
In-Kernel	TLS	Framing	and	
Encryp6on	for	FreeBSD	

John	Baldwin	
vBSDCon	

September	6,	2019	
	
	



Overview	

•  Mo6va6on	
•  Kernel	TLS	
•  SoJware	TLS	
•  NIC	TLS	
•  Numbers	
	



Why	KTLS?	

•  The	story	of	KTLS	is	really	a	repeat	of	the	story	
of	sendfile(2)	

•  So	let’s	start	with	that…	



Pre-sendfile(2)	HTTP/FTP	Workflow	

Kernel	 I/O	Devices	

Disk	

NIC	

Pages	
Pages	
Pages	

Pages	
Pages	
Pages	

Userland	

Pages	
Pages	
Pages	

	
	Request	
	
	DMA	

	
	

Copy	

	
	
	read(2

)	

	
	
	write(2)	

	
	Request	
	
	DMA	

Copy	



Pre-sendfile(2)	HTTP/FTP	Workflow	

Kernel	 I/O	Devices	

Disk	

NIC	

Pages	
Pages	
Pages	

Pages	
Pages	
Pages	

Userland	

Pages	
Pages	
Pages	

	
	Request	
	
	DMA	

	
	

Copy	

	
	
	read(2

)	

	
	
	write(2)	

	
	Request	
	
	DMA	

Copy	



sendfile(2)	HTTP/FTP	Workflow	

Kernel	 I/O	Devices	

Disk	

NIC	

Pages	
Pages	
Pages	

Userland	

	
	

Reque
st	

	
	

DMA	

	
	Request		
	DMA	

	
	sendfile(2)	



Back	to	TLS	

•  TLS	stores	data	in	TLS	
records	/	frames	

•  Each	frame	contains	
–  Header	
–  Encrypted	Payload	
–  Trailer	

•  This	framing	is	all	
currently	done	in	
userland	(OpenSSL,	etc.)	

Data	

Header	

Data	

Trailer	



Current	HTTPS	Workflow	

Kernel	 I/O	Devices	

Disk	

NIC	

Pages	
Pages	
Pages	

Pages	
Pages	
Pages	

Userland	

Pages	
Pages	
Pages	

	
	Request	
	
	DMA	

	
	Copy	

	
	
	read(2)	

	
	
	write(2)	

	
	Request	
	
	DMA	

Copy	

Pages	
Pages	
Pages	

TLS	Framing	



Ideal	HTTPS	Workflow	

Kernel	 I/O	Devices	

Disk	

NIC	

Pages	
Pages	
Pages	

Userland	

	
	

Reque
st	

	
	

DMA	

	
	Request		
	DMA	

	
	sendfile(2)	

TLS	Framing	



KTLS:	Towards	an	Ideal	Workflow	

•  Goal:	Use	sendfile(2)	with	HTTPS	



What	is	Required?	

•  Raw	file	data	has	to	be	framed	into	TLS	
records	in	the	kernel	

•  Session	parameters	(e.g.	keys)	required	for	
framing	

•  Ability	to	send	non-applica6on	data	TLS	
records	(e.g.	Alerts)	

•  Framing	overhead	included	in	TCP’s	sequence	
space	



What	is	not	Required?	

•  Ini6al	handshake	and	key	nego6a6on	
– This	can	be	handled	in	userland	as	it	is	now	before	
the	bulk	data	transfer	

•  Receive	Offload	
– For	transmit-heavy	workloads	such	as	Nealix’s,	
once	the	handshake	is	complete,	the	only	receive	
data	is	TCP	ACKs	



KTLS	Components	

•  TLS	session	objects	
•  Storing	TLS	frames	in	mbufs	
•  Framing	wriden	data	
•  SoJware	TLS	
•  NIC	TLS	



TLS	Session	Objects	

•  Holds	ciphers	used	and	session	keys	for	those	
ciphers	

•  Created	in	response	to	TCP_TXTLS_ENABLE	
socket	op6on	

•  Socket	send	buffer	holds	a	reference	to	
current	TLS	session	



Storing	TLS	Frames	in	mbufs	

•  Nealix	added	a	new	external	mbuf	type	
(EXT_PGS)	to	more	efficiently	handle	
sendfile(2)	requests	(r349529)	

