In-Kernel TLS Framing and
Encryption for FreeBSD

John Baldwin
vBSDCon
September 6, 2019

Motivation
Kernel TLS
Software TLS
NIC TLS
Numbers

Overview

Why KTLS?

* The story of KTLS is really a repeat of the story
of sendfile(2)

e So let’s start with that...

Pre-sendfile(2) HTTP/FTP Workflow

Userland

Pages

(ea

-

coN

—

Mte(2)

Kernel

Pages

Pages

|/O Devices

l

Request

I

DMA

l

Request

l

DMA

Disk

NIC

Pre-sendfile(2) HTTP/FTP Workflow

Userland Kernel |/O Devices

/ —
= e
Pages C— Disk
/ DMA

coN

sendfile(2) HTTP/FTP Workflow

Userland Kernel 1/O Devices
ﬁ
?\e/ Disk
E— pMA
sendfile(2)

Pages

—

NIC
oy

Back to TLS

e TLS stores data in TLS
records / frames Header

e Each frame contains
— Header

2

— Encrypted Payload
— Trailer

* This framing is all
currently done in
userland (OpenSSL, etc.)

Trailer

Current HTTPS Workflow

Userland Kernel |/O Devices
— E—
read(2) Request
Pages Pages Disk
8 | 5 C——
: Copy PMA
TLS Framlngl
——) E—)
write(2) Request
1 | Pages Copy | | Pages — NIC

DMA

ldeal HTTPS Workflow

Userland Kernel 1/O Devices
ﬁ
?\e/ Disk
E— pMA
sendfile(2)

TLS Framing

KTLS: Towards an Ideal Workflow

* Goal: Use sendfile(2) with HTTPS

What is Required?

Raw file data has to be framed into TLS
records in the kernel

Session parameters (e.g. keys) required for
framing

Ability to send non-application data TLS
records (e.g. Alerts)

Framing overhead included in TCP’s sequence
space

What is not Required?

* |nitial handshake and key negotiation

— This can be handled in userland as it is now before
the bulk data transfer

e Receive Offload

— For transmit-heavy workloads such as Netflix’s,
once the handshake is complete, the only receive
data is TCP ACKs

KTLS Components

TLS session objects

Storing TLS frames in mbufs
Framing written data
Software TLS

NIC TLS

TLS Session Objects

* Holds ciphers used and session keys for those
ciphers

* Created inresponse to TCP_TXTLS ENABLE
socket option

e Socket send buffer holds a reference to
current TLS session

Storing TLS Frames in mbufs

Netflix added a new external mbuf type
(EXT _PGS) to more efficiently handle
sendfile(2) requests (r349529)

Each TLS frame is stored in a single EXT_PGS
mbuf

KTLS extends struct mbuf_ext pgs
— Reference to TLS session object

— TLS header and trailer

—m_len accounts for header and trailer

Framing Written Data

* Once KTLS is enabled, all data written to a
socket is stored in TLS frames

* Data is always stored in EXT_PGS mbufs

* mbufs are passed to ktls frame() before
being inserted into the socket buffer

Framing Written Data

* Most system calls (write(2), send(2), and
sendfile(2)) store data in Application Data

frames

* sendmsg(2) can send individual TLS records
with a different record type
— Entire buffer is sent as a single TLS record

— Record type set via TLS SET RECORD_ TYPE
control message

ktls frame()

Uses socket send buffer’s TLS session
reference

Adds TLS session reference to each mbuf

Calculates header and trailer lengths and sets
m_len to length of full frame

— Includes variable-length padding for AES-CBC
Populates TLS header including explicit IV

Software TLS

* TLS session object is associated with an
encryption backend

* Data is encrypted once while it is in the socket
buffer

* Once encrypted, TCP transmits data from
socket buffer just like regular data

— TLS session object reference dropped after
encryption

Software TLS Workflow

Userland Kernel 1/O Devices
E—
Request
Pages Disk
£ C——
— DMA
sendfile(2) TLS Framing
—
W - Request NIC
| ages |

DMA

Software TLS with sendfile(2)

sendfile(2) allocates EXT_PGS mbufs to hold
file data pages

sendfile_iodone() callback schedules mbufs
for encryption instead of marking mbufs ready

