FreeBSD - Live Migration feature for bhyve

Maria-Elena Mihailescu
University POLITEHNICA of Bucharest
Splaiul Independentei 313, Bucharest, Romania, 060042
Email: elenamihailescu22 @gmail.com

Abstract—When talking about servers and clouds, live mi-
gration is one of the most powerful tools that can be used to
manage resources that are abstracted by virtual machines due to
its small downtime. bhyve, FreeBSD’s hypervisor, does not have
a live migration feature implemented yet, even though it is a very
useful feature for a hypervisor.

This paper presents two approaches for implementing a live
migration feature for bhyve that use the FreeBSD’s virtual mem-
ory subsystem. The first one uses a Copy-on-Write mechanism
that cannot be implemented due to bhyve memory layout, and
the second one uses a dirty page detection mechanism.

[. INTRODUCTION

Cluster and grid solutions have become more important each
day, whether we talk about web servers or data centers. The
cluster and grid framework usually offers resources for the
clients by providing them access to certain virtual machines
that abstract the hardware resources.

The virtual machine migration is a powerful tool that is used
for load balancing or as a method to avoid data loss when one
of the cluster’s systems may become inaccessible in the near
future (e.g., partial hardware failure, the need to upgrade the
infrastructure). The migration process may be automated or
may be done manually by the system administrator.

One of the migration’s challenges is related to the guest’s
downtime: the more memory a guest has assigned, the more
it may take for the migration process to finish. One of the
fastest ways of migrating a virtual machine is by using the
live migration procedure and migrate a guest from one host
to another while it is still running.

bhyve [1] is a type 2 hypervisor implemented in the
FreeBSD operating system and can be used on Intel and
AMD CPUs systems that have support for virtualization.
Linux, FreeBSD and Windows are some of the guest operating
systems that can run in a virtual machine created with bhyve.

Unlike hypervisors such as VirtualBox, Xen, Hyper-V,
VMWare ESX, and KVM that have a live migration feature,
bhyve does not have one, even if it is necessary. In this
paper, we present a Copy-on-Write mechanism that can be
used to detect memory changes between live migration rounds,
but that cannot be used by bhyve due to a dual memory
layout implementation. Also, we propose a live migration
feature for bhyve that uses a dirty-bit mechanism to detect the
memory changes, and a save and restore mechanism feature
[2] developed for bhyve to migrate the guest CPU and devices
state.

Mihai Carabas
University POLITEHNICA of Bucharest
Splaiul Independentei 313, Bucharest, Romania, 060042
Email: mihai.carabas@cs.pub.ro

This paper is split in eight sections. In Section II, we will
present some of the main concepts that are used to develop
the live migration feature for bhyve and for finding memory
differences between migration rounds. In Section III, we will
present a guest state save and restore mechanism and a cold
and a warm migration feature for bhyve that is based on
the save-restore procedure and that will be used in the live
migration development process. In Section IV, we will show
a Copy-on-Write approach for live migrating a guest memory
that led to the current implementation and the reason it cannot
be used in bhyve. In Section VI, we will suggest an algorithm
that is based on the dirty-bit mechanism to detect memory
changes. In the fifth section, the current status of the project
along with its results is presented. In Section VII, we will
present the future work that should be done to allow this
project to evolve. In the last section, we will draw some
conclusions for this paper.

II. STATE OF THE ART
A. FreeBSD’s Virtual Memory Subsystem

The Virtual Memory Subsystem is one of the most important
parts of an operating system since it manages the relationship
between the physical memory and processes. This subsystem
creates an abstraction layer between the software and the
hardware so that a process can see a contiguous memory
allocation space. Moreover, it ensures a level of security since
a process cannot access another process’s memory if the access
was not granted using special mechanisms such as shared
memory.

In the FreeBSD operating system, the virtual memory
subsystem is object oriented and has four main components
that are used to abstract the physical memory:

e struct vm_page — is the smallest virtual memory
representation entity and represents a virtual page. It is
mapped one-to-one with a physical memory page.

e struct vm_object - is a collection of struct
vm_page entities that have the same characteristics.
A struct vm_object entity represents an allocated
area of contiguous memory.

e struct vm_map_entry —is an entry into an address
map (represented by a struct vm_map object) that
place an struct wvm_obJject entity or another address
map between a start address and an end address into a
process’s address space.

e struct vmspace — is an entity that represents
the process virtual address space and points to a
struct vm_map that contains a list of struct
vm_map_entry entities. Moreover, it contains a link
to the physical page table (struct pmap) for the
represented process.