•  Each	TLS	frame	is	stored	in	a	single	EXT_PGS	
mbuf	

•  KTLS	extends	struct	mbuf_ext_pgs	
– Reference	to	TLS	session	object	
– TLS	header	and	trailer	
– m_len	accounts	for	header	and	trailer	



Framing	Wriden	Data	

•  Once	KTLS	is	enabled,	all	data	wriden	to	a	
socket	is	stored	in	TLS	frames	

•  Data	is	always	stored	in	EXT_PGS	mbufs	
•  mbufs	are	passed	to	ktls_frame()	before	
being	inserted	into	the	socket	buffer	



Framing	Wriden	Data	

•  Most	system	calls	(write(2),	send(2),	and	
sendfile(2))	store	data	in	Applica6on	Data	
frames	

•  sendmsg(2)	can	send	individual	TLS	records	
with	a	different	record	type	
– En6re	buffer	is	sent	as	a	single	TLS	record	
– Record	type	set	via	TLS_SET_RECORD_TYPE	
control	message	



ktls_frame()	

•  Uses	socket	send	buffer’s	TLS	session	
reference	

•  Adds	TLS	session	reference	to	each	mbuf	
•  Calculates	header	and	trailer	lengths	and	sets	
m_len	to	length	of	full	frame		
–  Includes	variable-length	padding	for	AES-CBC	

•  Populates	TLS	header	including	explicit	IV	



SoJware	TLS	

•  TLS	session	object	is	associated	with	an	
encryp6on	backend	

•  Data	is	encrypted	once	while	it	is	in	the	socket	
buffer	

•  Once	encrypted,	TCP	transmits	data	from	
socket	buffer	just	like	regular	data	
– TLS	session	object	reference	dropped	aJer	
encryp6on	



SoJware	TLS	Workflow	

Kernel	 I/O	Devices	

Disk	

NIC	

Pages	
Pages	
Pages	

Userland	
	
	Request	
	
	DMA	

	
	Request	
	
	DMA	

Pages	
Pages	
Pages	

TLS	Framing	
	
	sendfile(2)	



SoJware	TLS	with	sendfile(2)	

•  sendfile(2)	allocates	EXT_PGS	mbufs	to	hold	
file	data	pages	

•  sendfile_iodone()	callback	schedules	mbufs	
for	encryp6on	instead	of	marking	mbufs	ready	

•  KTLS	worker	thread	allocates	pages	to	hold	
encrypted	copy	of	data	and	invokes	
encryp6on	backend	

•  Encrypted	mbufs	marked	ready	



SoJware	TLS	with	write(2)	

•  write(2)	allocates	EXT_PGS	mbufs	to	hold	copy	
of	user’s	data	

•  mbufs	marked	M_NOTREADY	and	queued	for	
encryp6on	

•  KTLS	worker	thread	invokes	encryp6on	
backend	to	encrypt	in	place	

•  Encrypted	mbufs	marked	ready	



SoJware	TLS	

•  SoJware	TLS	avoids	kernel	<->	userland	
transi6ons	and	reduces	number	of	copies	

•  CPU	is	s6ll	touching	the	data	
•  For	sendfile(2),	copy	into	per-socket	pages	s6ll	
required	



NIC	TLS	

•  TLS	sessions	allocate	a	send	tag	on	the	
associated	NIC	
– Send	tag	holds	driver-specific	TLS	session	data	

•  Socket	layer	passes	unencrypted	mbufs	to	TCP	
– TLS	session	object	reference	held	un6l	data	is	
ACKed	and	mbuf	is	dropped	from	socket	buffer	



NIC	TLS	

•  IP	output	verifies	TLS	send	tag	matches	NIC	
– Avoids	leaking	unencrypted	data	due	to	route	
change	

