FreeBSD Virtualization - Improving block 1/0
compatibility in bhyve

Sergiu Weisz
University POLITEHNICA of Bucharest
Splaiul Independentei 313, Bucharest, Romania, 060042
Email: sergiul21 @gmail.com

Abstract—

In a world where cloud computing and cloud infrastruc-
tures have become a mainstay, virtualization technologies
have enabled a secure way to share resources with
different users. A snapshoting mechanism is of great use
in the area of virtualization, as it enables the backup
of virtual machines, or the creation of templates for
machine state replication. These virtual machines have
many different virtual devices connected to them that
need to have their state saved and restored for a system
to be truly useful; examples include block devices, USB
devices, or system time. For block I/O a virtual machine
may use different types of files depending on its use case.
This leads to a greater flexibility in terms of features;
for example, one can use a file type that enables saving
the state of the hard disk in order to be used later,
or as a backup. Hypervisors like VirtualBox, VMWare
and Hyper-V already have support for multiple disk file
formats. This paper will present a way to implement
support for the devices mentioned above, and fill readers
in on the procedure of saving device states.

I. INTRODUCTION

FreeBSD is an open source operating system that is
designed with the goal of being a successor to the
BSD operating system, and it is the most popular
OS in the BSD family. The reason in part is because
of its BSD licence, which allows companies to fork
the code and modify it without needing to push the
modifications upstream or make them public. This
makes it useful for companies like Netflix or Sony to
use it in their systems, because of security concerns or
financial reasons. Another reason for the popularity of
FreeBSD is the performance of the network stack, that
outperformes competing OS’s [1].

bhyve is the hypervisor that comes packed in with
FreeBSD. It is a type-2 hypervisor, so it runs over
the operating system. In corporate environments bhyve
is used by companies such as Joyent or iXsystems
because of its support for legacy operating systems
and relative small code base compared to other popular
hypervisors.

We have a special interest in the snapshoting feature,
because we wish to implement a fully featured check-
point system for the bhyve hypervisor, which comes

Mihai Carabas
University POLITEHNICA of Bucharest
Splaiul Independentei 313, Bucharest, Romania, 060042
Email: mihai.carabas@gmail.com

with the FreeBSD operating system. Our current imple-
mentation of the system will stop the execution of the
virtual machine. These features are being worked on in
an ongoing project at the University POLITEHNICA
of Bucharest. This is the only such feature in the
FreeBSD project [2].

This paper will present in depth the state of virtualiza-
tion in the bhyve virtualization, how the snapshot and
restore mechanism works, along with its stong points
and flaws, and I will present the improvements I have
implelementented in this mechanism, along with what
problems I have had along the way.

II. STATE OF THE ART

Virtualization is the process of running an operating
system over an already existing operating system. The
operating system that runs” directly on the hardware
is called a host OS, while the operating system being
run over the host is called a guest operating system.

The application that manages the interaction between
the host and guest operating systems is called a hyper-
visor. Depending on the implementation, and the level
of optimization, the hypervisor might have components
implemented at a kernel/driver level, or it can be fully
implemented in user space.

Hypervisors can be split in two major categories by
the connection they have with hardware:

e Type 1 hypervisors, which communicate with the
hardware directly. ex: Xen

o Type 2 hypervisors, which communicate with
the hardware through a fully fledged operating
system, like FreeBSD, GNU/Linux or Wwindows.
ex: Hyper-V, bhyve, KVM

Snapshoting is the act of saving the state of the virtual
machine while it is running. This is done in order to
make a backup, or a checkpoint, of the machine that
one could roll back the machine to. Another applica-
tion of this is migrating the virtual machines without
shutting them off. By saving their state, moving them
to another site, and starting them from the backup,
you can make it look, from the point of the virtual
machine, that it hasn’t been turned off. Hypervisors



that implement these features are Hyper-V, VirtualBox,
VMWare, gemu, and others.

In bhyve the act of saving the virtual machine is made
of the following steps:

1) Stop virtual CPUs’ instruction execution

2) Iterate through all the kernel structures and save
their context to a file

3) Iterate through all the used devices and save their
contexts to a file

4) Dump the VM memory to a file

For restoring the virtual machine state the hypervisor
goes through the following actions:

1) Copy to memory the ”old” memory content

2) Copy device information from the restore file

3) Copy kernel structure information stored in re-
store file

4) Start virtual CPUs’ instruction execution

A. Block devices virtualization

A block device is a type of hardware device that is
used for I/O operations. Its special characteristic is
that reads and writes from it are made in discrete
chunks and random access to the address space of the
device. Because of the access to all the random access
property, they are used for large storage devices, such
as HDD’s or SSD’s.

