
Thomas Munro, BSDCan 2020

thomas.munro@microsoft.com
tmunro@postgresql.org
tmunro@freebsd.org

PostgreSQL on FreeBSD
Some news, observations and speculation

mailto:thomas.munro@microsoft.com
mailto:tmunro@postgresql.org
mailto:tmunro@freebsd.org

Show & Tell — Recent(-ish) work

Patched

PostgreSQL 13: kqueue(2)
Replaces poll(2) for multiplexing waits

• Like similar improvements from adopting epoll(2) on
Linux.

• Dramatically reduces system time on high core count
systems with many active connections (= processes).

• Mostly due to contention on a pipe inherited by every
process, used to control emergency shutdown on
postmaster (parent process) exit without leaking
processes everywhere.

• Very useful also for future work on shared queries that
multiplex large numbers of sockets (and maybe more).

Graphs courtesy of Rui DeSousa; hw.ncpu=88

PostgreSQL 11

Time spent in
sys_poll(),

lock_delay()

PostgreSQL 12, FreeBSD 11.2: PROC_PDEATHSIG_CTL

• We also have non-waiting CPU-bound code paths that want timely notification that the database
cluster is shutting down unexpectedly: mainly the crash recovery loop, also used on read-only
streaming servers.

• Previously we regularly called read() on that contended pipe these CPU bound loops! System
calls aren’t getting cheaper… this turned out to be wasting up to 15% of crash recovery time.
We could probably improve that by simply polling less frequently, but… better idea:

• Brief history of mechanisms to get a signal when your parent process exits:

• IRIX: prctl(PR_TERMCHILD) requests SIGHUP

• Linux 2.1.57: prctl(PR_SET_PDEATHSIG, signo)

• FreeBSD 11.2: procctl(P_PID, 0, PROC_PDEATHSIG_CTL, &signo)

PostgreSQL 12, FreeBSD 12: setproctitle_fast(3)

• PostgreSQL updates the process title frequently to show what it’s doing; administrators like it, and expect it
to be enabled when coming from other OSes.

• This was always a performance problem on FreeBSD but not other systems, because FreeBSD’s
setproctitle(3) made 2 system calls. The port turns it off by default.

• setproctitle_fast(3) restored an ancient BSD code path that did it just by overwriting process memory
(like most (all?) other OSes), requiring the read side ps(1), top(1) etc to do more work to copy it out.

• Reduces the number of system calls a busy database servers makes, for measurable performance boost
(depending; I have seen ~10% improvement of pgbench TPS).

kernel  
`- /sbin/init  
 `- /usr/local/bin/postgres -D /data  
 `- postgres: walsender replication 192.168.1.103(45243) streaming CC/2B717610  
 `- postgres: tmunro salesdb [local] SELECT  
 `- postgres: tmunro salesdb [local] UPDATE  
 `- postgres: tmunro salesdb [local] COMMIT  
 `- postgres: tmunro salesdb [local] idle  
 `- postgres: checkpoint  
 `- postgres: background writer

PostgreSQL 12: Change WAL file behaviour for ZFS

• PostgreSQL traditionally “reycles” 16MB write ahead log files, by renaming
old ones into place. If it can’t to that, it zero-fills new files up front.

• Joyent reported that both of these things make no sense on ZFS, which
overwrites anyway, so you might as well have a fresh inode rather than one
you haven’t touched for ages that might not even be in memory. They
proposed new settings wal_init_zero and wal_recycle to control that.

• This does indeed seem to improve performance, at least on high latency
media (like my home lab spinning disk arrays).

FreeBSD 11.1: fdatasync(2) for UFS

• Like fsync(2), but without the need to write “meta-data”. This means
things like modified time can be lost after a crash, but we save an I/O.
Thanks, kib@. This gives measurable pgbench TPS increases (10%+ on
simple single threaded SSD test; wal_sync_method=fsync|fdatasync).

• Proposed for FreeBSD 13: open(O_DSYNC); saving a system call for some
patterns. D25090.

• Proposed for FreeBSD 13: aio_fsync(O_DSYNC), the asynchronous cousin
of fdatasync(2). D25071.

IPC changes

• PostgreSQL 12 introduced option shared_memory_type=sysv option, because SysV
memory + kern.ipc.shm_use_phys=1 might still provide slightly very slightly higher
performance on some benchmarks than anonymous shared memory (default since 9.3).
(Thanks to kib@ for work done back in 2014 to close the gap; see references at end).

• FreeBSD 11 gained proper isolation of SysV shared memory between jails (even when
not using shared_memory_type=sysv, we use a tiny SysV segment as interlocking
prevent multiple servers clobbering each other). Thanks, jamie@.

