
bhyvearm64: Generic Interrupt Controller Version 3
Virtualization

Alexandru Elisei
University Politehnica of Bucharest

Bucharest, Romania
alexandru.elisei@gmail.com

Mihai Carabas
University Politehnica of Bucharest

Bucharest, Romania
mihai.carabas@upb.ro

Abstract—Traditionally associated with low-power, mobile
computing, Arm is now seeking to enter the PC and the server
markets. Virtualization is especially used in these areas, and
current hypervisors rely on various hardware features to achieve
efficient virtualization. To this end, the Armv8 architecture in-
troduces a series of hardware mechanisms to reduce or eliminate
some of the overhead associated with running virtual machines.
Modern computers rely on hardware interrupts to communicate
with peripherals, and this aspect of virtualization has seen a series
of architectural optimizations from Arm. We will present our
experience emulating the Generic Interrupt Controller version
3, the interrupt controller designed by Arm. We have used
a mix of virtualization techniques: trap-and-emulate for the
memory-mapped regions of the controller, which are accessed
less frequently, and hardware accelerated virtualization where
possible. To validate our approach, we have created a virtualized
timer which is used to deliver timer interrupts to the virtual
machines. Timers are essential for modern operating systems, and
the virtualized timer is an abstraction over the Arm architectural
timer, the Generic Timer. As with the interrupt controller, we
have taken special care to take advantage of the available
hardware mechanisms to reduce the cost of virtualization. The
end result is a fully functioning hypervisor which is able to
create, run and destroy virtual machines on Armv8.0-A and later
processors.

Index Terms—Arm, Armv8, virtualization, hypervisor, inter-
rupts, timer

I. INTRODUCTION

Arm is the dominant architecture in the mobile space and
banking on its expertise in efficient computing, Arm is now
looking to enter the PC [1], [2], [3] and the server markets
[4], [5]. Virtualization is popular in these areas, especially in
the server room, where more than 75% of the servers use this
technology [6]. As a result, efficient virtualization solutions
are necessary in order for Arm’s CPU ambitions to come to
fruition.

Virtualization makes it possible for an operating system to
run in an environment that is indistinguishable from the real
hardware [7]. One of the characteristics that makes virtual
machines so appealing is resource control: the virtual machine
manager is always in control of the underlying hardware
resources: CPU, memory and input/output (I/O) devices. [8].
Early CPUs were slow, with speeds matching the I/O devices
of the day, and a simple method of communication was used,

This work has been sponsored by the FreeBSD Foundation.

called programmed I/O [9]. As CPUs became faster than the
devices with which they interacted, a new method of com-
munication was developed, which uses interrupts. Interrupts
are electrical signals sent directly to the processor. Today,
all processors use interrupts, and virtually every operating
has support for such a communication mechanism. As a
consequence, a virtualization solution must also provide a
way for delivering interrupts to a virtual machine, while still
retaining control over the hardware.

bhyvearm64 [10] is a type 2 hypervisor for the FreeBSD
operating system and it implements the virtual interrupt con-
troller on top of the Arm interrupt controller. Arm calls its
implementation of the interrupt controller the Generic Interrupt
Controller (GIC), and we have focused on version 3 (GICv3)
of the controller. As with other components of the architecture,
Arm has taken care to design the controller with features that
make virtualization more efficient.

GICv3 has three separate components: the Distributor, the
Redistributor and the CPU interface [11]. The Distributor and
Redistributor are memory-mapped and are accessed usually
only during the kernel’s boot process. Accessing these two
components is not performance critical and we have opted
for a trap-and-emulate approach to virtualization, where the
I/O registers are emulated and stored in memory as part of
the virtual machine context. On the other hand, the CPU
interface is used frequently, each time an interrupt is handled,
and has been designed as part of the processor, accessible via
fast hardware registers. For the CPU interface we have taken
advantage of various hardware features designed to achieve
fast virtualization.

Interrupt controllers are used by input/output devices to
communicate with the processor, and we have emulated the
system timer as the first device to use our virtual interrupt
controller. Timers are essential to the operation of any system
for a variety of reasons [9]. Among other things, they are
a key part of process scheduling. Arm’s implementation of
the system timer is called the Generic Timer, and it actually
consists of several timers [12]: the physical and the virtual
timers, which are always present; the secure physical timer,
present when the CPU implements the secure mode of oper-
ation; and the physical Exception Level 2 (EL2) timer, part
of the virtualization extensions. An operating system is free
to choose between the physical and the virtual timer, and we



have chosen to emulate both of them in order to not restrict a
guest operating system to one of the timers. While emulating
the timers we also had to take into account the fact that the
host operating system must have exclusive access to one of
the timers for its own uses.