In bhyve a virtualized block device is either a physical
block device that is passed through to the virtual
machine, or a file hosted on a physical block device.
When a VM needs to access the disk, a request is filled
and passed to the hypervisor. The hypervisor in turn
receives the request, puts it in a worker pool, and when
the time comes, it satisfies the request by calling a read
or a write system call.

Currently, the only virtual disk type, also called a disk
image, is the “raw” type, which acts like a normal hard
drive.

As can be seen from above there is no step where
a copy of the virtual storage disk is made during the
checkpoint process. If you would want to use the saved
machine state for backup purposes, you would have
to make a copy of the whole disk image. This can
be a problem when you have a large scale service
where users backup their VMs like Amazon AWS, or
a deployment of Openstack. This makes the need for
more complex disk formats quite apparent.

III. RELATED WORK

There exist many implementations of block device
abstraction. These have all been implemented in var-
ious hypervisors in order to offer a more robust and
flexible interface to the users, and offer interoperability
between hypervisors.

A. QEMU

QEMU [4] (Quick Emulator) is a free and open source
emulator. Besides hardware virtualization, it can also
do hardware-accelerated virtualization to obtain less
overhead than full emulation thanks to the KVM
project.

It is the emulator that has provided us with the QEMU
Copy-On-Write, file format, which we have used in this
paper as a proof of concept for libvdsk. This format
has gone through many iterations over the years, and
the code that pertains to it is the most complex for this
format. It includes complex caching mechanisms that
have lead to it being one of the most popular image
formats.

B. Palacios

Palacios [5] is an open source VMM that is targeted
towards embedded computers. It is built in such a way
as to enable its integration into multiple OSs. As of the
time of writing, there have not been any new commits
in the Palacios main branch since 09 January 2017. It
has support for multiple disk file formats, such as RAM
disks, or netdisks and QCOW disks, so this present an
interest to us.

Palacious VMM ’s block device abstraction layer works
in a similar way to libvdsk. It has a system where
a device registers a read, write, open and others,
and depending on the file format it calls the specific
implementation.

C. VMD

VMD [3] (Virtual Machine Daemon) is the OpenBSD
hypervisor. It has a similar approach to the Palacios
VMM of using a structure where you register callbacks
to read, write and close files. Our implementation for
QCOW?2 operations were inspired by the implementa-
tion in this hypervisor.

IV. IMPLEMENTATION

The work in this paper is based on the libvdsk library,
first developed by Marcel Molenaar, and brought up
to date by Marcelo Araujo. It is used as an abstraction
layer that enables the use of block I/O requests without
being concerned about the format of the backing file
used by the virtual machine. At the time of the project’s
start libvdsk only had support for raw image files, files
that act exactly like a hard disk.

For each block I/O operation libvdsk implements a
function that will be called in the block I/O interface.
These functions cover common file operations like
open, close, read, write, trim, flush and probe. All of
these in turn use a callback to fulfill the operation
received. Each file format, be it a raw disk file or



gcow?2, has specific functions implemented for all the
previously mentioned operations.

110
»L request

Generic Block Device

e —

Block Device Implementation
(virtioblk, pci_ahci)

Block I/0 Worker queue

P

RAW QCow2

libvdsk

Figure 1. Libvdsk workflow

Figure 1 conveys the whole path of an I/O request
through the block devices stack to reach to the libvdsk
implementation of a given function. When a request is
sent to a block device in the guest VM the emulator
implementation (virtio-block, ahci) fills a block I/O
request on behalf of the host, and it puts it in a worker
queue until it is picked up by a worker thread. After a
worker thread runs the job, it calls a generic function
in libvdsk which will call the implemented operation
for a particular disk file type.

We have been working on implementing these opera-
tions for the qcow2 image file format. This format was
initially developed for the gemu emulator, but it has
since gained a significant following because of features
like sparse image files, snapshoting, encryption, and
compression. As this is a widely used format with
different applications, we have found it the perfect can-
didate to test libvdsk’s capabilities on more complex
use cases, other than the raw format that was supported
natively in bhyve too.

There are multiple open source hypervisors that have
integrated support for qcow2. All of these have a
similar implementation to what we have put together,
since there aren’t many new ways in which one can
read data from a file that has a well defined structure.
A difference that one may observe is that the workflows
for different hyervisors are different. For example,
gemu implements a caching mechanism that vmd (the
OpenBSD hypervisor), and bhyve do not implement.

Since libvdsk was built, and abandoned, without im-
plicit support for more complex disk types, we needed

to add necessary code to it in order to make its design
more modular, like adding an additional pointer field
to the structure that holds data about the disk that
points to an area which has data specific to a disk
implementation. This allowed us to store an extra
structure related to the qcow?2 internal data structures,
but it can be used to store structures for any format.

Layer 1 table. Layer 2 table.