A struct vmspace entity is associated with each new
process that is created on the system. This entity contains
both a virtual memory mapping of the virtual pages and a
reference to the physical page table. For each of the process’s
contiguous memory regions with the same characteristics (i.e.,
same permissions and flags) a struct vm_map_entry
entity and a struct vm_object entity are created.

The Copy-on-Write (CoW) mechanism is used to optimize
the system’s memory usage and to rapidly create a new process
when the fork () function is called. When fork () is called,
the parent process’ memory is marked as copy-on-write which
means that the parent process and the child process share the
same memory pages until one of them tries to modify one
of the pages. Then, a page fault is triggered and the page
is duplicated such that each of the two processes have an
individual copy.

In FreeBSD, the Copy-on-Write mechanism is implemented
using shadow objects [3]. A shadow object is a struct
vm_object entity that is backed by another struct
vm_object entity. It may happen that the backing objects
can be another shadow object creating a list of shadow objects.

When a page from the shadow object is accessed, the page
is first searched in the shadow object and if it is not found
there, the page is searched in the backing object list. If the
page resides in a backing object and is accessed for a write
operation, then a copy of that page is added to the shadow
object. If the page is accessed for a read operation, the object’s
layout is not modified. In the case of a fork call, an object is
shadowed by two new objects: one for the parent and another
one for the child.

B. Guest Memory Management

In a bhyve, the guest address space is split into three main
components [4]:

o lowmem segment — this is the memory segment that is
mapped between 0GB and lowmem limit size which is
set at 3GB [5] at the time this paper was written. If the
guest assigned memory size is smaller than the lowmem
limit value, then the segment size is equal to the guest
memory size. Otherwise, it is equal to the lowmem limit
value.

o PCI hole — this is a non-mapped memory region between
lowmem limit and 4GB (currently between 3GB and
4GB) that is used to access the devices through Memory-
Mapped I/0 (MMIO).

« highmem segment — this is the memory segment that is
mapped starting from 4GB. This segment is equal in size
to the difference between the guest assigned memory size
and lowmem limit value, and it may not exist if the guest
memory size is smaller than the lowmem limit value.

In bhyve, the guest memory is allocated during initial setup
[5], where the user-space utility, bhyve, maps a contigu-
ous area that is then divided between the lowmem segment
and the highmem segment. Each of the two segments will
have a new object assigned in the bhyve user-space process
address space (a new struct vm_map_entry entry in
the process’s struct vmspace that will indicate the user-
land bhyve process address range in which the segment
was mapped). Then, in the kernel-space, the bhyve hyper-
visor, using the architecture dependent implementation for
the vmspace_alloc function from the struct vmm_ops
entity (a wrapper of architecture dependent functions), cre-
ates a new struct vmspace entity that will eventually
point to the same memory objects that are allocated for the
lowmem and highmem segments. However, the two struct
vmspace entities (the one for the bhyve user-land utility, and
the one that is allocated in the kernel) have different virtual
and physical mappings, the latter corresponding to the guest
address space layout that was previously discussed.

Guest memory in bhyve's vmspace

BHYVE'S
VMSPACE

PMAP
PT_X86

Guest memory in virtual machine's vmspace

GUEST'S
VMSPACE
VM_MAP VM_MAP

I I

VM_MAP_ENTRY VM_MAP_ENTRY
Start Address: 0x801600000 Start Address: 0x000000000
End Address: 0x881600000 End Address: 0x080000000

VM_OBJECT

Fig. 1. Dual Guest Memory View - lowmem segment

PMAP
PT_EPT/PT_NPT

In Fig. 1 the dual guest memory view previously described
for a bhyve virtual machine that has assigned 2GB of memory
is represented. The left side represents the guest memory
as it is mapped by the bhyve user-space tool and the right
side is the guest memory representation as it is seen by the
virtual machine itself. The same object that contains the guest
memory pages is referred by two struct vm_map_entry
entities. Each of the two struct vmspace entities have a
link to a struct pmap. Since the nesting paging feature
was introduced in bhyve [4], each physical mapping for the
amd64 architecture has a mapping of type PT_x86 for normal
mapping, or PT_EPT (for Intel Extended Page Table feature),
and PT_NPT (for AMD Nested Page Table feature) for guest
memory mappings.