With the interrupt controller and the timer both emulated,
bhyvearm64 is capable of successfully booting and running a
FreeBSD guest, albeit with some limitations due to the project
being in its early stages: a virtual machine can only run on
one virtual CPU, and besides virtio support there is little user
space device emulation support.

The structure of the paper is as follows: the next section
will cover present hardware and software approaches to inter-
rupt controller and timer virtualization. In section 3 we will
describe the Armv8.0 virtualization model that bhyvearm64
implements. Section 4 is dedicated to the Arm interrupt con-
troller: first the GICv3 architecture will be explained, followed
by our approach to virtualization. Then we will proceed to
presenting the emulated timer in Section 6. Section 7 will
cover what we believe the immediate goals for bhyvearm64
should be in order to reach a level of functionality similar
to bhyve on x86. Finally, we will present our conclusions
regarding virtualization on the Arm platform.

II. RELATED WORK

Virtualization is not new. It appeared in the 1960s [9], and
gained momentum in the late 1990s when VMware launched
the first virtualization solution for the x86 platform [13], [9].
At that time, the x86 CPU architecture was unvirtualizable
according to the Popek and Goldberg definition and interrupt
injection and handling was done entirely in software. The
current version of the Intel interrupt controller, called the
x2APIC, has advanced support for virtualization and virtual
interrupts can now be asserted by the hardware, without
hypervisor intervention [14].

On the Arm side, the first hypervisor to take advantage of
the Arm virtualization extensions was KVM [15], [16], which
is part of the Linux kernel. KVM uses a similar approach
to bhyvearm64 for virtualizing the interrupt controller, taking
full advantage of hardware virtualization where available, and
resorting to a trap-and-emulate technique when that is not
possible.

Operating systems require timers to perform basic opera-
tions like scheduling or measuring the passing of time, but
when running inside a virtual environment it is impossible to
have the same precision as the physical machine because of
the inherent virtualization costs.

For historical reasons, the x86 architecture implements
several timers with various and sometimes overlapping uses:
some of them are used by software to measure the frequency of
another timer; and several are capable of generating a periodic
interrupt suitable for timekeeping. This adds to the software
complexity of offering a virtualized view of the passage of
time, as multiple timers need to be emulated and kept in sync
with each other [13].

By contrast, timer virtualization is relatively simple on the
Arm platform, as the General Timer is mandated by the archi-
tecture and is adequate for timekeeping usage by an operating
system. KVM uses an approach similar to bhyvearm64: the
virtual timer is made available to the virtual machine, with
the caveat that the interrupts generated by the timer still have
to injected by the hypervisor, The physical timer is emulated
in software because it is used by the host [15].

Arm has created a new virtualization model in version
8.1 of the architecture called Virtual Host Extensions (VHE)
[12]. When this feature is enabled, the host operating system
executes in a different CPU execution mode than the virtual
machine, with access to its own separate hardware timer.
The host can then assign the physical timer as well as the
virtual timer to the virtual machine, eliminating the need
for software emulation. KVM is working towards removing
timer emulatation in this scenario [17]. Currently bhyvearm64
doesn’t take advantage of VHE, but support is planned in the
near future.

III. BACKGROUND

bhyvearm64 is a type 2 hypervisor and virtual machine
manager for the FreeBSD operating system. It is based on the
existing bhyve virtualization solution for the x86 architecture.
Fig. 1 shows the main components of bhyvearm64, which can
be broadly categorized into user space programs and kernel
code. The user space programs are bhyveload, bhyve and
bhyvectl which an user employs to create, run and destroy a
virtual machine. Communication with the kernel is facilitated
by the library libvmmapi, which serves as a wrapper over ioctl
calls to a special device which uniquely identifies the virtual
machine. On the kernel side, the hypervisor is implemented as
a loadable kernel module name vmm.ko. The virtual interrupt
controller is abstracted as the software component named
VGIC and the virtualized timer as vtimer. Perhaps contrary to
its name, the virtual timer is a physical, hardware timer and
not a software abstraction, as is our virtualized timer. Both the
VGIC and the vtimer are emulated in kernel space to achieve
better performance and less overhead.

