
Adventure in DRMland

Or how to write a FreeBSD ARM64 DRM Driver

Emmanuel Vadot, manu@freebsd.org

Abstract

DRM (Direct Rendering Manager) is today standard for

applications like a display server, to talk the the graphi-

cal hardware present on a computer or System On a

Chip (SoC). It consist of a kernel side API and a userland

part (via IOCTLs) that application can use to talk the

GPU or con)gure the display modes (resolution, refresh

rates etc ...).

While support for X86 devices (intel or amd) are now

correct on FreeBSD, arm and arm64 hardware support is

still lacking. The only DRM driver is for Tegra based SoC,

other hardware either have basic framebu2er support

(like the RaspberryPi family) or will require the boot-

loader to have framebu2er support and will use it via EFI

framebu2er.

While framebu2er might be enough for some use, hav-

ing a DRM driver brings a lots of possibility, 2D accelera-

tion, changing resolution, hotpluging another monitor

etc … And it is also mandatory if we want to support the

3D chip or the Video decoder usualy present on arm/

arm64 SoCs.

In this paper the author will describe the DRM subsys-

tem and the anatomy of a modern DRM driver, based on

his work on the Allwinner Display Engine 2 present in

many SoC of this semiconductor company.

1. Overview

1.1. DRM/KMS

DRM is an API)rst introduced to support 3D GPU in the

Unix world. It only focused on GPU (command execution,

textures etc …) and not on the mode setting part. A

userland program (most likely X) used to do the mode

setting by talking to the hardware directly to setup VGA/

HDMI and all the rendering pipeline. This required X to

run as root and also cause problems if multiple program

wanted to con)gure the hardware.

To solve this a second API was later introduced called

KMS (Kernel Mode Setting). The userspace didn’t need

to talk to the hardware anymore and will only need to

call a few IOCTLs to con)gure the display. A few itera-

tion of the API added more and more concept like frame-

bu2ers, planes, encoder etc …

This paper do not describe how to create a driver for a

GPU but how to create a KMS driver. GPU on arm and

arm64 are discrete ones and require a separate driver.

1.2. FreeBSD ARM{,64} Video Support

Support for video (in any possible form) on arm and

arm64 on FreeBSD isn’t available for a lot of platforms.

The)rst driver was for the framebu2er on Raspberry Pi

(r239922
i
 by gonzo@ in August 2012), the bootloader/

)rmware on Rpi setup a display at startup and expose a

framebu2er that the OS can use. To my knowledge it

isn’t possible to change the resolution or to setup the

display after the OS is booted.

The second one was for the)rst generation of Allwinner

Display Engine and supported only HDMI (r296064
ii
 by

jmcneill@ in February 2016). It worked by using modifed

DTS)les ()le used to described the hardware on arm)

and was later broken when we fully switched to the

Linux DTS)les.

In July of 2018 I added e)fb support to ARM64

(r336520
iii
). As some bootloader supports video inter-

face and EFI it allows us to have a working display with a

simple driver. It has some limitation though, you cannot

change the resolution or hotplug a monitor after that

the OS is booted.

1.3. Chosen Hardware

To develop my)rst DRM driver I choose the Allwinner

A64 SoC for multiple reasons :

1. This is a SoC that I know very well.

2. A lot of interesting hardware are available (or

will be) like the PineBook and Pinetab (
iv
)

3. Documentation, even if it isn’t very explicit, ex-

ists. The only part not documented by Allwin-

ner is the HDMI Transmitter but it is docu-

mented in NXP IMX.6 user manual.

2. KMS API and Object

2.1. Framebu,ers and GEM Objects

2.1.1. Overview

Framebu2ers are memory objects that holds the pixels

needed to be rendered (or scanout) to the screen. They

are composed of properties like width, height, pixels for-

mat etc … and between one and four GEM objects.

GEM Objects are the memory objects holding the pixel

data, this is the hardest part of DRM (atleast for me) as

it is directly tied to the VM subsystem.

2.1.2. Implementation

For embedded devices where you don’t have graphic

memory, one should use the gem_cma implementation

(CMA: Contigous Memory Allocator).

The problem is that this part is gplv2 only. A BSD imple-

mentation based on NVIDIA Tegra DRM driver by

mmel@ is currently being written by the author.

2.2. Planes

2.2.1. Overview

Planes object are backed by drm_framebu2er objects

and are tied to a CRTC (see 2.3).