– Builds	on	r348254	
•  NIC	encrypts	TLS	frames	and	splits	into	TCP	
segments	



NIC	TLS	Workflow	

Kernel	 I/O	Devices	

Disk	

NIC	

Pages	
Pages	
Pages	

Userland	

	
	

Reque
st	

	
	

DMA	

	
	Request		
	DMA	

	
	sendfile(2)	

TLS	Framing	



NIC	TLS	

•  Avoids	copies	from	SoJware	TLS	
•  CPU	no	longer	touches	the	data	
•  Similar	workflow	to	sendfile(2)	without	TLS	



Benchmarking	Setup	

•  Two	iden6cal	4-core	Intel	E5-1620	v3	systems	
with	HTT	and	Chelsio	T6	100	Gbps	NICs	
connected	back-to-back	

•  16	openssl	s_6me	instances	using	Chelsio	TOE	
TLS	with	RX	+	TX	offload	on	receiver	

•  nginx	1.14.2	with	KTLS	patches	on	server	using	
patched	OpenSSL	1.1.1	

•  AES256-GCM	used	as	the	cipher	



HTTPS	Bandwidth	(Gbps)	
Mode	 	1	worker	 4	workers	
Plain	(userland)	TLS	 7.9	 30	
KTLS	with	cryptosoJ0	 2.9	 2.8	
KTLS	with	aesni0	 36	 36	
KTLS	with	ccr0	 36	 35	
KTLS	with	Intel	ISA-L	 48	 48	
KTLS	with	Chelsio	T6	 72	 64	



Nealix	Benchmarks	
System	 Mode	 CPU	Usage	 Bandwidth	(Gbps)	

Late	2018	12-core	Xeon-D	 T6	NIC	TLS	 62%	 90	

Late	2018	8-core	Xeon-D	 T6	NIC	TLS	 80%	 80	

2016	16-core	Xeon	E5v4	 T6	NIC	TLS	 35%	 90	

2016	16-core	Xeon	E5v4	 ISA-L	SW	TLS		 68%	 90	

System	 Mode	 Memory	Bandwidth	(GB/s)	

2016	16-core	Xeon	E5v4	 T6	NIC	TLS	 30	

2016	16-core	Xeon	E5v4	 ISA-L	SW	TLS	 55	



Supported	Ciphers	

•  TLS	1.0	–	1.2	
•  AES-CBC	with	SHA1	and	SHA2-256	HMAC	
•  AES-GCM	
•  Backends	and	NIC	drivers	might	only	support	a	
subset	
– ktls_ocf	only	supports	AES-GCM	
– Chelsio	T6	NIC	TLS	supports	AES-CBC	and	AES-
GCM,	but	not	TLS	1.0	



Where	are	the	bits	

•  Kernel	Framework:	r351522	
•  T6	NIC	TLS	
– hdps://github.com/bsdjhb/freebsd/tree/
kern_tls_t6	

•  Intel	ISA-L	soJware	backend	
– hdps://reviews.freebsd.org/D21446	



Where	are	the	bits	

•  OpenSSL	patches	
– hdps://github.com/bsdjhb/openssl	
– 1.1.1	=>	kern_tls_1_1_1	branch	
– master	=>	ktls_master	branch	

•  nginx	patches	
– hdps://github.com/bsdjhb/nginx	
– OpenSSL	1.1.1	=>	ktls-1.14	branch	
– OpenSSL	master	=>	ktls-1.14-openssl-master	



Future	Work	

•  Merging	OpenSSL	changes	upstream	
•  Upda6ng	TOE	TLS	to	use	KTLS	framework	
•  TLS	RX	offload	
•  TLS	1.2	Encrypt-then-Mac	
•  TLS	1.3	
– Drew	has	an	ini6al	version	



Acknowledgments	

•  Scod	Long	and	Randall	Stewart	
–  Ini6al	soJware	TLS	work	

•  Drew	Galla6n	
– EXT_PGS	mbufs	for	sendfile	
– SoJware	TLS	backend	framework	

•  Myself	
– NIC	TLS	framework	
– T6	NIC	TLS	

•  Funded	by	Nealix	and	Chelsio	