Arm introduced the virtualization extensions with version
7 of the Arm architecture, Armv7, and Armv8.0 follows the
same virtualization model. For CPUs that support virtualiza-
tion, the necessary hardware support is implemented as a
distinct processor execution mode, called Exception Level 2
(EL2). The hypervisor architecture is similar to KVM [15], the
Linux hypervisor. EL2 was created with a type 1 hypervisor
in mind. A type 1 hypervisor [9] runs directly on the hardware
and its functionality is centered around managing virtual
machines, as opposed to both virtual machines and user space
programs as is the case with a type 2 hypervisor plus host
kernel. This design decision unfortunately makes it impractical
to run the host operating system in EL2, and instead has forced
us to split the hypervisor code to run across two different CPU
execution modes.



EL0

EL2

HARDWARE

FreeBSD
bhyveload bhyve bhyvectl

libvmmapi

EL1

vmm

/dev/vmm/<vmname>

VM

Userspace

Kernel
VGIC

vmm

vtimer

Fig. 1. bhyvearm64 architecture

There are several versions of the Arm Generic Interrupt
Controller. The most common are GICv2 and GICv3. GICv2
has two major drawbacks:

• Supports at most eight processors, which is limiting for
today’s platforms, especially when it comes to server
hardware.

• It is entirely memory-mapped, which makes accessing the
registers expensive.

Version 3 of the controller addresses these drawbacks by not
putting a strict limit on the number of CPUs and implementing
hardware registers for the most frequently used operations,
registers which have virtualization support. Version 4 of the
interrupt controller is identical to version 3 from a software
perspective, the only difference being added support for vir-
tual message-based interrupts. We expect adding support for
GICv4 in the future will be relatively painless.

IV. GICV3 ARCHITECTURE

Before describing the process of emulating interrupts, it is
worth getting familiar with the inner workings of the Arm
Generic Interrupt Controller version 3 (GICv3). An interrupt
is an asynchronous, external electrical signal delivered to the
processor [9]. The GICv3 controller implements four different
types of interrupts:

• Software Generated Interrupts (SGI). These are generated
by the operating system and used for inter-processor
communication. On other architectures, they are known
as Inter-Processor Interrupts (IPIs).

• Private Peripheral Interupts (PPI). This type of interrupts
are generated by devices that communicate with only one
CPU core, which is always the target for the interrupt.
Timer interrupts are PPIs.

• Shared Peripheral Interrupts (SPI). These are interrupts
that originate from I/O devices and can target any core
in the system.

• Locality-specific Peripheral Interupts (LPI). These are
message based interrupts and can be used by PCI Express

devices or other devices. The PCI Express specification
calls them Message-Signaled Interrupts (MSI) [18].

Besides their type, interrupts have other attributes that can
play a major role in deciding when and how they are delivered
to the processor: interrupt group, which can be group 0,
non-secure group 1 or secure group 1, and interrupt priority.
Interrupts can be delivered to the CPU as either an IRQ or
a FIQ (distinguished by their offset in the interrupt vector).
The security state (secure or non-secure) and their group are
the deciding factors in asserting an interrupt [19]. Group 0
interrupts are always delivered as FIQ interrupts. FreeBSD
configures all interrupts as non-secure group 1 interrupts,
which are always delivered as IRQs.

Interrupts can be masked based on their priority. Interrupt
priority also serves to arbitrate between multiple interrupts:
the interrupt with the highest priority will be asserted first.
There are attempts to use this priority mechanism to allow for
pseudo Non-Maskable Interrupts (NMI) on the Arm architec-
ture: interrupts designated as NMI will have a higher priority
associated with them, and when disabling interrupts, instead
of setting the PSTATE.I bit, a priority mask is used that will
block all “regular” interrupts, while NMIs can still be asserted
[20].

Fig. 2 is an overview of the GICv3 architecture. There are
three main components: a single Distributor per system, one
Redistributor and one CPU interface per core. The Distributor
is responsible for the configuration of the global interrupts
(SPIs) and the Redistributor is used to configure various
properties of the interrupts that are private to the core (PPIs and
SGIs). The CPU interface is responsible for advancing the state
machine associated with handling an interrupt. The Distributor
and the Redistributor are expected to be used sporadically,
typically at boot to configure the interrupts, as opposed to
the CPU interface, which is used each time an interrupt is
handled. Their implementation mirrors this usage pattern: the
Distributor and the Redistributor are memory-mapped, and
accessing them is slower, but that is acceptable because it is
rarely done; the CPU interface is implemented as hardware
registers and that means faster accesses.

There is one optional component that is missing from the
figure. That component is the Interrupt Translation Service
(ITS) and it is responsible for message-based interrupts. It
is optional because system integrators can choose to imple-
ment equivalent functionality in the Redistributor. bhyvearm64
doesn’t support LPI virtualization and for this reason it has
been omitted.

