
bhyve - Improvements to Virtual Machine State
Save and Restore

Darius Mihai
University POLITEHNICA of Bucharest

Splaiul Independent,ei 313, Bucharest, Romania, 060042
Email: dariusmihaim@gmail.com

Mihai Carabas,
University POLITEHNICA of Bucharest

Splaiul Independent,ei 313, Bucharest, Romania, 060042
Email: mihai.carabas@cs.pub.ro

Abstract—As more complex tasks are delegated to distributed
servers, virtual machine hypervisors need to adapt and provide
features that allow redundancy and load balancing. One such
mechanism is the virtual machine save and restore through sys-
tem snapshots. A snapshot should allow the complete restoration
of the state that the virtual machine was in when the snapshot
was created. Since the snapshot should encapsulate the entire
state of the virtualized system, the guest system should not be
able to differentiate between the moment a snapshot was created
and the moment when the system was restored, regardless of
how much real time has passed between the two events. This
paper will present how the time management and block devices
are saved and restored for bhyve, FreeBSD’s virtual machine
hypervisor.

I. INTRODUCTION

Virtual machines can be used by extremely powerful sys-
tems (e.g., server farms) to more efficiently split resources be-
tween users, or run a variety of compatible operating systems
without specifically installing one directly on the hardware
system. These mechanisms are employed to reduce admin-
istrative complexity and better automate processes. Since a
virtualized operating system is expected to still run as any
other, tasks that depend on timer functionality and clock
measurements are still expected to run with enough precision
so results are not skewed over time.

This article refers to any system that allows running virtual
machines as host, and the operating system running on virtu-
alized hardware as guest. Since the host is responsible with
managing the system resources, and therefore must not have
its functionality hijacked by a badly behaving guest, a hyper-
visor (also known as virtual machine manager) is required to
allow the guest systems access to hardware resources without
impacting the host.

In some circumstances (e.g., the host will have to be stopped
or if the host becomes over encumbered), users may want
to stop the virtual machine, and potentially even move it to
another system to continue work. This is achieved by creating
a snapshot of the virtual machine and then restoring the virtual
machine from the checkpoint.

A. Timers and Clocks

In order to perform periodic tasks, an operating system has
to measure time in some manner, and, if the hardware permits
it, request that an interrupt is sent when an interval has passed.

Regardless of their exact function, a periodic task is a routine
that will have to be called at (or as close as possible) a set
interval.

For example, the basic Unix sleep command can be used
to perform an operation every N seconds if sleep $N is
called in a script loop. Since it is safe to assume that all
modern processors have hardware timekeeping components
implemented, sleep will request from the operating system
that a software timer (i.e., one that is implemented by the
operating system as an abstraction [1]) to be set for N
seconds in the future and will yield the processor, without
being rescheduled, until the system “wakes” it. The process
“waking” is automatically done when the time has elapsed,
and the process will be rescheduled to run by the operating
system since it no longer waits for external events (in the case
of sleep, it will usually simply end when the timer is done).

Considering that the virtual machine must not lose any
functionality, time sensitive tasks should not be impacted
either. More specifically, this implies that if a task ran in the
virtual machine should end N seconds after it was created, it
will expire N-X seconds after the virtual machine was restored
from a checkpoint, if that checkpoint was created after X
seconds.

Note that some tasks may be affected even when the virtual
machine behaves as expected after a restore. For example,
network communications may be timed out by the other end,
even if from the guest’s point of view the packets are expected
to arrive well within the allotted time frame.

B. Block devices
A block device [2] is a permanent storage device that

imposes access to data using a fixed width. A commonly used
size is 512 bytes, equivalent to the length of a sector of a hard-
disk drive (HDD). Reading or writing data to such devices
requires sending requests of size that is a multiple of that
size.

