
ZRouter: Remote update of firmware
Hiroki Mori

yamori813@yahoo.co.jp
Editor: Mchael Zhilin

ZRouter is a system that builds FreeBSD for
small targets like routers. In addition to
building ordinary kernel and commands, you
can create images that can be used with u-boot
etc. In FreeBSD 12R, SDRAM 16M / Flash
4M is the lowest line spec. ZRouter is mainly
targeting modules using SOC of mips.

Flash has built-in target, and it starts from
there. This is inside of Flash.

Figure 1: Flash map

Inside embedded modules there is flash
memory chip, which contains image with
operating system and application programs.
This image is read-only and usually
compressed, but ability to update image is
required.

Image 1: CFI Flash chip

What is the reason why update is necessary?
For instance, added new function of the
program or fix program defect. It can also
correspond to security considerations.

In the early stages of development, it’s
possible to use UART (serial interface) to
force boot loader to update Flash. However, if
number of devices increases or serial
connection is not available at time, updating of
flash image via the network improves
operational efficiency.

Image 2: UART Connector

Let’s consider this method with SOHO (Small
Office/Home Office) router based on SoC of
MIPS architecture.

ZRouter project provides FreeBSD build tool
with routine to update flash image. But there
were two problems:

● root partition (rootfs) was mounted
and there was possibility of failure
while updating flash image (that
contains rootfs)

● since libraries were statically linked to
the routine, the binary size was
enlarged

When updating flash, it is necessary to
unmount root partition and resource necessary

for execution should be independent from
flash.

The functionality called reroot is present in
FreeBSD since 10.3 release. This functionality
does not completely reset the system during
reboot but it restarts boot process from
mounting root partition. This behavior is
provided by flag “-r” of “reroot” routine (see
reboot(8)).

Using this function, I thought about a method
of updating Flash by transferring all resources
necessary for execution to memory.

The routine “reroot” identifies the next rootfs
from kernel environment variables (also
known as kenv(1)). If you put a minimalistic
root partition on the memory disk (see
mdconfig(8)) and set it as rootfs, you can put
the flash resources in a state not used by
runtime environment:

kenv vfs.root.mountfrom =

cd9660:md0.uzip

If flash chip size is 4 or 8 megabytes, you can
copy current compressed flash root partition to
the memory disk as is and choose it as next
root partition after “reroot” operation.

If flash chip size is 16 megabytes or more, you
can copy necessary files to the memory disk
and reconstruct rootfs. Because the original
compressed rootfs is bigger than UFS
filesystem on uncompressed memory disks.

Figure 2: memory layout at flash update

Since the kernel was originally running on the
memory and rootfs is also moved to the
memory, functions of operating system does
not affect any operation with flash chip.

Sometimes rerooting fails when target box has
small amount of memory. Thanks to
debugging, it has been found out that the
function of reroot is using TMPFS, but there
was a remaining memory check code in
TMPFS and an error occurred due to lack of
memory.

As solution, kernel option was introduced to
reduce the check size to pass through this
process (see review request D13583). If the
check size is set to 1 MiB, target boxes with
16 MiB of memory can be rerooted without
problem.

After rerooting, we download a new image file
from the server via TFTP protocol according
to the configuration file, and execute script to
write image to Flash via dd & pipe & rc.

This mechanism is provided by ZRouter's
profile “reupdate”. It worths to note that It is
also possible to develop and execute a
command that accepts HTTP download
function.

For upgrading, it is necessary to define the
area to write the image with geom_map or
geom_flash. In Figure 3, the free space that
can be written as an upgrade as a partition is
taken as a partition.

Figure 3: upgrade partition

The flash area is partitioned from geom_map
(via hints) and geom_flashmap (via FDT tree).
In the case of u-boot image layout, rootfs
partition is placed next to kernel partition.
Kernel size can be different for firmware
versions, so geom_map has a scanning
function to identify rootfs partition’s starting
address. But geom_flashmap has lack of this
scanning functions. To add it, patch has been
proposed (see review request D13648).

Various targets with SPI flash has been tested.
It works with no a problem, but update of CFI
flash failed. Patch has bee proposed, but not
yet committed (see review request D14279)

ZRouter make image MD5 value at build time.
It is thought that by checking the hash value of
the image to be updated with the following
script, it is possible to prevent security and
mistakes.

mkfifo /tmp/tftp
MD5=`cat /tmp/tftp | md5&
echo "bin
get Fon_FON2305E_FDT.zimage /tmp/tftp
quit" | tftp 10.10.10.3 69 >/dev/null 2>&1`

echo $MD5

Although this mechanism can be used for
environments with u-boot boot loader, it is not
compatible with the environment with
RedBoot boot loader. RedBoot approach is
that there is no need to deal with remote
control because there is a remote control
function in the boot loader itself so that it can
be remotely updated.

The different concerns should be considered.
At first, fixability and testability: if remote
update fails, it is necessary to operate with
serial. Then security: if it is a closed network,
there is no problem with TFTP usage, but if it
is an open network it will be necessary to
consider secure protocols different from TFTP.
Finally, access to box: if remote update fails,
serial operation is required, but if it is stable to
a certain extent, remote update seems very
useful.

Because it is difficult to read the whole image
into memory due to memory constraint, it is
difficult to perfect check and it is thought that
method registration is necessary.

Consideration about correspondence with
NAND memory is also necessary

Finally, this mechanism was developed thanks
to the excellent build environment called
ZRouter. I would like to thank Oleksandr
Rybalko who started ZRouter.
I also thank you for implementing reroot.

Reference

[1] ZRouter.org
 https://zrouter.org/

[2] How to put FreeBSD power into small
 MIPS switch/router
 Oleksandr Rybalko
 EuroBSDcon2012