Multiple types of plane exists :

1. Primary plane is used for the main framebu2er

so it will likely contain the pixel for your hole

desktop environment. There can be only one

per CRTC.

2. Cursor plane is used for mouse cursor. Some

hardware can do composition directly (blending

and mixing multiple bu2ers) this avoid doing

that in software and waste CPU cycle. Cursor

plane are usually small, 64x64 pixels is a com-

mon size.

3. Overlay planes are just generic plane that can

be used for anything. One common application

of them is for video, the video player will have

his own plane where it can render data directly

in it and the compositing hardware will handle

the blending/mixing part.

In the Allwinner DE2 there is two units (called mixer)

that handle the planes/overlays. One have three planes

that support RGB format and one plane that support

YUV format (for Video purpose) while the other one only

have one RGB plane and one YUV plane.

2.2.2. Implementation

A drm driver can register plane using the drm_univer-
sal_plane_init function.

int drm_universal_plane_init(struct drm_device *dev,
 struct drm_plane *plane,
 uint32_t possible_crtcs,
 const struct drm_plane_funcs *funcs,
 const uint32_t *formats,
 unsigned int format_count,
 const uint64_t *format_modi�ers,
 enum drm_plane_type type,
 const char *name, ...);

The helper funcs are fully provided by the KMS frame-

work and so a driver can simply use the default one.

static const struct drm_plane_funcs plane_funcs = {
 .atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
 .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
 .destroy = drm_plane_cleanup,
 .disable_plane = drm_atomic_helper_disable_plane,
 .reset = drm_atomic_helper_plane_reset,
 .update_plane = drm_atomic_helper_update_plane,
};

What a driver only need to implements are the helper

funcs for atomic mode setting.

int plane_atomic_check(struct drm_plane *plane,
 struct drm_plane_state *state)
void plane_atomic_disable(struct drm_plane *plane,
 struct drm_plane_state *old_state)
void plane_atomic_update(struct drm_plane *plane,
 struct drm_plane_state *old_state)

static struct drm_plane_helper_funcs plane_helper_funcs = {
.atomic_check = plane_atomic_check,
.atomic_disable = plane_atomic_disable,
.atomic_update = plane_atomic_update,

};

drm_plane_helper_add(struct drm_plane *plane, &plane_helper_funcs);

The atomic_check function will return 0 if the plane can

be drawn by the hardware. Most of the time just calling

drm_atomic_helper_check_plane_state is suJcient.

The atomic_disable function will disable the plane from

being rendered.

The atomic_update function will update all the plane in-

formation (address, format, size etc …) in the hardware.

2.3. CRTCs

2.3.1. Overview

CRTC stand for Cathode Ray Tube Controller, this is an

historical name and the KMS crtc object don’t have any-

thing to do with CRT monitor.

CRTC take the contents of the framebu2ers and planes

and output the)nal image on a physical bus. This can

be an external bus (some RGB pins to drive a lcd panel

for example) or an internal bus that goes into an HDMI

or VGA encoder (see 2.4).

In Allwinner SoCs you have again two di2erent units

(called TCON), one can output pixel directly in RGB for-

mat, MIPI-DSI and LVDS while the other is directly tied to

the HDMI transmitter. Both can take their inputs from ei-

ther of the two mixers but the default con)guration is

that the mixer0 (The one with 4 planes) outputs to the

TCON0 and mixer1 outputs to TCON1.

2.3.2. Implementation

The easiest way to register a crtc in the subsystem is

with the function drm_crtc_init_with_planes.

int drm_crtc_init_with_planes(struct drm_device *dev,
 struct drm_crtc *crtc,
 struct drm_plane *primary,
 struct drm_plane *cursor,
 const struct drm_crtc_funcs *funcs,
 const char *name, ...);

static const struct drm_crtc_funcs crtc_funcs = {
 .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
 .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
 .destroy = drm_crtc_cleanup,
 .page_)ip = drm_atomic_helper_page_)ip,
 .reset = drm_atomic_helper_crtc_reset,
 .set_con�g = drm_atomic_helper_set_con�g,
 .enable_vblank = crtc_enable_vblank,
 .disable_vblank = crtc_disable_vblank,
};

In the crtc_funcs only two function for enabling/disabling

vblank interrupt need to be implemented, for the others

the helpers functions are enough.