As with hardware systems, a virtual machine requires a
virtualized block device as permanent storage to install the
operating system, as well as other software. Similar to other
virtual machine managers, bhyve [3] uses special files stored
on a physical drive that act as storage medium for the virtual
machine. The files are kept open by a part of bhyve and
read/writes are performed in these files in stead of directly

on the block device (i.e., the file will ultimately be stored on
a hardware device, using the abstraction layers of the FreeBSD
kernel).

At the time this paper is written, bhyve only supports raw
disks (i.e., data is stored without being compressed, and no
extra features, such as copy-on-write, are available).

As with timers and clocks, the state of block devices needs
to be correctly saved to avoid the corruption of the file
systems used by the guest. Failing to do so, either by losing
some requests received from the guest, or failing to send
notifications when the operations have finished may result in
the guest having an inconsistent view of the data on the disk,
or corrupted data. Both scenarios can lead to damage to data
and systems with bad behavior.

The following sections are split as follows:

• section II talks about how the timers and time measuring
circuits work, how they are virtualized, and the previous
state of the save and restore mechanism.

• section III presents how AHCI compatible block devices
are virtualized

• section Iv shows the state of the overall save and restore
feature of bhyve

• section V focuses on the improvements to the snapshot
mechanism our work has achieved.

• section VI shows the results obtained after successfully
restoring time components and virtualized AHCI compat-
ible block devices on systems with Intel processors.

• section VII draws some conclusions and talks about
future work on the save and restore feature for bhyve
[3].

II. TIME MANAGEMENT VIRTUALIZATION

Timers are hardware resources used by the operating system
for synchronization. Usually, the timers have internal counters
that are incremented or decremented to measure time passage.
Depending on how often the counter value is changed timers
have a measurable resolution. The resolution is a measure of
how good a timer is, and more precise timers are commonly
more used when available, and unless tasks only need a rough
estimation of time.

Clocks are time measuring circuits that can be used by an
operating system to precisely measure wall clock time (i.e.,
real time). A clock uses an internal clock counter that is
incremented by a monotonic clock signal. Using this value,
and knowing how often it is incremented (i.e., the clock
frequency), software can measure how much time has passed
since the clock was reset.

In bhyve [3], the following timers and clocks are of partic-
ular interest:

• Local Advanced Programmable Interface Controller [4]
(known as Local APIC, or LAPIC).

• High Precision Event Timer [5] (known as HPET).
• Time Stamp Counter [4] (known as TSC).

A. Timer: LAPIC

The Local APIC described in the Intel 64 and IA-32 Archi-
tectures Software Developer’s Manual Vol. 3A [4], Chapter
10, is a per-CPU programmable interrupt controller (i.e.,
aggregates multiple sources of interrupt and delivers them to
a specific CPU core) that is equipped with an internal timer.

The LAPIC’s timer is a software programmable 32-bit timer
that can be used to time events and system operations. The
timer settings are split among four registers:

• Divide Configuration Register.
• LVT Timer Register.
• Initial Count Register.
• Current Count Register.

The Divide Configuration Register is used to configure the
rate at which the current counter value will be decremented.
Possible divider values range between 1 and 128 (inclusively),
in powers of two. The set value is used by a circuit to reduce
the processor’s bus clock by the set factor (e.g., the timer’s
frequency will be half that of the bus clock, when the divider
is set to use a factor of 2).

The LVT Timer Register can be used to set the timer in
either periodic, or one-shot mode. Periodic mode means that
the timer will rearm itself after expiring. In one-shot mode the
timer will remain stopped after firing once. The register also
determines which interrupt will be delivered to the processor.

Current Count Register and Initial Count Register are used
together. When the Initial Count Register is set, its value
will be copied to the Current Count Register. At every clock
cycle of the timer, the value in the Current Count Register is
decremented. When the value reaches zero, an interrupt is sent
to the processor. If the timer is set to run in periodic mode,
the value of the Initial Count Register is copied again and the
cycle restarts. Setting the Initial Count Register to 0 will stop
the timer. Figure 1 shows the workflow of the LAPIC timer.