Image fie

Figure 2. qcow addressing

The qcow2 image file uses a 2 layer addressing
scheme, similar to the multi-level page table memory
scheme, and it is also uses clusters which are effective
physical storage space (analogue to memory pages). A
physical address is made up of:

1) An index in the first table, named Layer 1 table
(L1), that stores the address of a Layer 2 table

2) An index in the second table, named Layer 2
table (L2), that stores the address of a cluster

3) An offset in the cluster retrieved from an L2 table

This addressing scheme can also be seen in Figure 2.
As can be observed in the figure, the cluster size is not
a fixed value, it can vary from file to file depending
on the configuration. Another detail is the fact that one
L2 table is exactly one cluster long, and an entry in it
is 8 bytes long.

The layered approach in qcow has de advantage of not
needing a large memory allocation when creating the
file. Further more, this scheme allows the existence
of a Copy On Write mechanism, which is used for
maintaining a backup of a disk, since all writes in a
backup file will be done on a cluster by cluster basis, so
these are the only storage areas that will be duplicated.

Using libvdsk we have implemented the open, probe,
read and write operations on the qcow2 image format,
with more support to be added in the near future, as this
project is of high priority for providing the save/restore
functionality with a file backup mechanism.

The read operation on qcow2 follows step by step
Figure 2 in order to retrieve the cluster where the
desired information is located. If the size being read is
more that the cluster size, we try to determine in which
part of the read operation the full cluster is located.

The write operation requires the ability to make new
clusters on demand if the operation tries to write in



a space where the cluster is not allocated. This will
increase the footprint of the image file on the disk as
more and more clusters, and eventually L2 tables when
the existing one is filled up.

V. RESULTS

The results of the project so far are that we are able to
read and write from a disk image that is in the QCOW?2
format. In order to test, we converted an existing disk
that had information on in to the QCOW format. After,
we tested the reads at first reading trying to read the
partition table of a disk. We did is by using the fdisk
tool. After he did this, we read from different areas
from the disk, and we checked the result with the
original disk file.

For testing writes, we first tried to write in the partition
table, because it is situated in the first sector, so it
would rule out offset problems. After we were able to
add partitions to the partition table, we checked them
using the fdisk tool. After this, we formatted the new
partition. We chose to format it at first with the ext2
file system, since it is a simple format that keeps its
metadata at the beginning of the disk, but it doesn’t
have complex mechanisms, such as journalizing. After
formatting the partition, we mounted it, created a file,
unmounted the partition, and remounted it, to check if
the file still had the written data.

As the project is still in development, the only features
that have been fully tested are the hooks that go into the
libvdsk. We tested this by appending printing functions
to the callbacks and checking whether something in
printed to the terminal.

Another feature working at the time of writing is the
probe function, which prints the header of the disk
image format, if it has one.

VI. CONCLUSION AND FURTHER WORK

Furthermore, by implementing qcow?2 support in bhyve
using libvdsk, we aim to show a proof of concept for
the library, as it aims to provide a universal way of
working with and on virtual disk through an easily
extensible API. This will lead in turn to possibilities
for implementing varying features for working with
disk image files.

Going forward, we aim to implement support for Copy
on Write and disk snapshoting in our implementation
of qcow2 and integrate this with the checkpointing
mechanism outlined in this paper in order to allow for
efficient virtual machine backup. Adding to this, we
could also add a caching mechanism, similar to the
implementation integrated in gemu in order to offload
the overhead of translating virtual disk addresses to
offsets in the disk vile.

Another avenue worth exploring is implementing sup-
port for other virtual disk files, and comparing them to
the qcow2 implementation in bhyve.

ACKNOWLEDGMENT

The authors would like to thank Matthew Grooms
for hisfinancial support in form of scholarship for
Sergiu Weisz. We would also like to address a special
”thank you” to Elena Mihailescu an Darius Mihai for
their help with debugging various issues that we have
encountered, and to Marcelo Araujo who revived the
libvdsk project and who maintained continued support
for this project.

REFERENCES

[1] Serving 100 Gbps from an Open Connect Appliance.
https://medium.com/netflix-techblog/serving-100-gbps-from-an-
open-connect-appliance-cdb51dda3b99.

[2] University POLITEHNICA of Bucharest, Save and Restore
Project. https:/github.com/FreeBSD-UPB/freebsd/.

[3] Virtual Machine Daemon
http://man.openbsd.org/vmd.8.

[4] F. Bellard. Qemu, a fast and portable dynamic translator.
USENIX Annual Technical Conference, 2005.

[5] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, and
P. Bridges. Palacios and kitten: New high performance operating
systems for scalable virtualized and native supercomputing. 24th
IEEE International Parallel & Distributed Processing Sympo-
sium, 2010.

man page, vmd(8).