V. GICV3 VIRTUALIZATION

The virtual interrupt controller has been implemented tak-
ing into account the specifics of the GIC components and
how FreeBSD uses the interrupt controller. Interrupts can be
configured as group 0, non-secure group 1 or secure group
1 interrupts. Secure group 1 interrupts are always delivered
to the firmware running in the secure world, and those type
of interrupts haven’t been implemented in bhyvearm64, as the
hypervisor runs in the non-secure world.



...

Redistributor0 

(SGI, PPI)

CPU

Interface0

CPU 0

Distributor 

(SPI) 
Memory-

mapped

Hardware

Registers

Redistributor1 

(SGI, PPI)

RedistributorN 

(SGI, PPI)

CPU

Interface1

CPU

InterfaceN

CPU 0 CPU N

Fig. 2. GICv3 architecture

Group 0 interrupts are always delivered as FIQ interrupts
and the firmware can configure the hardware to deliver those
interrupts to the secure world, similar to how secure group 1
interrupts work. For this reason, FreeBSD and Linux choose
to configure all interrupts as non-secure group 1 interrupts and
bhyvearm64 has support for only this use case.

The interrupt controller is emulated entirely in kernel space.
Interrupts are time sensitive events, and switching execution to
user space to handle the emulation, and then switching again
to the kernel would have proven too costly. However, in order
to make it possible for the virtual machine manager to emulate
various devices, we have provided an API for asserting and
retiring interrupts.

A. Distributor and Redistributor emulation

Because the Distributor and the Redistributors are memory-
mapped and are seldom accessed, we have chosen a trap-
and-emulate approach for virtualization. This approach takes
advantage of how memory virtualization works: the guest
physical addresses that correspond to the Distributor and
Redistributor registers aren’t mapped in the Stage 2 translation
tables. The Stage 2 tables are responsible for translating a
guest physical address generated by the virtual machine into
a real address in physical memory. When the guest address
isn’t present in the tables, an exception occurs. With the
information associated with the exception, the hypervisor
is able to reconstruct the guest instruction and emulate it
accordingly without the need to propagate the fault to user
space.

The virtual Distributor and Redistributors are purely soft-
ware constructs that exist in the host’s memory as part of the
virtual machine context. Each time the guest tries to access
these virtual registers, the hypervisor is able to extract the
address from the exception syndrome. For each such memory
region we maintain an array sorted by the start address, and
using binary search we are able to quickly determine which
virtual register the virtual machine is accessing. Emulation
consists mainly in saving the value written by the guest and
returning that value on a read. The register values are also used
for determing which interrupt can be presented to the virtual
machine, in a manner similar to how the hardware works.

A complete list of interrupt controller registers that are part
of the virtual machine context can be found in Table I.

B. CPU Interface virtualization

The CPU Interface is used every time an interrupt is
handled, therefore it makes sense to make read and writes
fast. The CPU Interface is implemented as registers that are
part of the CPU and has support for hardware virtualization.
Virtualization is activated when the hypervisor configures EL2
to route all physical group 0 and group 1 IRQs to EL2
by setting the HCR EL2.IMO and HCR EL2.FMO bits. The
purpose of these settings is twofold:

• All physical interrupts will be routed to the host, therefore
enforcing the separation between the hardware and the
guest.

• All accesses to the CPU Interface registers are transpar-
ently redirected to a separate set of registers with identical
functionality, but which control the handling of virtual
interrupts instead of physical interrupts.

Because the virtual CPU Interface registers are used when
advancing the state machine of a virtual interrupt in exactly the
same way that the non-virtual registers are used for physical
interrupts, they are not writable by the hypervisor and are
not considered part of the virtual CPU context. However,
additional registers are used for asserting a virtual interrupt,
and these registers are only accessible at EL2.

C. Virtual interrupt injection

Virtual interrupt injection and handling is done mostly in
hardware. The hypervisor is responsible for choosing which
interrupt to inject in the guest. After the interrupt is injected,
its state becomes pending. When the guest is resumed, the in-
terrupt is asserted to the guest. The rest of the state transitions
are handled by the virtual CPU interface and no intervention
from the hypervisor is necessary.

