
In-kernel	TLS	Framing	and	
Encryp6on	for	FreeBSD	

John	Baldwin	
BSDCan	
June	2020	



Overview	
•  What	is	KTLS?	
•  TLS	Transmit	
•  TLS	Receive	
•  Current	Status	



What	is	TLS?	
•  Transport	Layer	Security	(TLS)	is	an	applica6on	
layer	protocol	

•  Provides	authen6ca6on	and	privacy	
•  Structured	as	a	stream	of	records,	or	frames,	sent	
and	received	over	a	transport	protocol	

•  Includes	handshake	messages	to	nego6ate	
session	keys	and	applica6on	data	messages	to	
tunnel	applica6on	data	



What	is	KTLS?	
•  In-kernel	TLS	(KTLS)	handles	TLS	framing	and	
encryp6on/decryp6on	in	the	kernel	

•  KTLS	does	not	handle	session	key	nego6a6on	
– Userland	library	such	as	OpenSSL	supplies	session	
keys	to	kernel	aQer	handshake	



Why	KTLS?	
Two	reasons	to	handle	TLS	in	the	kernel	
	
1.  Enable	zero-copy	send	over	TLS	via	

sendfile()	
2.  Support	TLS	offload	in	NICs	



TLS	Sessions	
•  TLS	Sessions	describe	session	keys	
–  Ciphersuite	(AES-GCM,	AES-CBC	with	HMAC)	
–  Cipher	and	MAC	keys	

•  SSL	library	provides	session	keys	via	
setsockopt()	

•  TLS	Sessions	are	associated	with	socket	buffers	
–  Separate	sessions	for	transmit	and	receive	



TLS	Transmit	
•  All	data	wri\en	on	a	socket	using	KTLS	transmit	is	
encrypted	by	the	kernel	

•  Userland	can	send	individual	TLS	records	with	a	
specific	record	type	and	length	via	sendmsg()	
–  TLS_SET_RECORD_TYPE	control	message	

•  Kernel	chooses	framing	and	uses	“applica6on	
data”	record	type	for	all	other	data	



TLS	Transmit	
•  TLS	records	stored	in	a	special	type	of	mbuf	
– TLS	header	and	trailer	stored	inline	in	mbuf	
– Payload	data	referenced	via	physical	address	
pointers	

•  Not-yet-encrypted	TLS	record	mbufs	hold	a	
reference	to	a	TLS	session	
– Session	reference	inherited	from	socket	buffer	



TLS	Transmit:	SW	KTLS	

NIC	

Userland	

Kernel	

write()	 Applica6on	Data	

Socket	Buffer	

TCP	Packet	

Unencrypted	(M_NOTREADY)	

Encrypted	



TLS	Transmit:	SW	KTLS	

NIC	

Userland	

Kernel	

sendfile()	

Socket	Buffer	

TCP	Packet	

Disk	
	
	

Per-socket	Copies	



TLS	Transmit:	NIC/TOE	KTLS	

NIC	

Userland	

Kernel	

write()	 Applica6on	Data	

Socket	Buffer	

TCP	Packet	

Unencrypted	



TLS	Transmit:	NIC/TOE	KTLS	

NIC	

Userland	

Kernel	

Socket	Buffer	

TCP	Packet	

sendfile()	

Disk	
	
	

No	Copies!	



TLS	Receive	
•  All	data	received	on	a	socket	using	KTLS	receive	is	
decrypted	by	the	kernel	

•  Userland	receives	individual	TLS	records	via	
recvmsg()	
–  TLS_GET_RECORD	control	message	

•  Socket	buffer	holds	a	list	of	TLS	records	like	a	
datagram	socket	even	though	TCP	is	a	stream	
socket	



TLS	Receive:	TOE	KTLS	

NIC	

Userland	

Kernel	

recvmsg()	 Applica6on	Data	

Socket	Buffer	

TLS	PDU	 Decrypted	



TLS	Receive:	SW	KTLS	

NIC	

Userland	

Kernel	

recvmsg()	 Applica6on	Data	

Socket	Buffer	
Decrypted	

Encrypted	(M_NOTREADY)	