The dual guest memory view represents a communication
mechanism between the host and a virtual machine. User-
space emulated devices (e.g., virtio, ahci, €e1000) are running
in different threads and receive and fulfill requests from a guest
(e.g., reading or writing data on disk, receiving and sending
network packages).

The left side view from Fig. 1 displays what happens when
a request to read from disk is received by the host from the

guest: the thread that emulates the disk interface from host
user-space (e.g, virtio-block, ahci) is reading the data from
disk and updates the guest memory by writing directly to it.
The right side view from Fig. 1 shows how the enities are
used when the guest accesses its memory and the information
is directly read from the guest’s struct vmspace entity.

C. Virtual Machine Migration

The virtual machine migration mechanism allows a user to
move a guest from one host to another. From literature [6] [7]
[8] [9] [10], the migration techniques can be divided into two
main categories:

o Non-live Migration - the guest is powered off or sus-
pended at migration time.

o Live Migration - the guest is running during the migration
process.

The Non-Live Migration technique is divided in two main
categories as well: cold migration and warm migration [7] [6].
The cold migration implies that the guest is powered off and
all its data (disk and auxiliary files) are moved to another
system. The warm migration procedure implies that a guest is
suspended, its state copied onto the destination, and then the
guest is resumed from the saved state.

Whereas in the cold migration case there are no restrictions
regarding the guest’s disk (because it is copied from one
system to another), for the warm migration procedure, the
disk image must be shared between the source and destination
hosts. In terms of performance, the warm migration technique
is faster than cold migration because of the fact that the disk
is shared among systems.

The Live Migration technique has the best results in terms
of migrated guest’s downtime because the virtual machine is
migrated while the guest is still running. The live migration
procedure [8] [9] [10] has two phases: a phase in which the
guest memory is migrated in rounds while the virtual machine
is still running, and a phase in which the guest is stopped and
the CPU’s and devices’ state are migrated to the destination.

Based on the method that is used in order to live migrate
the guest’s memory, there are two types of live migration [§]
[9]:

e Pre-Copy Live Migration [8] — The memory migration
is done in rounds. In the first round, all the guest pages
are copied to the destination. For each of the following
rounds, only the pages that were written between two
rounds are copied to the destination. After a number of
memory migration rounds or when a threshold number
of dirty pages is reached, the virtual machine is stopped
and the remaining dirty pages, together with the CPU’s
and devices’ state is transferred to the destination host
and the guest is started.

¢ Post-Copy Live Migration [9] — The memory is migrated
using a page-fault approach. In the first phase, the source
guest is stopped, the CPU’s and devices’ state is migrated
to the destination and the guest is started on the destina-
tion host. When a memory access occurs, a page fault is

generated on the destination, and then, the destination
requires the page that caused the page fault from the
source. To optimize the process, other pages will be
delivered with the required page as well.

While the Post-Copy Live Migration has the advantage that
the memory is transmitted a single time through the network,
a fall-back mechanism is hard to be implemented, as opposed
to the Pre-Copy Live Migration where if the migration process
fails, the guest will continue running on the source host.

ITII. RELATED WORK
A. Suspend and Resume a bhyve guest’s state

As presented in Section II-C, during the migration process,
a state save and restore procedure is needed: the guest’s state
is saved on the source host and restored on the destination
host.

A project for bhyve state save and restore is also developed
at University POLITEHNICA of Bucharest [2]. The project
[2] introduces a suspend/resume feature for bhyve. When the
suspend command is received, the bhyve process stops the
virtual machine, saves the guest’s state and its memory to disk
files and destroys the guest. When resuming a virtual machine,
the bhyve process restores the guest state based on the saved
information.

Suspend bhyve guest
root@host# bhyvectl —suspend=file.ckp \
——vm=vmname

Restore a guest from checkpoint
root@host# bhyve <bhyve_options> \
—r file.ckp vmname

Listing 1. Suspend and Resume a bhyve guest

The Suspend request is sent to a bhyve guest by using the
bhyvectl tool with the ——suspend option and a file name
for saving the data, as seen in Listing 1. Considering the code
snippet in Listing 1, during the suspend process, three new
files are created:

« filename.ckp - contains guest’s memory.

« filename.ckp.kern - contains guest’s devices and CPU

state.

o filename.ckp.meta - contains metadata related to the
saved devices and their offset in the filename.ckp.kern
file.