• PostgreSQL 10 switched to POSIX unnamed semaphores instead of SysV semaphores,
which can be cache line padded and don’t require frobbing sysctls. (Other BSDs don’t
seem to support shared memory unnamed semaphores yet; we currently only do this
for Linux and FreeBSD.)

FreeBSD 11: Unicode collations

• PostgreSQL makes heavy use of strcoll_l(3).

• Previously, UTF-8 encoded text was not sorted correctly according to national
norms. Thanks to bapt@ and others for merging illumos and DragonFlyBSD
code for this into FreeBSD.

• This is pretty old news by now, but I wanted a chance to highlight it so I could
get a chance to say that I think it would be really neat if other BSDs and
macOS adopted this code!

• (I have some more wish list items in this area — see end of talk.)

I/O — Some ideas

POSIX_FADV_WILLNEED
Poor man’s aio_read(2)

• Sometimes PostgreSQL calls posix_fadvise(POSIX_FADV_WILLNEED) to tell
the kernel about future pread() calls. The setting effective_io_concurrency
controls the maximum number of overlapping advice/read sequences generated by
a single query. Hopefully this avoids stalls and gets concurrent I/O happening.

• Currently this is used to improve Bitmap Heap Scans and some maintenance tasks;
more users of these features are in development, for example to avoid stalls in
recovery (think: something like Joyent’s pg_prefaulter, but built-in).

• Unfortunately this system call only works on Linux and NetBSD to my knowledge.
Entirely absent: macOS, OpenBSD, Windows. No-op stub function: Solaris/illumos.
Present, other hint supported but POSIX_FADV_WILLNEED ignored: FreeBSD, AIX.
Unknown: HP-UX.

POSIX_FADV_WILLNEED for FreeBSD?

• The existing kernel code paths used to prefetch blocks when sequential access is
detected can be easily hooked up to posix_fadvise():

• UFS: define ffs_advise(), call breada() for the range of blocks? Possibly a bit
too naive, need to interact with vfs_cluster.c code to generate larger reads?

• NFS: define nfs_advise(), refactor the existing prefetching code in
ncl_bioread() into its own function ncl_bioprefetch(), and then call it from
both places?

• ZFS: define zfs_advise(), pass through to dmu_prefetch(). Need Linux and
FreeBSD implementations via OpenZFS, devil in the details (memory mapped files,
automated test). A start: https://github.com/openzfs/zfs/pull/9807

https://github.com/openzfs/zfs/pull/9807

sync_file_range(2)? Bugzilla #203891
A Linux system call that is more flexible than fdatasync(2)

• Allows write back of a range of a buffered file, waiting optional. Used by Redis,
MongoDB, Hadoop, PostgreSQL, …

• This allows user space to control the write back rate, distinguishing between
temporary data files that don’t need to be flushed to disk for data integrity purposes,
and those that we know we’re going to call fsync() on as part of a checkpoint.

• It sounds like posix_fadvise(POSIX_FADV_DONTNEED) should work for this
purpose, but that also drops the data from kernel buffers which isn’t necessarily a
side effect we want. Perhaps we need a new thing… UNPOSIX_FADV_WILLSYNC?

• I don’t know enough about ZFS to know if this makes any sense there; I think it
probably makes sense for UFS and NFS.

Power loss atomicity

• PostgreSQL dumps complete images of 8KB* data page into the WAL, the
first time each page is touched after each checkpoint (5 minute, 30 minutes,
…). This avoids a problem with “torn pages” (another solution is the one used
by MySQL: it double writes every data page with a sync in between, so only
one can be torn in a power loss; different trade-offs).

• You can turn this off with full_page_writes=off, but that’s only safe if
you know that the filesystem’s power loss atomicity is a multiple of
PostgreSQL’s page size.

• It’d be really nice if you could ask the kernel!

I/O — Future direction

Real asynchronous and direct I/O
Early investigative work to modernise our I/O layer

• Current thinking is that we should use io_uring on Linux, POSIX AIO on BSDs/
HPUX/AIX (all systems that uses async I/O down to the driver or kernel
threads, but not systems that use user threads like Linux and Solaris, due to
PostgreSQL process-based architecture), and Windows native.

• One open question is whether there is any advantage to using kqueue for
completion notification; it only seems to be supported on FreeBSD, so we’ll
need to support signal based notification anyway.

• Early prototyping on Linux is very promising for performance; finally achieving
device speed, skipping layers of buffering and system calls. POSIX version
not yet started.