TABLE I
VIRTUAL GIC REGISTERS

Component Type Register Description

Distributor

uint32 t GICD CTLR Distributor Control
uint32 t GICD TYPER Distributor Type
uint32 t GICD PIDR2 Peripheral ID2

uint32 t * GICD ICFGR Interrupt Config
uint32 t * GICD IPRIORITYR Interrupt Priority
uint32 t * GICD IXENABLERa Interrupt Enable
uint64 t * GICD IROUTER Interrupt Routing

Redistributor

uint32 t GICR CTLR Redistributor Control
uint32 t GICR TYPER Redistributor Type
uint32 t GICR IXENABLER0b Interrupt Enable
uint32 t GICR ICFGR0 Interrupt Config 0
uint32 t GICR ICFGR1 Interrupt Config 1

uint32 t[] GICR IPRIORITYR Interrupt Priority

System
Registers

uint32 t ICH EISR EL2 EOI Status
uint32 t ICH ELRSR EL2 Empty LRs
uint32 t ICH HCR EL2 Hypervisor Control
uint32 t ICH MISR EL2 Maintenance Status
uint32 t ICH VMCR EL2 VM Status

uint64 t[] ICH LR EL2 List Registers
aCombination of GICD ICENABLER and GICD ISENABLER.
bCombination of GICR ICENABLER0 and GICR ISENABLER0.



To inject an interrupt, the CPU provides the hypervisor
with a series of registers, called List Registers. Each List
Register contains information about one virtual interrupt that
will be handled by the guest: the interrupt group, state, priority,
interrupt number and if the virtual interrupt maps directly to
a physical interrupt. A virtual interrupt can shadow a physical
interrupt, and in this case, when the guest deactivates the
virtual interrupt, the corresponding physical interrupt is also
deactivated.

The number of List Registers is limited and hardware-
dependent. The maximum number is 16 and it is possible to
have more pending interrupts for the virtual machine than the
number of List Registers. To get around this limitation we
keep our own buffer for the pending interrupts. Each time the
guest is resumed, we check this buffer and select the highest
pending interrupts to be injected in the guest.

The interrupts that will be asserted are selected based on
the guest interrupt configuration and it takes into account:

• The group, type and interrupt number: the interrupt must
be enabled in the Distributor and the Redistributor.

• If the target CPU for the interrupt is the current CPU.
• The priority of the interrupt relative to the other pending

interrupts.
• If two interrupts are equal in terms of priority, the

hypervisor keeps an extra field for each interrupt for
additional information. For example, a clock interrupt
should always have higher priority because this is how
the guest operating system does its timekeeping.

Another hardware features that is designed to help with
virtualization is the presence of a special interrupt, called
the maintenance interrupt. The purpose of this interrupt is
to address scenarios where the hypervisor wants to inject
more interrupts than available list registers or when a special
action needs to be performed when a certain virtual interrupt
is handled. In such situations, the hypervisor enables the
maintenance interrupt which when asserted will trigger a world
switch to the host. The hypervisor is then free to execute the
action it deems appropriate.

VI. TIMER VIRTUALIZATION

The timer is essential for any operating system: without
it, there could be no process scheduling in the context of
preemptive scheduling. Operating systems also use a timer for
periodic tasks, either as a functionality offered to user space
processes, or for internal purposes. It is necessary for a virtual
machine to have access to a virtualized timer in order for the
guest operating system to function properly.

A. The Generic Timer

The timer provided by the Armv8 architecture is called the
Generic Timer. The implementation actually consists of at least
two different timers, up to seven [12]. A system can have a
secure physical timer, a non-secure physical timer, which we
will call simply the physical timer, a virtual timer, physical and
virtual non-secure EL2 timers, and physical and virtual secure
EL2 timers. For the purpose of virtualization, we will focus

our attention on the timers that a regular operating system uses,
the physical timer, which counts the passing of real time, and
the virtual timer, which counts the passing of time from a fixed
offset.

The host operating system needs to use a timer exclusively;
it is not desirable for a virtual machine to slow down the host.
bhyvearm64 assigns the physical timer to the host and the
virtual timer to the virtual machine currently running on the
CPU core for the following reasons:

• Because the virtual timer counts time from a fixed offset,
a guest running inside a virtual machine can be tricked
into thinking that the timer started at the same time as
the virtual machine.

• FreeBSD [21] and Linux [22] prefer choosing the virtual
timer over the physical timer when they are both present
and virtualization is not active, which is always the case
in a virtual machine with no nested virtualization support.

• The Armv8.0 architecture provides a mechanism to emu-
late the physical timer by trapping reads and writes; there
is no such mechanism for the virtual timer.