Aside from the guest memory, there are other three main

components whose state is saved during the suspend process:

o CPU state and related structures,

o Kernel devices such as VHPET (Virtual High Precision
Timer), VRTC (Virtual Real Time Clock), VLAPIC (Vir-
tual Local APIC), TSC (Time Stamp Counter).

o Userspace emulated devices (e.g., virtio-net, virtio-block,
uart, ahci, lpc, frame buffer, xhci).

The Resume request, as seen in Listing 1, uses the bhyve

tool with the —r parameter followed by the file name used
when suspending the guest state. The restore process creates

a fresh virtual machine based on the given disk image and
updates its state and memory before the virtual CPUs are
started.

B. Warm Migration in bhyve

Based on the save and restore feature for bhyve presented
in Section III-A, a warm migration feature was added to
bhyve [12]. Using the same API to retrieve a guest’s state and
memory as the save and restore project, the migration feature
opens a connection between the source host and the destination
host and sends the guest’s state and memory through a socket.

As presented in Section III-A, the suspend/resume feature
does not provide a disk checkpoint mechanism, and therefore,
in order to warm migrate a bhyve guest, the same disk image
must be shared between the two hosts using a storage sharing
mechanism such as NFS (Network File System).

Start source guest
root@src# bhyve <bhyve_options> vmsrc

Start destination guest

and wait for migration

root@dst# bhyve <bhyve_options> \
—R src_ip ,port vmdst

Migrate guest
root@src# bhyvectl —migrate=dst_ip , port \
——Vm=vVmsrc

Listing 2. Warm migrating a bhyve guest

In Listing 2 is presented an example of warm migration
usage. In order to warm migrate a virtual machine, a fresh
guest is started on the destination host using the bhyve tool
with the —R parameter followed by the host’s IP and the
listening port. The destination host waits to receive source
guest’s state. To send the guest’s state, on the source host,
the bhvyectl tool is used with the ——migrate parameter
followed by the destination host and a port. After the com-
munication between the two hosts is established, the source
host is stopped, its state and memory is sent to the destination
host and if the migration is successfully completed, the source
guest is destroyed (otherwise, if an error occurs, the guest
will continue running on the source host). The destination host
receives the guest’s state and memory and based on the resume
state API [2], restores the guest and starts the virtual machine’s
CPUs.

IV. LIVE MEMORY MIGRATION USING A COPY-ON-WRITE
APPROACH

The memory migration is the core of a live migration
feature, and in the same time, is the most difficult part to
implement. As stated in Section II-C, the memory can be
migrated before [8] or after [9] starting the guest on the
destination host.

Considering the pre-copy live migration feature [8], the
same memory page can be migrated more than once, whereas

in the post-copy live migration approach [9], each page is
migrated only once. However, when the migration procedure
fails (e.g., network connection become unavailable), the post-
copy live migration approach needs to implement a fall-back
mechanism [9]. In the pre-copy live migration, when an error
occurs, the fall-back mechanism is ensured by default because
the guest continues running on the source host. Considering
this, we choose to implement a pre-copy live migration feature
for bhyve.

As presented in Section II-C, in a pre-copy live migration
approach, the memory is migrated in rounds and, each round,
the algorithm has to determine the pages that were dirtied since
the last round started. In other words, the procedure needs to
determine the changes that occured in the same memory area
between two moments in time.

The Copy-on-Write (CoW) mechanism can be used to
determine the memory differences that were made in a time
interval. As presented in Listing 3, in FreeBSD, to determine
the memory differences, the memory object can be marked
as Copy-On-Write. Then, the object and its shadow object
can be compared to determine what pages were modified. As
presented in Section II-A, when a write operation occurs in
a page that was not been dirtied since the initial object was
marked as CoW, a copy of that page is added into the shadow
object. Considering this, the shadow object contains only the
pages that were dirtied since the initial object was marked as
CoW.

VM_OBJ = get_current_mem_obj ();
SHADOW_OBJ = set_obj_cow (VM_OBJ);
wait_for_round_to_finish ();

pg = get_pg (SHADOW_OBJ);

Listing 3. Determining memory differences using the Copy-on-Write

AW —

The Copy-on-Write approach presented in Listing 3 can
be used to determine the memory that can be migrated in
each round. The algorithm needs guest memory objects to
be marked as CoW before starting a new memory migration
round. In the next round, the pages that should be migrated
are represented by the shadow object pages.