To virtualize the Local APIC, bhyve traps access to the
memory mapping of the device and updates the internal device
state if required. Whenever the timer Initial Count Register is
programmed, or a periodic timer expires, a callout [6] is set
by the virtual machine manager, based on its internal state (i.e.,
the values of the four aforementioned registers) to program a
timer on the host. When the timer expires, an interrupt is sent
to the guest to signal that the time is up. In the case of periodic
timers, another timer is set, and the cycle repeats.

Timer deadline for callout is computed as a function of
system uptime, as required by the interface. More specifically,
the timer frequency is computed as the fraction between the
predefined value of frequency and the value of the divider.
Since the timer is programmed using relative time (i.e., how
much time should pass since it is programmed until it expires),
when the Initial Count Register is set, simply adding the
current system uptime with the product of timer frequency
and the set counter will give the time when the timer should
expire.

Set timer

Copy Initial Count

Register value to

Current Count Register

Set Initial Count

Register

Decrement Current

Count Register

Wait for

clock tick

Counter Reached 0

Timer is periodic

Send Interrupt to

processor

YES

Stop

Timer

Value is 0

NO

YES

NO

YES

NO

Fig. 1. Local APIC timer workflow.

B. Timer: HPET

The High Precision Event Timers [5] are hardware timers
developed by Intel for their processors. The timers use a 64-
bit main counter that is incremented and an implementation-
defined number of timers, with a minimum of 3.

Functionally, the timers use comparators to see when the
main counter has reached a certain value. The value used for
comparison is stored in a “match” register that can be either 32
or 64-bit wide. The value of the main counter is compared with
the reference value using N-bit (with N being either 32 or 64,
depending on the implementation) comparators and whenever
the value compared matches the value of the value of the
counter, an interrupt is generated.

The timers can function in both one-shot and
periodic modes. In periodic mode, the comparator
value is set to value(base_counter) +
value(comparator_register), so a new interrupt is
sent every value(comparator_register) ticks.

The frequency of the HPET timer can be much lower than
that of the LAPIC (i.e., the specification document [5] imposes
that it should be at least 10MHz, while the LAPIC runs at the
same frequency as the processor, unless divided), so it is less
precise.

Since the HPET has the main counter, a monotonically
incremented counter value, it can also be used as a rougher
granularity clock source.

Figure 2 is a representation of the logic used to implement
one of the timers in HPET.

HPET virtualization relies on device memory mapping to
identify register access and update internal device state. HPET
timers are emulated using callout [6] structures, one for

Compare
=

Add

EN Comparator
Register

Main
counter Send IRQ

Initial
Comparator

Register
Value

Compare
=

Comparator
Register

Main
counter Send IRQ

Initial
Comparator

Register
Value

HPET Timer N in Periodic mode

HPET Timer N in One-Shot mode

Fig. 2. HPET timer logic.

each timer. The guest can set and get values for the main
counter and timer counters. For virtualization purposes, the
value of the main counter is set once, and reading it will
simply add the value set by the guest and add it to the time
elapsed since it was set divided by the frequency. Using this
mechanism, the value of the counter can be precisely computed
without using periodic timers to increment it.

Each timer is virtualized by programming a callback struc-
ture to the time when it should expire. However, since the
timers programming relies on absolute values, rather than
relative, the “current” value of the main counter will have to be
determined and subtracted from the value of the comparator
to obtain a relative time in the future when the timer must
expire. Similar to the way LAPIC timers are set, the moment
in the future the timer will expire is computed as the sum
between the current time and the number of relative “ticks”
of the HPET timer multiplied by the its frequency.

For periodic timers, after the timer interrupt is sent to the
guest, another callout will be set to expire after the another
time period has passed.