B. Virtual Timer Virtualization

Timer interrupts are extremely time sensitive. Timer inter-
rupts come at regular intervals (the FreeBSD kernel configures
the timer to fire once every 1 millisecond) and because they
are so frequent it is extremely undesirable to spend too much
time servicing the interrupt. That time can be used instead to
execute other tasks. The same is true for the virtualized timer:
the less time the hypervisor spends emulating a timer, the more
CPU time a virtual machine has at its disposal before the next
interrupt.

To achieve minimal overhead for injecting timer inter-
rupts, bhyvearm64 assigns the virtual timer component of
the Generic Timer directly to the virtual machine. The guest
operating system is free to configure the timer as it sees fit,
without any intervention from the hypervisor. However, virtual
timer interrupts still need to be managed by the hypervisor.
This is necessary because according to Popek and Goldberg’s
control property [8], the host must always be in control of
the hardware, and this also means controlling the delivery
of interrupts. There is no hardware mechanism for selecting
which interrupts get redirected to the virtual machine. When
a guest is running, all interrupts are routed to the host, which
will choose which of them will be presented to the virtual
machine.

By their nature, interrupts are asynchronous; they can come
at any point in time regardless of the program that the
processor is executing. This also applies to the virtual timer:
a virtual timer interrupt can fire when another host program
is running on the CPU instead of the virtual machine that
programmed the timer. The virtual timer requires a mechanism
for identifying the virtual machine that programmed it before it
fired. To achieve this, we have modified the machine dependent
part of struct pcpu to save a pointer to the last virtual CPU
that ran on the core, as shown in Listing 1. The virtual CPU
is changed each time a different virtual processor is run by



the machine-dependant part of bhyvearm64 and set to NULL
when that machine is destroyed.

The correct usage of the virtual timer also requires consider-
ing the case when two distinct virtual machines are sharing the
same physical core and thus using the same virtual timer. It is
important to note that in this context, “sharing” means the CPU
execution is alternating between the two virtual machine. The
virtual machines most likely started at different times, and their
virtual timer offsets will reflect that; most importantly each
will set the timer to fire at different moments in the future. To
account for this scenario, when switching virtual machines, it
is necessary to save the virtual machine timer state and restore
the state of the virtual machine that is replacing it.

Listing 1. struct pcpu
#define PCPU_MD_FIELDS \

u_int pc_acpi_id; \
u_int pc_midr; \
uint64_t pc_clock; \
void *pc_vcpu; \
pcpu_bp_harden pc_bp_harden; \

char __pad[225]

There is one other important aspect of timer virtualization
that needs to be addressed: what happens when the virtual ma-
chine is running behind timer interrupts? We have experienced
this situation when running bhyvearm64 on the Foundation
Platform simulator [23] with multiple virtual machines on the
same (simulated) Armv8.0 CPU. For bhyvearm64 we have
chosen a conservative approach in order to prevent the guest
kernel from spending too much of its CPU time handling timer
interrupts. When a virtual timer interrupt is asserted, we don’t
inject the interrupt in the guest unconditionally, but instead
we check if another timer interrupt is active. This can happen
in the interrupt handler, after the guest enables the timer and
before it signals the end of interrupt, events that are shown in
Fig. 3. In this case, we save the new interrupt in the interrupt
buffer and we inject it next time we perform a world switch.
Because world switches occur at least once every host tick,
the guest will have lost at most one full host tick.

C. Physical Timer Emulation

We have discovered that FreeBSD and Linux prefer using
the virtual timer when it is available. However, there is nothing
stopping an operating system from choosing the physical timer
over the virtual timer. Because bhyvearm64 lets the host have
control over the physical timer, for physical timer virtual-
ization we have chosen a trap-and-emulate approach. This
is achieved by setting the CNTHCTL EL2.EL1PCEN and
CNTHCTL EL2.EL1PCTEN bits, which cause all accesses
to the physical timer to be trapped to the hypervisor.

Fig. 3 shows the steps the FreeBSD kernel executes when
handling a timer interrupt. To get the interrupt number, the
Interrupt Acknowledge Register (IAR) is read. The interrupt
number is the number programmed in the List Register.
This changes the interrupt state from pending to active. The
kernel disables the timer by writing to the CNTP CTL EL0

Time

Kernel reads

ICC_IAR1_EL1

Kernel disables timer by

writing to CNTP_CTL_EL0

Kernel programs next timer

by writing to

CNTP_TVAL_EL0

Kernel enables timer by

writing to CNTP_CTL_EL0

Kernel writes to

ICC_EOIR1_EL1

Fig. 3. Timer Usage

register, which causes a trap to the hypervisor where the
hypervisor does in-kernel emulation. As a result of the write,
the hypervisor disables all pending timer alarms for the guest.
The guest programs the timer for the next alarm, and we save
this value. We don’t program any alarms to inject an interrupt
because the timer is still disabled.