However, due to the dual memory view presented in Section
II-B, the Copy-on-Write approach previously presented cannot
be used to migrate de virtual machine’s memory. In order
to mark a virtual memory object (the struct vm_object
entity) as Copy-on-Write, some flags (MAP_ENTRY_COW and
MAP_ENTRY_NEEDS_COPY) have to be set in the struct
vm_map_entry entity. However, as seen in Fig. 1, the
guest and the host have different st ruct vm_map_entry
entities to refer the same object.

If one of the struct vm_map_entry entities (from
guest side or from host side) is marked as Copy-on-Write,
the other struct vm_map_entry entity points to other
struct vm_object so the two sides will no longer have
the same view of the memory. If one of them writes in the
guest’s memory (such as virtio devices) the page will be copied
into the shadow object and the other side will not see the

Guest memory
in virtual machine's vmspace

Guest memory
in bhyve's vmspace

VM_MAP_ENTRY
Start Address: 0000000000
End Address: 0x080000000

SHADOW
VM_OBJECT

L

BACKING
VM_OBJECT

VM_MAP_ENTRY
Start Address: 0x801600000
End Address: 0x881600000

Fig. 2. Dual Guest Memory View - lowmem segment - bhyve’s
VM_MAP_ENTRY is marked as COW

changes. This leads to communication errors between the host
and the guest that will eventually crash the virtual machine.

In Fig. 2, it is shown the virtual memory layout after
the guest’s side struct vm_map_entry that contains the
memory object was marked as copy-on-write.

This approach is the one of the easiest methods of determin-
ing the memory that should be migrated each round because
of the FreeBSD virtual memory subsystem implementation.
Using the CoW mechanism, the only pages that should be
migrated are the ones that reside in the shadow object. Even
if this method cannot be used in bhyve due to its dual
memory view, it gave us a clearer picture of the virtual
memory subsystem functionality and we developed another
memory modification detection mechanism to implement the
live migration feature for bhyve.

V. LIVE MEMORY MIGRATION USING A DIRTY-BIT
APPROACH

As stated in Section IV, the memory migration is one of the
most challenging parts in a live migration feature. In Section
IV we presented a memory modification detection mechanism
that uses with virtual memory objects.

Even though the virtual memory objects that represent the
guest memory are the highest entities in the virtual machine
memory hierarchy (as presented in Fig. 1) that are common for
both the guest (i.e., as seen by the virtual machine’s vimspace
entity) and the host (i.e., as seen by the bhyve user space utility
tool’s vmspace entity), there are other constraints that do not
allow the use of virtual memory objects to determine memory
differences. For instance, one of the constraints is the fact that
a vm_object entity is marked as CoW by setting some flags
in a memory layout enitity that is not shared between host and
guest because of their separate memory views. Thus, we will
present a solution that uses another entity shared between host
and guest: the struct vm_page entities.

Each struct vm_page contains a dirty flag field that
indicates if the page has been modified and if so, the changes
should be written on the disk. This flag is updated from time
to time based on the modified bit of the physical page by
inspecting the A/D - access/dirty - bits. Even though this
flag could be used for determining the pages that should be
migrated, we cannot interfere with this flag since the virtual
memory system relies on it to perform some virtual memory

subsystem actions such as the memory laundering process
[11], and modifying its behavior would imply some undesired
operating system behavior.

Instead of using the dirty flag, the proposed approach uses
a custom dirty bit used only by the bhyve hypervisor. The
custom dirty bit, named virtual-machine-dirty bit, is set
each time the dirty flag is set, but unset only by the bhyve
hypervisor.

VM_OBJ = get_current_mem_obj ();

clear_vmm_dirty_bit_for_pg_in(VM_OBJ);

wait_for_round_to_finish ();

pg = get_pg_with_vmm_dirty_bit(VM_OBJ);
Listing 4. Finding a guest’s dirty pages using dirty bit

A W =

The pseudo-code snippet in Listing 4 presents a mechanism
that can be used to determine memory pages changed between
two moments in time. Firstly, each page from the memory
object should have the virtual-machine-dirty bit clean (to
eliminate false-positive cases). The memory differences can
be determined by inspecting the virtual memory object pages
that have the virtual-machine-dirty bit set.