C. Clock: TSC

The Time Stamp Counter, as described in Section 17.15
of the Intel 64 and IA-32 Architectures Software Developer’s
Manual Vol. 3A [4] is a per-CPU internal counter that is
incremented at the same rate, regardless of CPU frequency
changes. The constant rate means that TSC can be used as a
wall clock timer (i.e., measures real time, as opposed to how
much a process has been running on the CPU). It is possible to
adjust the value of the Time Stamp Counter using the wrmsr
special instruction with appropriate offset.

The value of TSC can be read using the rdtsc instruction
without requiring special privileges in the operating system
(e.g., for Unix systems the command will not run as root).

Using this mechanism, software can determine how much time
has passed from a reference point by computing the absolute
difference of the two values.

An extension to TSC, called Invariant TSC, will guarantee
that the value of the TSC counter will continue to increment
while the system moves to power saving states. However, this
behavior is not supported on older CPUs, so TSC may not be
as stable as HPET on all systems.

TSC virtualization relies on the hardware extensions pro-
vided by modern Intel and AMD processors. This article
refers to Intel specific extensions, but AMD offers very similar
functionality.

Since the value of TSC is directly provided by the processor,
its value is shared between host and guest. Because of this, the
guest cannot be allowed to directly change its value; in stead,
the virtualization extensions provide two special registers: TSC
offset and TSC multiplier, as described in Section 25.3 of the
Intel 64 and IA-32 Architectures Software Developer’s Manual
Vol. 3A [4].

Considering that bhyve does not use the TSC multiplier, the
TSC offset is used when the guest attempts to access the TSC
register as follows:

• write - the TSC offset is set to the difference between
the value desired by the guest and the current host TSC
value.

• read - the sum between the value of the TSC offset
register and the current host TSC is returned.

III. BLOCK DEVICES VIRTUALIZATION

The Advanced Host Control Interface (AHCI) [7] is a PCI
class device used to transfer data between system memory
and SATA devices. Using the AHCI device, the system can
enqueue multiple requests to a single device, with the possi-
bility to aggregate requests to reduce disk wear and improve
performance.

AHCI can connect multiple hardware devices to the system
CPU, offloading the CPU workload through DMA trans-
fers. By offloading the AHCI device, the system can asyn-
chronously send transfer commands to I/O devices. At most
32 ports (i.e., physical connections with other devices; more
than one device can be connected to a single port using port
multipliers). Each port must function independently from one
another.

By intercepting accesses to AHCI through memory map-
ping, bhyve [3] is able to identify when the guest is attempting
to access the virtual disk. The virtual machine monitor can
intercept guest memory accesses to detect when the guest
attempts to program the AHCI controller for data transfers.
Since requests are in a standard format the host can then
decode the requests sent by the guests, by interpreting the
commands sent.

Device virtualization implements asynchronous operation
by offloading requests to additional worker threads with com-
mon work queues. Currently, bhyve uses eight workers in a
generic block interface shared with the VirtIO [8] block device.

The device is emulated by translating the interpreted com-
mands into I/O requests that can be executed on the host side.
To emulate the AHCI’s multiple command capabilities, reads
and writes can be combined using FreeBSD’s readv [9] and
writev [10] system calls. Through the use of I/O vectors (as
described by the manual pages of both readv and writev),
numerous data transfers between the disk and guest memory
can be executed using single system call, reducing device
emulation complexity.

It is worth mentioning that using I/O vectors is only possible
because the guest’s memory is mapped directly into host
memory space, such that data access to a specific memory
address will be seen by the guest as if the device has completed
the requests.

IV. RELATED WORK

Bhyve [3] already featured a partially functional save and
restore feature capable of resuming a guest running FreeBSD
from a snapshot. The guest ran using VirtIO [8] network and
block devices, and tests showed that it was able to connect to
the internet, continue running timers, and read data on the disk
after being restored. Obviously, testing advanced features like
timers, network, and disks, would not have been possible if
the guest CPU and memory were not properly restored before.