Comparative observations

UFS read-ahead heuristics vs Parallel Sequential Scan

create table t as  
select generate_series(1, 2000000000)::int i;  
 
set max_parallel_workers_per_gather = 0;  
select count(*) from t;  
-> 14.5s, ~4000 IOPS, ~128kB/t = ~500MB/s  
 
23080: pread(6,<data>,8192,0x10160000)  
23080: pread(6,<data>,8192,0x10162000)  
23080: pread(6,<data>,8192,0x10164000)  
23080: pread(6,<data>,8192,0x10166000)  
 
set max_parallel_workers_per_gather = 1;  
select count(*) from t;  
-> 35.6s, ~6000 IOPS, ~33kB/t = ~180MB/s

23080: pread(6,<data>,8192,0x10160000)  
23081: pread(9,<data>,8192,0x10162000)  
23080: pread(6,<data>,8192,0x10164000)  
23081: pread(9,<data>,8192,0x10166000)

• Parallel Sequential Scan’s goal is to divide
tuple processing work up by handing out
sequential blocks to parallel worker processes.

• UFS doesn’t recognise this access pattern as
sequential. Linux does, due to read-ahead
“window”. ZFS apparently does too.

• Maybe PostgreSQL is the only software to
have come up with this diabolical access
pattern, due to its process model and lack of
AIO and direct I/O (for now).

• Related: mixing two streams, read and write, in
the same file. D25024 to fix that.

FreeBSD is good at putting stuff in super pages

• Databases touch a lot of data and code randomly, and
benefit enormously from super (huge, large) pages.

• Getting these things to work on many popular
operating systems requires extra configuration and
hoop jumping (Linux: libhugetlbfs, remounting /dev/
shm). This causes FreeBSD to do 5-20% better at
certain kinds of large random memory access tasks
without tuning. Example: Parallel Hash Join, in
shm_open() memory.

• Interesting new research on text segment that
happens to use PostgreSQL (among other
applications) on FreeBSD.

$ sudo procstat -v 91751 | grep -E ' (FLAG|..S..) '
 PID START END PRT RES PRES REF SHD FLAG TP PATH
91751 0x4b0000 0x8e5000 r-x 1037 1690 24 1 CNS-- vn /usr/local/bin/postgres
91751 0x801ecb000 0x886703000 rw- 23810 23810 10 0 --S-- df

FreeBSD doesn’t drop cached data on write back failure

• Historically, PostgreSQL (and MySQL, MongoDB, …) believed it was meaningful to be able
to “try again” if fsync(2) fails during a checkpoint. Now we panic immediately. On some
other systems, but not FreeBSD, if fsync(2) fails then dirty data is evicted. That allows
future calls to fsync(2) to succeed despite doing nothing. Example of transient failure:
ENOSPC reported at fsync(2) time, or EIO reported on some kind of virtualised storage
that recovers.

• Historically, PostgreSQL believed that it was safe to write data, close the descriptor,
reopen it later and then call fsync(2). This seems to be true on some systems including
FreeBSD, but not true on systems that (1) throw away dirty pages due to error during
asynchronous write back and (2) might evict the only record of an error before it’s reported
to user space.

• You see why we’re interested in moving to direct I/O, and owning buffering completely…

Wish list

• Text comparison

• I would like libc to be able to report collation versions, so we could avoid index corruption when the sorting rules
change (Win32 does this, IBM ICU does this, POSIX should do it too!); D17166.

• I wish strcoll_l() didn’t internally expand every string to wide character format, extra malloc() + free().

• I wish there were a way to do strcoll_l() with non-NUL-terminated strings, so you could avoid the need to copy such
strings just to terminate them; strncoll_l()?

• If we knew that strxfrm_l() were bullet-proof we could speed up sorting considerably.

• Port

• I wish we could install postgresql11 and postgres12 at the same time (different install paths).

• I wish libpq5 (the client library) were separate from postgresql12-client.

• I wish we had a port of Debian’s postgresql-common, so you could easily start, stop, copy, create, destroy PostgreSQL
instances; it could probably be extended to support some ZFS magic like fast cloning too.

Thanks for listening!
Some links and references

• On the Impact of Address Translation Overhead (Zhou, Dong, alc@,
Dwarkadas) 
https://www.cs.rochester.edu/u/xdong/ispass-19-final.pdf

• kib@’s 2014 report on PostgreSQL/FreeBSD performance: 
http://kib.kiev.ua/kib/pgsql_perf.pdf

• Attempts to understand what different kernels do with write-back errors: 
https://wiki.postgresql.org/wiki/Fsync_Errors

• A kind of cross-project to-do list: 
https://wiki.postgresql.org/wiki/FreeBSD

https://www.cs.rochester.edu/u/xdong/ispass-19-final.pdf
http://kib.kiev.ua/kib/pgsql_perf.pdf
https://wiki.postgresql.org/wiki/Fsync_Errors
https://wiki.postgresql.org/wiki/FreeBSD