VI. ALGORITHM

In order to implement a live migration feature for bhyve,
we use the approach presented in Section V for migrating
the memory and the state save and restore mechanism im-
plemented for bhyve [2] that was presented in the Section
III-A. The connection mechanism between the source host
and the destination host is the socket solution also used by
the warm migration feature for bhyve [12] shown in Section
III-B. The live migration algorithm is similar to the warm
migration algorithm, the major differences are related only to
the memory migration.

1 connect(src, dst);
2 check_compatibility (src, dst);
3 live_migration_send_memory_to (dst);
4 snapshot_and_send_state ();
5 destroy_vm ()
Listing 5. Live Migration Algorithm - Source host method
1 connect(src, dst);
2 check_compatibility (src, dst);
3 live_migration_recv_memory_from(src);
4 recv_and_resume_state ();
5 spinof_vcpus ();

Listing 6. Live Migration Algorithm - Destination host method

The pseudo-code snippets from Listing 5 and from Listing
6 present the functions that run on the source host and on
the destination host in order to migrate a guest. After the
connection between the source and the destination hosts is
done, there is a check to determine whether the two are
compatible for migration (e.g., same CPU vendor and model,
same guest memory size, same virtual memory page size).
After that, the memory is migrated in rounds. In the last step,

the guest’s remaining dirty memory is sent to the destination,
and the guest’s CPU’s and devices’s state is being snapshot
using the state save and restore feature. The virtual machine’s
state is restored at the destination. The guest is stopped on the
source host before the last step.

1 live_migration_send:
2 for i=1:N
3 if i ==
4 /1 First Round
5 mark_all_memory_dirty ();
6 endif
7 if i == N
8 // Last Round
9 stop (vm);
10 endif
11 pages = get_dirty_pages ();
12 send (pages);
13 end for
14
15 send(pages):
16 for each page pages
17 get_from_memory (page);
18 clear_dirty_bit(page);
19 send_to_dest(page);
20 end for
Listing 7. Live Memory Migration Algorithm - Send Memory
1 live_migration_recv:
2 while recv_from_src(page)
3 update (page);
4 end while

Listing 8. Live Memory Migration Algorithm - Receive Memory

In Listing 7 the algorithm used for sending the guest
memory in rounds to the destination is presented. In the first
migration round, all guest pages should be migrated so each
page is artificially set as dirty by setting the virtual-machine-
dirty bit. In the next rounds, the memory differences are
determined by iterating through all of the guest pages and
sending them one by one to the destination. When copying
a page from the guest memory, we clear the virtual-machine-
dirty bit. By clearing the virtual-machine-dirty bit for each
migrated page, we prepare the guest for the next round. In
the last round, the virtual machine should be stopped and the
remaining memory migrated. Listing 8 shows the algorithm
used by the destination host. It receives pages one by one
and updates the guest memory that will be started after the
migration process completes.

VII. CURRENT STATUS IN BHYVE AND FUTURE WORK

The algorithm presented in Section VI is implemented in
bhyve [13] and the project is still under development. To start
a migration procedure, the process is similar to the warm
migration algorithm. As seen in Listing 9, in terms of usage,
the only difference between warm and live migration is related
to the bhyvectl command that starts migrating the guest:

instead of migrate=dst_ip, port the migrate-live
option is used.

Start source guest
root@src# bhyve <bhyve_options> vmsrc

Start destination guest

and wait for migration

root@dst# bhyve <bhyve_options> \
—R src_ip ,port vmdst

Migrate guest

root@src# bhyvectl \
—migrate—live=dst_ip , port \
—vm=vmsrc

Listing 9. Live migrating a bhyve guest

In order to have the same connection framework for both
warm and live migration, we modified the algorithm so among
the initial messages related to specification checks, the type of
migration (warm or live) is sent to the destination. Based the
migration type, the destination determines the functions to be
called for memory migration.

The framework for live migration is implemented, the live
migration feature is not yet stable and there are currently some
limitations that should be considered next:

o the guest memory should be wired - since we added a
mechanism for retrieving pages from memory and the
first migration round is supposed to migrate all the pages,
all memory should be allocated, and the pages should not
be swapped out. Thus, we choose to live migrate only
wired guests.

o the guest memory size should be less than the lowmem
segment - we implemented the framework to work for
guests that have assigned a virtual memory object only
for lowmem segment.

« the migrated guest crashes in some of the test scenarios.
The debugging process is still ongoing and this behavior
may be caused by the emulated devices that run in
user-space threads, that will continue running even when
the guest’s virtual CPUs are locked, affecting or even
corrupting the guest’s state and disk.