A regular test script to check if the internet connection
and timers work correctly is shown in listing 1. If the script
continued running properly after restoring the virtual machine,
both the network connection and timers would have to work
properly. Since sleep relies on a timer to finish its work
(and so the contents of the while loop would execute),
general timer misbehaviour would easily be spotted, since the
command would not finish in time.

whi le s l e e p 1 ; do
p ing �c 1 8 . 8 . 8 . 8

done
Listing 1. Network and Timers testing.

To test disk functionality, simply being able to read a file
from the virtual disk without any errors, and without visible
data corruption was considered enough.

Since the tests performed on a FreeBSD guest were usually
successful, the devices were considered functional. However,
after changing test parameters, such as the guest operating
system and attempting to restore after the host was restarted,
a number of issues started to become apparent.

Linux and Windows, as opposed to FreeBSD do not com-
municate with the host directly through a serial console, but in
stead use a frame buffer where they output a graphical inter-
face, seen as either a classical CLI or GUI, and receive input
from emulated xhci (i.e., USB) mouse and PS/2 keyboard. To
properly communicate with the guest, these interfaces (frame
buffer, xhci and PS/2) also had to be saved and restored, but
their implementation is outside the scope of this paper and
will be considered as de-facto functional.

The Linux guest had mostly the same functionality as the
FreeBSD guest, but when running dmesg after a VM restore,

multiple filesystem operation errors on log files were dis-
played. This showed that despite being seemingly functional
for files that were unchanged near the time a checkpoint was
created, frequent background file I/O lead to data corruption.
By using the same disk image multiple times to suspend and
restore the virtual machine (as a special case of snapshot, that
stops the guest after the snapshot is taken), after a few (around
4-5) iterations the disk usually became corrupted enough to
render the kernel or core utils binaries unusable.

Improper functionality of the block devices was caused by
how handling of incomplete requests was done. Before the
snapshot of the virtual machine is created, the guest CPUs are
frozen, and thus any interaction such as notifications that disk
operations have finished were lost.

Windows guests running Windows Server 2016 (both with,
or without, the full GUI) were completely frozen after restore.
The issue with Windows, as we have assessed it, is that the
user interface is directly linked to the system functionality, so
if the interface is unable to properly update, applications with
any form of interface would also stop working.

Moreover, a seemingly inconsequential difference, reboot-
ing the host, would cause a kernel assertion to fail, and so the
host system would crash whenever trying to restore a virtual
machine. This was caused by the fact that the virtualization of
some devices (e.g., HPET) uses the callout interface which
relies on system uptime. Attempting to restore the value of the
device state variables that kept track of system uptime usually
meant that they would usually be reset to an ”earlier” time
(i.e., the host system at restore time had less uptime than it
had when the snapshot was created), and an assertion meant
to make sure the timer expiry date would not go backwards
would fail, crashing the host.

The referenced behavior can be seen in listing 2, where
the KASSERT instruction fails. vhpet->countbase_sbt
is a variable set when the device emulation starts to the (then)
current system uptime. Simply restoring it to its previous value
can mean that its value is higher than the value of now (actual
system uptime), thus resulting in a negative value of delta.

v a l = vhpet�>c o u n t b a s e ;
i f (v h p e t c o u n t e r e n a b l e d (v h p e t)) {

now = s b i n u p t i m e () ;
d e l t a = now � vhpet�>c o u n t b a s e s b t ;

KASSERT(d e l t a >= 0 , (” v h p e t c o u n t e r : ”
” up t ime went backwards : ”
”%#l x t o %#l x ” ,
vhpe t�>c o u n t b a s e s b t , now)) ;

v a l += d e l t a / vhpe t�>f r e q s b t ;
i f (nowptr != NULL)

⇤ nowptr = now ;
}

Listing 2. HPET Virtualization Assert.

V. SAVE AND RESTORE DEBUGGING & IMPROVEMENTS

A. Time Management

Before being able to debug the more complicated issues
with bhyve, the issue with the HPET virtualization that was
shown in section IV had to be addressed.

