In-kernel TLS Framing and
Encryption for FreeBSD

John Baldwin
BSDCan

June 2020



What is KTLS?
TLS Transmit
TLS Recelive
Current Status

Overview



What is TLS?

Transport Layer Security (TLS) is an application
layer protocol

Provides authentication and privacy

Structured as a stream of records, or frames, sent
and received over a transport protocol

Includes handshake messages to negotiate
session keys and application data messages to
tunnel application data



What is KTLS?

* |n-kernel TLS (KTLS) handles TLS framing and
encryption/decryption in the kernel

e KTLS does not handle session key negotiation

— Userland library such as OpenSSL supplies session
keys to kernel after handshake




Why KTLS?

Two reasons to handle TLS in the kernel

1. Enable zero-copy send over TLS via
sendfile()

2. Support TLS offload in NICs



TLS Sessions

e TLS Sessions describe session keys
— Ciphersuite (AES-GCM, AES-CBC with HMAC)
— Cipher and MAC keys

* SSL library provides session keys via
setsockopt()

e TLS Sessions are associated with socket buffers
— Separate sessions for transmit and receive



TLS Transmit

* All data written on a socket using KTLS transmit is
encrypted by the kernel

* Userland can send individual TLS records with a
specific record type and length via sendmsg()
— TLS_SET_RECORD_TYPE control message

* Kernel chooses framing and uses “application
data” record type for all other data



TLS Transmit

* TLS records stored in a special type of mbuf
— TLS header and trailer stored inline in mbuf

— Payload data referenced via physical address
pointers

* Not-yet-encrypted TLS record mbufs hold a
reference to a TLS session

— Session reference inherited from socket buffer



TLS Transmit: SW KTLS

Userland write() l Application Data
Kernel Unencrypted (M_NOTREADY)
Socket Buffer ™
Encrypted
TCP Packet

NIC



TLS Transmit: SW KTLS

Userland sendfile()

Socket Buffer ™

Per-socket Copies

TCP Packet

NIC



TLS Transmit: NIC/TOE KTLS

Userland Application Data

write() 1
Kernel
Socket Buffer ™ Unencrypted
TCP Packet

!

NIC



TLS Transmit: NIC/TOE KTLS

Userland sendfile()
Kernel C—— Disk
Socket Buffer ™
1 No Copies!
TCP Packet

NIC



TLS Recelve

* All data received on a socket using KTLS receive is
decrypted by the kernel

e Userland receives individual TLS records via
recvmsg()
— TLS_GET_RECORD control message

e Socket buffer holds a list of TLS records like a

datagram socket even though TCP is a stream
socket



TLS Receive: TOE KTLS

Userland Application Data

recvmsg() 1
Kernel
Socket Buffer ™
TLS PDU Decrypted

NIC



TLS Receive: SW KTLS

Userland Application Data

recvmsg()

Decrypted
Socket Buffer ™

Encrypted (M_NOTREADY)

TCP Packet Encrypted

NIC



TLS & Socket Send Buffers

e TLS uses send socket buffer in the “usual” way. It
is a single “record” holding a stream of TLS
mbufs.

— Each mbuf describes a single TLS record
— Unencrypted records are marked asM_NOTREADY

— Both unencrypted and encrypted TLS records live in
the same stream

— To mark a record as encrypted, clear M_NOTREADY



TLS & Socket Receive Buffers

e TLS uses receive socket buffer differently

— Decrypted TLS records are stored as “records” in socket
buffer consisting of control message mbuf holding TLS
header followed by decrypted data in “normal” mbufs. No
trailer.

— Encrypted TLS records received from TCP are just “normal”
mbufs with TLS header and trailer data in the mbuf
payload

— Can’t simply flip M_NOTREADY bit to convert from
encrypted to decrypted



Decrypting TLS Records

Wait for full TLS record to be received
Decrypt TLS record payload

Allocate control message and copy TLS header into
message

Discard TLS header and trailer from “norma
holding TLS record

Ensure the mbufs holding TLS record aren’t freed out from
under decryption handler via sbcut(), sbdrop(), or sbflush()

Ensure socket buffer accounting is accurate

I”

mbufs



Splitting the Receive Buffer

Socket Buffer

_

b mtl

> B
-

sb_mb
!
A

|
I




Decrypting a TLS Record

sb mtls

!

_ o o

!

_




TLS Receive: NIC TLS (Sketch)

sb_mtls sb_mb
! !
Decrypted
TLS Record
! !

Out of order
encrypted data



Current Status: Transmit

KTLS Transmit for TLS 1.0-1.3 merged to FreeBSD 13.0-
CURRENT

— Includes SW TLS, NIC TLS, TOE TLS

— ktls_ocf.ko and security/ktls_isa-l_crypto-kmod port/
package

KTLS Transmit for TLS 1.0-1.2 merged to OpenSSL
master (will ship in 3.0)

TLS 1.3 for OpenSSL pending review
— https://github.com/openssl/openssl/pull/10626




Current

KTLS Receive for T
FreeBSD 13.0-CUR

KTLS Receive for T

Status: Receive

1S 1.1-1.2 via TOE merged to
RENT

1S 1.1-1.2 via SW in progress

— https://reviews.freebsd.org/D24628

KTLS Receive for TLS 1.1-1.2 for OpenSSL pending

review

— https://github.com/openssl/openssl/pull/11679




Current Status: nginx

* nginx patches to support SSL_sendfile()

— https://github.com/nginx/nginx/compare/
branches/stable-1.14...bsdjhb:ktls-1.14-openssl-
master

— https://github.com/nginx/nginx/compare/
branches/stable-1.16...bsdjhb:ktls-1.16




Further WIP

Improving KTLS performance using OCF

— Goal is to bring aesni.ko and ktls_ocf.ko on par with
security/ktls_isa-l_crypto-kmod

Adding support for TLS 1.1 (and maybe 1.0)
transmit to SW KTLS via OCF

Ado
Ma

ing support for TLS 1.3 receive to SW KTLS
King OpenSSL KTLS available via base or ports

Add

ing SSL_sendfile() support to nginx port