VIII. CONCLUSION

In this paper, we presented two mechanism for determining
the memory differences between two memory rounds.

The first approach is based on the FreeBSD Copy-on-Write
mechanism. To identify the pages that should be migrated us-
ing shadow virtual memory objects. Even if the algorithm can
determine the modified pages between two memory migration
rounds, it cannot be implemented in bhyve due to the dual
memory view of the guest memory.

The second mechanism for detecting the modified pages is
based on a dirty bit approach. We use a bit, named virtual-
machine-dirty bit, that is managed only by the hypervisor.

The dirty-bit approach is currently used for live migrating
the guest memory. Even if the framework is implemented, the
live migration feature is not yet stable and there are some
challenges and improvements that should be considered in the
future.

ACKNOWLEDGMENTS

The authors would like to thank to John Baldwin, Mark
Johnston and Alan Cox for their help and advice in regards to
bhyve and FreeBSD’s virtual memory subsystem implemen-
tation and functionality. Also, the authors would like to thank
to Matthew Grooms for his technical and financial support in
form of scholarship for Elena Mihailescu.

REFERENCES
[1] FreeBSD Handbook, Chapter 21. Virtualization, Section
217 FreeBSD as Host with bhyve [Online]. Available:

https://www.freebsd.org/doc/handbook/virtualization-host-bhyve.html,
[Accessed Dec, 21st, 2018].

[2] University POLITEHNICA of Bucharest, Save & Restore Project
for bhyve (amd64) [Online]. Available: https://github.com/FreeBSD-
UPB/freebsd/tree/projects/bhyve_snapshot, [Accessed Jan, 27th, 2019].

[3] Matthew Dillon, "Design elements of the FreeBSD VM system” [Online].
Available: https://www.freebsd.org/doc/en/articles/vm-design/, [Accessed
Dec, 21st, 2018].

[4] N. Natu, P. Grehan, ”Nested Paging in bhyve”, in AsiaBSDCon, Tokio,
Japan, March 2014

[S] The FreeBSD Project, FreeBSD Source Code [Online]. Available:
https://github.com/freebsd/freebsd, [Accessed Dec, 21st, 2018].

[6] VMware, "VMware virtual machine migration types vSphere 6.0” [On-
line]. Available: https://communities.vmware.com/docs/DOC-31922 [Ac-
cessed Dec, 21st, 2018].

[7] Network Startup Resource Center, Virtual Machine Migration” in Cloud /
Virtualization workshop, Thimphu, Bhutan, 17-21 January 2014 [Online].
Available: https://nsrc.org/workshops/2014/sanog23-virtualization/raw-
attachment/wiki/Agenda/migration-storage.pdf [Accessed Dec, 2lst,
2018].

[8] C. Clark, and K. Fraser and S. Hand, and J.G. Hansen, and E. Jul, and
C. Limpach, and I. Pratt, and A. Warfield, "Live migration of virtual
machines” in Proceedings of the 2nd Conference on Symposium on
Networked Systems Design & Implementation-Volume 2, 2005, pp. 273-
286

[91 M.R. Hines and U. Deshpande and K. Gopalan, "Post-copy live migration
of virtual machines”, ACM SIGOPS operating systems review, vol. 43,
pp. 14-26, 2009.

[10] A. Kivity and Y. Kamay and D. Laor and U. Lublin and A. Liguori,
“kvm: the Linux virtual machine monitor”, in Proceedings of the Linux
symposium, vol. 1, pp. 225-230, 2007

[11] The FreeBSD Documentation Project, “FreeBSD Architecture Hand-
book”, Chapter 7. Virtual Memory System [Online]. Available:
https://www.freebsd.org/doc/en/books/arch-handbook/vm.html [Accessed
Jan, 27th, 2019]

[12] University POLITEHNICA of Bucharest, Warm Migration for
bhyve (amd64) [Online]. Available: https://github.com/FreeBSD-
UPB/freebsd/tree/projects/bhyve_warm_migration, [Accessed Jan, 27th,
2019].

[13] University POLITEHNICA of Bucharest, Live Migration for
bhyve (amd64) [Online]. Available: https:/github.com/FreeBSD-
UPB/freebsd/tree/projects/bhyve_migration_dev, [Accessed Jan, 27th,
2019]