Some helper functions for atomic mode setting are also

needed :

static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
.atomic_check = crtc_atomic_check,
.atomic_begin = crtc_atomic_begin,
.atomic_)ush = crtc_atomic_)ush,
.atomic_enable = crtc_atomic_enable,
.atomic_disable = crtc_atomic_disable,
.mode_set_nofb = crtc_mode_set_nofb,

};
drm_crtc_helper_add(crtc, &crtc_helper_funcs);

All of those functions need to be implemented but even

if my current implementation seems to work I don’t fully

understand what they are really supposed to do. They

deal with vblank and events and I am really not familiar

with them enough.

2.4. Encoders

2.4.1. Overview

drm_encoder simply convert one pixel data bus format

to another one. For example they can convert one inter-

nal format (such as between TCON1 and the HDMI trans-

mitter) to TMDS, the signal format used in HDMI trans-

mission.

2.4.2. Implementation

Only one helper function needs to be implemented for

encoder : the mode_set one.

This is used to set the clock rate of the encoder at the

same rate at the pixel clock for example.

Then using drm_encoder_helper_add and

drm_encoder_init on can register the encoder in the

DRM subsystem.

drm_encoder_helper_add(&sc->encoder,&encoder_helper_funcs);
sc->encoder.possible_crtcs = drm_crtc_mask(crtc);
drm_encoder_init(drm, &sc->encoder, &encoder_funcs,
DRM_MODE_ENCODER_TMDS, NULL);

2.5. Bridges/Connectors

2.5.1. Overview

drm_connector simply represent a physical connector

on the card or single board computer.

drm_bridge sits between an encoder and a connector.

They are used to enable/disable the display and con)g-

uring the display mode (resolution and timing).

2.5.2. Implementation

For drm_connector only one function need to be imple-

mented : connector_detect. This isn’t possible for every

connector type but for HDMI it is.

static enum drm_connector_status
connector_detect(struct drm_connector *connector, bool force);

static const struct drm_connector_funcs dw_hdmi_connector_funcs = {
 .�ll_modes = drm_helper_probe_single_connector_modes,
 .detect = connector_detect,
 .destroy = drm_connector_cleanup,
 .reset = drm_atomic_helper_connector_reset,
 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};

One helper function is also needed, the get_modes one,

it is called for quering EDID from the connected monitor.

static const struct drm_connector_helper_funcs
connector_helper_funcs = {

.get_modes = connector_get_modes,
};

For the bridges the following functions need to be imple-

mented :

static int
bridge_attach(struct drm_bridge *bridge);
static enum drm_mode_status
bridge_mode_valid(struct drm_bridge *bridge, const struct
drm_display_mode *mode);
static void
bridge_mode_set(struct drm_bridge *bridge,
 struct drm_display_mode *orig_mode,
 struct drm_display_mode *mode);
static void

bridge_disable(struct drm_bridge *bridge);
static void
bridge_enable(struct drm_bridge *bridge);

static const struct drm_bridge_funcs bridge_funcs = {
.attach = bridge_attach,
.enable = bridge_enable,
.disable = bridge_disable,
.mode_set = bridge_mode_set,
.mode_valid = bridge_mode_valid,

};

bridge_attach needs to init and attach the connector.

bridge_mode_valid need to)lter the mode

bridge_mode_set just need to copy the desired mode

that will be used in the enable function.

3. Current status and Future work

3.1. Current status

As of 20180225, my current implementation support the

mixer1 and tcon1 IP block so only HDMI output is cur-

rently possible. There is still problem in the HDMI driver

to do a full bring-up, it doesn’t work yet if u-boot is con-

)gured without video support, this is probably just a few

registers that aren’t setup correctly.

3.2. Future work

Fixing all the bugs and testing di2erent monitors (with

di2erents supported resolutions) is my main priority.

Next I will)nish the BSD implementation of the CMA

function.

Adding support for other Allwinner SoC (such as the

arm32 H3 and arm64 H5) is also planned in the near fu-

ture.

LIMA (The reversed-engineered MALI driver) will be very

interesting to have in FreeBSD.

i https://svnweb.freebsd.org/base?view=revision&revision=239922

ii https://svnweb.freebsd.org/base?view=revision&revision=296064

iii https://svnweb.freebsd.org/base?view=revision&revision=336520

iv https://www.pine64.org/