Please note that issues described in this section refer to the
manner a virtual machine behaved when restoring its state
shortly after a host system reboot, when the system uptime is
small. The virtual machine in all test cases is suspended when
the snapshot is created, instead of having it continue running,
since the disk currently does not support any copy-on-write
mechanisms (e.g., qcow2, or similar).

Since the reference value used by HPET could not be
restored as-is, if the timer was enabled prior to the virtual
machine snapshot save, it would be reset using the current
system uptime. While this did not solve any issues related
to the guest’s stability, it did stop the virtual machine from
crashing the host, and allowed us to further guest behavior
inspection.

While the host would no longer crash, the guest operating
system did not work as expected: the sleep 1 command
did not finish after one second as expected, but rather after a
seemingly random interval (the exact amount of time was not
always the same). Moreover, trying to read the system time
using date in this interval always returned the same value
regardless of how much time had passed since the guest was
restored. The reason for the inconsistent intervals after which
the guest would resume functioning was caused by the fact
that its timers were not restored.

As described in section II, the Local APIC virtualization
relies on the callout [6] system to set a timer to expire
Initial Count Register units (multiple of a base clock) into the
future. At any point, a non-virtualized LAPIC keeps track of
the amount of time until the timer must expire using the Cur-
rent Count Register. Consequently, the snapshot mechanism
saves the value computed for the CCR when virtual machine
state is committed to disk (i.e., to not keep a separate counter
that is decremented at a set frequency, the value is computed
as a function of the value of the ICR and how much time has
passed since the timer was set). When restoring the virtual
machine, the timers that were set before the snapshot was
created are reprogrammed using the value of the previous
CCR.

Correctly saving and restoring the LAPIC timers resulted
in a more stable, albeit incorrect, guest functionality. To be
more precise, the system uptime still refused to update, but
the intervals became more stable. Since the length of such
intervals seemed close to the amount of time the host ran
before the snapshot was created, the Time Stamp Counter and
HPET were approached.

For the virtual machine, unless explicitly offset, the per-
ceived value of the counter is the same as the one on the
physical host. This means that if the virtual machine is restored
after a system reboot, the value of the counter it reads may
be smaller compared to a value it read before the snapshot

was created, because the reset value for TSC is 0. In turn, this
implies that trying to determine how much time has passed by
subtraction, using a value read before the snapshot, and one
read after the restore would result in integer underflow (i.e.,
the value of TSC is a 64-bit unsigned integer).

TSC virtualization is done entirely by the virtualization
extensions provided by the CPU manufacturer, and relies on
their specific implementation. As such, the save and restore
feature was added as a CPU-specific functionality, currently
implemented for Intel CPUs only.

To keep track of both the offset set by the guest and the one
required to compensate for system uptime differences between
save and restore, two offset variables have been added for each
virtual CPU: guest_off and restore_off.

The guest_off variable, which is used to keep track
of the offset imposed by the guest is set when the wrmsr
instruction with the proper offset is intercepted.

For the second offset variable, restore_off, the value
of the counter is saved when the snapshot is created, and the
offset is computed by subtracting the value of the counter at
restore time from the value that was previously saved. If a
new snapshot is created from a restored virtual machine (i.e.,
it runs as a result of the restore operation), the values of the
restore offsets are added together.

By adding the values of guest_off and restore_off,
and setting the result as offset for the Time Stamp Counter,
the guest is not affected by the snapshot operation.

Despite no longer being stuck reading the same value for
the time / date, the guest did not run as expected. When the
guest finished restoring, a message could be seen in dmesg
saying that TSC was an deemed as unstable and replaced with
HPET.

Linux uses different counters as clocksources, including
the HPET main counter and TSC. Since TSC is considered
a precise clocksource, it is usually preferred over the more
coarse alternatives (e.g., HPET). However, since the behavior
of TSC is not guaranteed to be the same on all systems,
less precise, but stable clocks are used to check if TSC
has deviated, or not. If intervals measured using the two
clocksources differ by an amount greater than a threshold, the
next best source is selected to replace TSC.