TCP	Packet	 Encrypted	



TLS	&	Socket	Send	Buffers	
•  TLS	uses	send	socket	buffer	in	the	“usual”	way.		It	
is	a	single	“record”	holding	a	stream	of	TLS	
mbufs.	
–  Each	mbuf	describes	a	single	TLS	record	
– Unencrypted	records	are	marked	as	M_NOTREADY	
–  Both	unencrypted	and	encrypted	TLS	records	live	in	
the	same	stream	

–  To	mark	a	record	as	encrypted,	clear	M_NOTREADY	



TLS	&	Socket	Receive	Buffers	
•  TLS	uses	receive	socket	buffer	differently	
–  Decrypted	TLS	records	are	stored	as	“records”	in	socket	
buffer	consis6ng	of	control	message	mbuf	holding	TLS	
header	followed	by	decrypted	data	in	“normal”	mbufs.		No	
trailer.	

–  Encrypted	TLS	records	received	from	TCP	are	just	“normal”	
mbufs	with	TLS	header	and	trailer	data	in	the	mbuf	
payload	

–  Can’t	simply	flip	M_NOTREADY	bit	to	convert	from	
encrypted	to	decrypted	



Decryp6ng	TLS	Records	
•  Wait	for	full	TLS	record	to	be	received	
•  Decrypt	TLS	record	payload	
•  Allocate	control	message	and	copy	TLS	header	into	

message	
•  Discard	TLS	header	and	trailer	from	“normal”	mbufs	

holding	TLS	record	
•  Ensure	the	mbufs	holding	TLS	record	aren’t	freed	out	from	

under	decryp6on	handler	via	sbcut(),	sbdrop(),	or	sbflush()	
•  Ensure	socket	buffer	accoun6ng	is	accurate	



Splifng	the	Receive	Buffer	
sb_mb	sb_mtls	Socket	Buffer	



Decryp6ng	a	TLS	Record	
sb_mb	sb_mtls	



TLS	Receive:	NIC	TLS	(Sketch)	
sb_mb	sb_mtls	

Decrypted	
TLS	Record	

Out	of	order	
encrypted	data	



Current	Status:	Transmit	
•  KTLS	Transmit	for	TLS	1.0-1.3	merged	to	FreeBSD	13.0-
CURRENT	
–  Includes	SW	TLS,	NIC	TLS,	TOE	TLS	
–  ktls_ocf.ko	and	security/ktls_isa-l_crypto-kmod	port/
package	

•  KTLS	Transmit	for	TLS	1.0-1.2	merged	to	OpenSSL	
master	(will	ship	in	3.0)	

•  TLS	1.3	for	OpenSSL	pending	review	
–  h\ps://github.com/openssl/openssl/pull/10626	



Current	Status:	Receive	
•  KTLS	Receive	for	TLS	1.1-1.2	via	TOE	merged	to	
FreeBSD	13.0-CURRENT	

•  KTLS	Receive	for	TLS	1.1-1.2	via	SW	in	progress	
–  h\ps://reviews.freebsd.org/D24628	

•  KTLS	Receive	for	TLS	1.1-1.2	for	OpenSSL	pending	
review	
–  h\ps://github.com/openssl/openssl/pull/11679	



Current	Status:	nginx	
•  nginx	patches	to	support	SSL_sendfile()	
– h\ps://github.com/nginx/nginx/compare/
branches/stable-1.14...bsdjhb:ktls-1.14-openssl-
master	

– h\ps://github.com/nginx/nginx/compare/
branches/stable-1.16...bsdjhb:ktls-1.16	



Further	WIP	
•  Improving	KTLS	performance	using	OCF	
– Goal	is	to	bring	aesni.ko	and	ktls_ocf.ko	on	par	with	
security/ktls_isa-l_crypto-kmod	

•  Adding	support	for	TLS	1.1	(and	maybe	1.0)	
transmit	to	SW	KTLS	via	OCF	

•  Adding	support	for	TLS	1.3	receive	to	SW	KTLS	
•  Making	OpenSSL	KTLS	available	via	base	or	ports	
•  Adding	SSL_sendfile()	support	to	nginx	port	