Only after the guest enables the timer with another write to
CNTP CTL EL0 we trap to the hypervisor and program an
alarm at the time specified by the guest by using the FreeBSD’s
callout API. To end the handling of this interrupt, the kernel
writes to the End Of Interrupt Register (EOIR), which marks
the interrupt as inactive in the List Register. The List Register
that held the interrupt is now available to be used for injecting
another interrupt.

VII. FUTURE WORK

bhyvearm64 is in the early stages and our main goal
moving forward is to integrate it with the FreeBSD oper-
ating system. To this end, we are pursuing three different
approaches: splitting the existing bhyve implementation into
machine independent (MI) and machine dependent (MD) code,
improving user space device emulation support and improving
the hypervisor.

The arm64 vmm module duplicates code from the x86
bhyve implementation. It is obvious that, at the very least,
the vmm device code should be very similar between the two
architectures. This also applies to the user space components
of bhyvearm64, because much of the libvmmapi ioctl wrappers
and device emulation code should be shared. This issue was
also raised during the review process for the Armv7 version
of bhyve [24].

We are currently working on separating the machine inde-
pendent from machine independent code and we have started
with libvmmapi [25]. We will continue with the rest of the



user space utilities, before turning our attention to the kernel
module.

At the moment, bhyve for arm64 has support for virtio
devices and bvmconsole, which is a development console. This
is inadequate for proper virtual machine management. We plan
to emulate the Intel 16650 UART and a CD-ROM device. The
UART will make interacting with the virtual machine faster,
and the emulated CD-ROM will make it possible for the user to
install a FreeBSD operating system inside the virtual machine.

The Armv8.0 virtualization model was intended for type
1 hypervisors, and this has the unfortunate effect of making
type 2 hypervisors not only more complicated from a soft-
ware perspective, but also slower. Better support for type 2
hypervisors was added in Armv8.1 under the name of Virtual
Host Extensions (VHE) [12]. KVM on Linux implements VHE
and this approach has led to better performance compared
to Armv8.0 virtualization in all scenarios [16]. Implementing
VHE brings the added advantage of noticeably reduced soft-
ware complexity for the hypervisor. This reduced complexity
will make our next goal easier to achieve: adding Symmetric
Multiprocessor Support (SMP) support to the virtual machine.
Machines with one CPU are rarely seen today, and we plan to
make it possible for a virtual machine to use multiple virtual
processors.

VIII. CONCLUSIONS

Operating systems rely on interrupts to communicate with
input/output devices. It is therefore necessary for modern
hypervisors to implement interrupt virtualization. bhyvearm64
abstracts Arm’s Generic Interrupt Controller version 3 into a
virtual interrupt controller by using a multifaceted approach
to virtualization. bhyvearm64 takes advantage of hardware
features to achieve minimum overhead by enabling the virtual
CPU interface. For the seldom accessed, memory-mapped
components of the GIC we make use of translation faults to
emulate the corresponding reads and writes.

Timers are essential for modern computers because, among
other things, they make multiprogramming possible. The first
device that uses the virtual interrupt controller is the virtual-
ized Generic Timer, which provides the virtual machine with
timer interrupts. bhyvearm64 virtualizes both hardware timers
that are part of the Generic Timer. A guest running in a virtual
environment is allowed to take full control over the virtual
timer. Physical timer accesses are emulated using a trap-and-
emulate approach, where the timer state is a software construct
part of the in-memory virtual machine state.

ACKNOWLEDGMENT

The current version of bhyvearm64 was inspired by bhyve
for Armv7 by Mihai Carabas. bhyvearm64 uses a virtio MMIO
implementation by Mihai Darius.

REFERENCES

[1] Qualcomm Incorporated, “Always On Always Connected PCs are here.”
https://www.qualcomm.com/snapdragon/always-connected-pc. Last ac-
cessed: 21 January 2019.

[2] AnandTech, “Arm’s Cortex-A76 CPU Unveiled: Taking Aim at the Top
for 7nm.” https://www.anandtech.com/show/12785/arm-cortex-a76-cpu-
unveiled-7nm-powerhouse. Last accessed: 21 January 2019.

[3] Arm Ltd, “Accelerating mobile and laptop performance: Arm announces
Client CPU roadmap.” https://www.arm.com/company/news/2018/08/
accelerating-mobile-and-laptop-performance. Last accessed: 21 January
2019.