In this case, however, TSC was the clock running properly,
while HPET was incorrectly restored. To snapshot HPET, the
value of the main counter is saved and used as offset after the
restore, and added to the value of the current counter.

B. Block Devices

To solve the issues with losing notifications by sending
them to a frozen host, when a snapshot request is processed,
the emulated devices are paused before freezing the guest
CPUs. Pausing is handled by the same thread that handles the
snapshot, so synchronization with the worker threads is done
to ensure that the worker threads will not undertake any more
work while the device is paused, and the pause functionality
will not end until all workers have been paused.

By pausing the devices while the virtual machine’s CPUs
are unfrozen means that the guest will not miss notifications
for completed requests.

Furthermore, because the workers are unable to complete
any tasks while the device is paused, new requests sent by
the guest are also saved and restored as part of the snapshot
process.

VI. RESULTS

The stability of guests has been greatly improved as a
result of fixing the issues of time management and disk
virtualization.

Since the virtual disk is only implemented to use raw disks,
and no mechanism to take disk snapshots is in place, the virtual
machine tests are only performed on suspend and restore
scenarios. If the guest would instead be allowed to run after
the snapshot is created, the state of the virtual machine disk
would not be the same as when the snapshot was created.

A. Linux Guest
The Linux guest performs properly after a restore in the

following scenarios, where the virtual machine was suspended
and restored while the respective operation is underway:

• sleep for a predefined interval.
• copy large files in the guest.
• copy files from a guest NFS shared directory to the host.
The sleep test scenario is meant to prove that the errors

with timekeeping have been solved. This is the simplest test,
since it does not rely on any other device functionality to be
done - the binaries do not need to be read from disk after the
restored since (if the virtual machine has enough memory) they
are mapped into memory. Also, other devices like network are
also not required to work since all operations are local.

Creating a copy of a larger file in the guest tests the virtual
disk save and restore. As an example, a 4GB file with random
data is created using the command in listing 3.

dd i f =/ dev / urandom of = t e s t . r e f bs =1G \
c o u n t =4

Listing 3. Creating a file with random data

The testing of the disk can only be currently done using
AHCI virtualization, since the VirtIO block device does not
have the pause and resume functionality implemented. If the
virtual machine is suspended while the copy operation is
underway and the disk loses any requests, the copy of the
file differs from the original. An observed result is that if the
requests are not restored, some chunks of the file will only
contain bytes of value 0.

The last experiment tests mostly timers and the network.
Since the NFS protocol accepts a large enough system down-
time from any of the ends, the guest can be suspended while
a file is copied from the guest to the host, and the operation
must resume when the guest is restored. As is the case with
the other file test, large files with random contents are used
to assess performance because any inconsistencies are easily
spotted.

As a side note, the log file errors seen in dmesg described
in section IV no longer showed after safely restoring the disk.

B. Windows Guest
For the Windows guest the following test scenarios have

been considered:
• interaction with the guest is possible after restore.
• sleep for a predefined interval.
• copy files from a guest samba (SMB) shared directory to

the host.
The first point should, obviously, be a prerequisite for

testing any other advanced functionality, but the graphical user
interface was completely frozen after a restore, due to errors
in the way time management was saved and restored. Since
Windows did not provide much information about the reason
it didn’t work, all debugging was done on Linux, and thus,
Windows was simply a ”bonus” that confirmed that timers
and clocks are working.

For the second and third scenarios, the implications and
testing methodologies are similar to those presented for Linux,
with the exception that SMB has a smaller window for system
downtime. As a result, rsync may show an error when the
transfer reaches 100%, but the copied file proves to be identical
to the source.

VII. CONCLUSIONS AND FUTURE WORK

The virtual machines are more stable, and all three operating
systems of interest - FreeBSD, Linux and Windows are able
to run. However, a number of issues will be addressed:

• separate snapshot and migration code - the current imple-
mentation has mixed code for virtual machine snapshots
and warm migration (i.e., moving the saved data from
one host to another through a socket).

