2017
root@bsd:/usr/obj/arm.armvé/root/git-bhyvearm/

sys/FVP_VE_CORTEX_A15x1_GUEST arm

FreeBSD clang version 4.0.0 (tags/RELEASE_400/final
297347) (based on LLVM 4.0.0)

WARNING: WITNESS option enabled,
performance.

WARNING: DIAGNOSTIC option enabled,
performance.

CPU: ARM Cortex-Al5 r2p0

CPU Features:

Multiprocessing, Thumb2, Security,
Generic Timer, VMSAvV7,
PXN, LPAE, Coherent Walk

Optional instructions:

SDIV/UDIV, UMULL, SMULL,

LoUU:2 LoC:3 LoUIS:2

Cache level 1:

32KB/64B 2-way data cache WB Read-Alloc Write-Alloc
32KB/64B 2-way instruction cache Read-Alloc

Cache level 2:

512KB/64B 1l6-way unified cache WB Read-Alloc Write-
Alloc

real memory = 134217728 (128 MB)

avail memory = 101703680 (96 MB)

arc4random: no preloaded entropy cache

random: entropy device external interface

ofwbus0: <Open Firmware Device Tree>

gic0O: <ARM Generic Interrupt Controller> mem O
%x2c001000-0x2c001£fff, 0x2c002000-0x2c003fff on
ofwbus0

gic0O0: Cannot find Virtual Interface Control
Registers. Disabling Hyp-Mode...

gicO: pn Oxe8, arch 0x0, rev Oxe, implementer 0x800
irgs 128

intr_pic_register(): PIC 0xc2207100 registered for
gicO <dev 0xc2633b80, xref 1>

intr_pic_claim_root(): irg root set to gicO

generic_timer0: <ARMv7 Generic Timer> irqgq 0,1,2,3 on

expect reduced
expect reduced
(ECO: 0x00010000)

Virtualization,

SIMD (ext)

ofwbus0

Timecounter "ARM MPCore Timecounter" frequency
24000000 Hz quality 1000

Event timer "ARM MPCore Eventtimer" frequency

24000000 Hz quality 1000
cpulistO: <Open Firmware CPU Group> on ofwbusO
cpul: <Open Firmware CPU> on cpulistO
cryptosoft0: <software crypto>
NULL mp in getnewvnode (9), tag crossmp
Timecounters tick every 1.000 msec
WARNING: WITNESS option enabled, expect reduced
performance.

WARNING: DIAGNOSTIC option enabled,
performance.

md0: Embedded image 18251776 bytes at 0xc0475f£94

Trying to mount root from ufs:/dev/md0 []...

warning: no time-of-day clock registered, system
time will not be set accurately

Jul 14 17:00:51 init: login_getclass:
" daemon’

sh: cannot open /etc/rc: No such file or directory

Enter full pathname of shell or RETURN for /bin/sh:
random: unblocking device.

expect reduced

unknown class

Expensive timeout (9) function: 0xc04294b0 (0xc2641600

) 0.022796458 s
Cannot read termcap database;
using dumb terminal settings.
#
#

V. CONCLUSIONS AND FURTHER WORK

The project achieved its goal of completely booting a mini-
mal FreeBSD guest operating system running inside bhyve.
In order to reach this objective, a number of mechanisms
were implemented. These include: the virtual generic interrupt
controller, virtual timer, support for guest vector floating point
operations and other less notable changes. This paper tackled
especially the virtual timer.

A. Further Work

The bsd kernel contains multiple mechanisms for scheduling
events to be run at a future time. The current callout system
may be replaced with another mechanism if the latter offers
better performance or improves code maintainability.

There are a number of directions which can be pursued for
long term future development. These include: adding more
hypervisor components to support more virtualization features,
implementing support for symmetric multiprocessor (SMP)
enabled guests.

At the time of writing this paper, there is an ongoing pro-
cess with the FreeBSD community to integrate the changes
proposed by the current project into the upstream repository.
Alexandru Elisei started to create intermediarry patches to
split-out on arch-dependent/independent the current bhyve
code (libvmmapi, bhyve and vmm module). After this is done,
we can create review requests for the actual ARM code.

[1
[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

REFERENCES

FreeBSD callouts. https://www.freebsd.org/cgi/man.cgi?query=callout&apropos&sektion

FreeBSD msleep. https://www.freebsd.org/cgi/man.cgi?query=msleep&apropos=0&sektic
&manpath=FreeBSD+7.0-RELEASE&format=html.

B. Adamczyk and A. Chydzinski. Achieving High
Resolution Timer Events in Virtualized Environment.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503740/, 2015.

ARM. Cortex-A15 Technical Reference Manual, 2011.

ARM. ARM Architecture Reference Manual - ARMv7-A and ARMv7-R
edition, 2014.

C. Dall and J. Nieh. KVM/ARM: The Design and Implementation of
the Linux ARM Hypervisor. https://www.cs.columbia.edu/ nieh/pubs/as-
plos2014_kvmarm.pdf, 2014.

T. Gleixner and D. Niehaus. Hrtimers and Be-
yond: Transforming the Linux Time Subsystems.
https://www.landley.net/kdocs/ols/2006/01s2006v 1-pages-333-346.pdf,
2006.

G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable
third generation architectures, 1974.

VMware. Timekeeping in VMware Virtual Machines.
https://www.vmware.com/files/pdf/techpaper/Timekeeping-In-

VirtualMachines.pdf, 2011.