KTLS worker thread allocates pages to hold
encrypted copy of data and invokes
encryption backend

Encrypted mbufs marked ready

Software TLS with write(2)

write(2) allocates EXT PGS mbufs to hold copy
of user’s data

mbufs marked M_NOTREADY and queued for
encryption

KTLS worker thread invokes encryption
backend to encrypt in place

Encrypted mbufs marked ready

Software TLS

e Software TLS avoids kernel <-> userland
transitions and reduces number of copies

* CPU is still touching the data

* For sendfile(2), copy into per-socket pages still
required

NIC TLS

* TLS sessions allocate a send tag on the
associated NIC

— Send tag holds driver-specific TLS session data

* Socket layer passes unencrypted mbufs to TCP

— TLS session object reference held until data is
ACKed and mbuf is dropped from socket buffer

NIC TLS

* |P output verifies TLS send tag matches NIC

— Avoids leaking unencrypted data due to route
change

— Builds on r348254

* NIC encrypts TLS frames and splits into TCP
segments

NIC TLS Workflow

Userland Kernel 1/O Devices
ﬁ
?\e/ Disk
E— pMA
sendfile(2)

Pages

——

NIC
oy

TLS Framing

NIC TLS

* Avoids copies from Software TLS
* CPU no longer touches the data
* Similar workflow to sendfile(2) without TLS

Benchmarking Setup

Two identical 4-core Intel E5-1620 v3 systems
with HTT and Chelsio T6 100 Gbps NICs
connected back-to-back

16 openssl s_time instances using Chelsio TOE
TLS with RX + TX offload on receiver

nginx 1.14.2 with KTLS patches on server using
patched OpenSSL 1.1.1

AES256-GCM used as the cipher

HTTPS Bandwidth (Gbps)

Mode 1 worker 4 workers
Plain (userland) TLS 7.9 30
KTLS with cryptosoftO 2.9 2.8
KTLS with aesniO 36 36
KTLS with ccrO 36 35
KTLS with Intel ISA-L 48 48

KTLS with Chelsio T6 72 64

Netflix Benchmarks

System Mode CPU Usage Bandwidth (Gbps)
Late 2018 12-core Xeon-D T6 NICTLS 62% 90

Late 2018 8-core Xeon-D T6 NIC TLS 80% 80

2016 16-core Xeon E5v4 T6 NICTLS 35% 90

2016 16-core Xeon E5v4 ISA-L SW TLS 68% 90

System Mode Memory Bandwidth (GB/s)
2016 16-core Xeon E5v4 T6 NICTLS 30

2016 16-core Xeon E5v4 ISA-L SW TLS 55

Supported Ciphers

TLS1.0-1.2
AES-CBC with SHA1 and SHA2-256 HMAC
AES-GCM

Backends and NIC drivers might only support a
subset
— ktls_ocf only supports AES-GCM

— Chelsio T6 NIC TLS supports AES-CBC and AES-
GCM, but not TLS 1.0

Where are the bits

e Kernel Framework: r351522

* T6 NICTLS

— https://github.com/bsdjhb/freebsd/tree/
kern tls t6

e |Intel ISA-L software backend
— https://reviews.freebsd.org/D21446

Where are the bits

* OpenSSL patches

— https://github.com/bsdjhb/openss|

—1.1.1=>kern_tls 1 1 1 branch

— master => ktls_master branch

* nginx patches

— https://github.com/

nsdjhb/nginx

— OpenSSL 1.1.1 => kt
— OpenSSL master =>

s-1.14 branch

ctls-1.14-openssl-master

Future Work

Merging OpenSSL changes upstream
Updating TOE TLS to use KTLS framework

TLS RX offload
TLS 1.2 Encrypt-then-Mac
TLS 1.3

— Drew has an initial version

Acknowledgments

Scott Long and Randall Stewart
— Initial software TLS work

Drew Gallatin

— EXT_PGS mbufs for sendfile

— Software TLS backend framework
Myself

— NIC TLS framework
— T6 NICTLS

Funded by Netflix and Chelsio