[4] S. McIntosh-Smith, J. Price, T. Deakin, and A. Poenaru, “Comparative
Benchmarking of the First Generation of HPC-optimised ARM Proces-
sors on Isambard.” https://uob-hpc.github.io/assets/cug-2018.pdf. Last
accessed: 28 January 2019.

[5] Amazon.com, Inc, “Introducing Amazon EC2 A1 Instances Powered By
New Arm-based AWS Graviton Processors.” https://aws.amazon.com/
about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances/.
Last accessed: 21 January 2019.

[6] Gartner, Inc, “Gartner says worldwide server virtualization market
is reaching its peak.” https://www.gartner.com/en/newsroom/press-
releases/2016-05-12-gartner-says-worldwide-server-virtualization-
market-is-reaching-its-peak. Last accessed: 21 January 2019.

[7] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts.
Hoboken, New Jersey: John Wiley & Sons, Inc., 2013.

[8] G. J. Popek and R. P. Goldberg, “Formal Requirements for Virtualizable
Third Generation Architectures,” Commun. ACM, vol. 17, pp. 412–421,
July 1974.

[9] A. S. Tanenbaum and H. Bos, Modern Operating Systems. Upper Saddle
River, New Jersey: Pearson Education, Inc., 2015.

[10] A. Elisei, “bhyvearm64.” https://github.com/FreeBSD-UPB/freebsd/tree/
projects/bhyvearm64. Last accessed: 27 January 2019.

[11] ARM Holdings, “ARM Generic Interrupt Controller Architecture Speci-
fication GIC architecture version 3.0 and version 4.0.” https://static.docs.
arm.com/ihi0069/c/IHI0069C gic architecture specification.pdf. Last
accessed: 28 January 2019.

[12] ARM Holdings, “ARM Architecture Reference Manual ARMv8, for
ARMv8-A architecture profile.” https://static.docs.arm.com/ddi0487/da/
DDI0487D a armv8 arm.pdf. Last accessed: 23 January 2019.

[13] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman, and E. Y. Wang,
“Bringing virtualization to the x86 architecture with the original vmware
workstation,” ACM Trans. Comput. Syst., vol. 30, pp. 12:1–12:51, Nov.
2012.

[14] Intel Corporation, “Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual.” https://software.intel.com/sites/default/files/managed/
39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf. Last accessed: 20 February
2019.

[15] C. Dall and J. Nieh, “KVM/ARM: The Design and Implementation of
the Linux ARM Hypervisor.” http://www.cs.columbia.edu/⇠cdall//pubs/
asplos019-dall.pdf. Last accessed: 28 January 2019.

[16] C. Dall, S.-W. Li, and J. Nieh, “Optimizing the Design and Implementa-
tion of the Linux ARM Hypervisor,” in 2017 USENIX Annual Technical

Conference (USENIX ATC ’17), 2017.
[17] M. Zyngier and C. Dall, “KVM: arm/arm64: arch timer: Assign the

phys timer on VHE systems.” https://www.spinics.net/lists/arm-kernel/
msg702086.html. Last accessed: 21 February 2019.

[18] PCI-SIG, “Specification.” http://pcisig.com/specifications (login re-
quired). Last accessed: 26 Junuary 2019.

[19] ARM Holdings, “GICv3 and GICv4 Software Overview.”
http://infocenter.arm.com/help/topic/com.arm.doc.dai0492b/GICv3
Software Overview Official Release B.pdf. Last accessed: 26 January
2018.

[20] J. Thierry, “arm64: provide pseudo NMI with GICv3.” https://lkml.org/
lkml/2019/1/21/1060. Last accessed: 28 January 2019.

[21] The FreeBSD Project, “Generic Timer driver.” https://github.com/
freebsd/freebsd/blob/master/sys/arm/arm/generic timer.c. Last accessed:
26 January 2019.

[22] L. Torvalds, “The Linux Kernel.” https://github.com/torvalds/linux/blob/
master/drivers/clocksource/arm arch timer.c. Last accessed: 27 January
2019.

[23] ARM Holdings, “Fixed Virtual Platforms.” https://developer.arm.com/
products/system-design/fixed-virtual-platforms. Last accessed: 27 Jan-
uary 2019.

[24] M. Carabas, “Adding virtualization support for ARMv7 platforms.”
https://reviews.freebsd.org/D10213. Last accessed: 28 January 2018.

[25] A. Elisei, “libvmmapi: Separate MI from MD code.” https://reviews.
freebsd.org/D17874. Last accessed: 28 January 2018.