• the offset for TSC is unnecessarily split between two
variables - in case the guest sets the offset explicitly, the
offset should be computed relative to the current value of
TSC on the host, and discard the restore offset entirely.

• the offset used by HPET should be set to 0 when the
guest explicitly sets the value of the counter - the set
value should be used as the counter value, regardless of
whether the guest runs as a result of a restore or not.

• refactor the snapshot code - the generic code currently
iterates through all devices to check if it is used, so it
will be snapshot; additionally, most of the device-specific
code for save and restore is the same (i.e., fields are saved

one-by-one and in the same order, so the difference lies
in whether the snapshot buffer is written or read from).

• extend the block device pause and resume functionality
to the VirtIO block device

• add suport for TSC on AMD CPUs

ACKNOWLEDGMENTS

A special ”thank you” to Sergiu Weisz and Elena Mihailescu
for their continued support in implementing the code and
debugging all issues that we have encountered.

We would like to thank Marcelo Araujo and Matthew
Grooms for their insight while debugging and structuring the
code.

We would also like to thank iXsystems and Matthew
Grooms for their financial support.

REFERENCES

[1] Daniel P. Bovet and Marco Cesati. “Timing Measurements,” in Under-
standing the Linux Kernel, 3rd ed., O’reilly & Associates Inc., 2009

[2] Jonathan Corbet, Alessasndro Rubini and Greg Kroah-Hartman. “Block
Drivers,” in Linux Device Drivers, 3rd ed., O’reilly & Associates Inc.,
2005

[3] FreeBSD Project. Freebsd as a Host with bhyve. [Online]. Available:
https://www.freebsd.org/doc/handbook/virtualization-host-bhyve.html
[Last accessed December 18th, 2018].

[4] Intel Corporation. Intel 64 and IA-32 Architectures De-
veloper’s Manual: Vol. 3A. [Online]. Available: https:
//www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html
[Last accessed November 25th, 2018].

[5] Intel Corporation. Intel IA-PC HPET (High Precision Event
Timers) Specification. [Online]. Available: https://www.intel.com/
content/dam/www/public/us/en/documents/technical-specifications/
software-developers-hpet-spec-1-0a.pdf [Last accessed December 5th,
2018].

[6] FreeBSD Project. FreeBSD Kernel Developer’s Manual - callout.
[Online]. Available: https://www.freebsd.org/cgi/man.cgi?query=callout&
manpath=FreeBSD-12.0-RELEASE&arch=default&format=html [Last
Accessed January 1st, 2019].

[7] Intel Corporation. Serial ATA Advanced Host Controller Interface (AHCI)
Rev. 1.3.1. [Online]. Available: https://www.intel.com/content/www/us/
en/io/serial-ata/serial-ata-ahci-spec-rev1-3-1.html [Last Accessed Jan-
uary 1st, 2019].

[8] OASIS Committee Specification 04. Virtual I/O Device (VIRTIO) Version
1.0. Edited by Rusty Russel, Michael S. Tsirkin, Cornelia Huck, and
Pawel Moll. 03 March 2016. [Online]. Available: http://docs.oasis-
open.org/virtio/virtio/v1.0/csprd01/virtio-v1.0-csprd01.html [Last
accessed January 2nd, 2019].

[9] FreeBSD Project. FreeBSD System Calls Manual - readv. [Online].
Available: https://www.freebsd.org/cgi/man.cgi?query=readv&manpath=
FreeBSD-12.0-RELEASE&arch=amd64&format=html [Last accessed
January 10th, 2019].

[10] FreeBSD Project. FreeBSD System Calls Manual - writev. [Online].
Available: https://www.freebsd.org/cgi/man.cgi?query=writev&manpath=
FreeBSD-12.0-RELEASE&arch=amd64&format=html [Last accessed
January 10th, 2019].

