
smart(8) Update
A Permissively-Licensed

Alternative to smartctl(8)

Chuck Tuffli and
Michael Dexter

EuroBSDcon 2021

smart(8) Genesis

● “Let’s do to smartctl what mandoc did to groff”

● Formally proposed as diskctl(8) in a 2016 AsiaBSDCon paper by Michael

● Inspired by OpenBSD/NetBSD atactl(8), hence the name

● First prototyped (poorly) with camcontrol

camcontrol cmd ada0 -a "B0 D0 00 4F C2 00 00 00 00 00 00 00" \

-i 512 - | od -tx1

0000000 01 00 05 33 00 64 64 00 00 00 00 00 00 00 09 32

0000020 00 63 63 63 02 00 00 00 00 00 0c 32 00 63 63 49...

smart(8) Design Goals

● “The Plural of Regex is Regrets” – smartctl output is neither human nor

machine-readable, though it now supports JSON output

● At a minimum, unambiguous tab-separated values for save and easy scripting

● Extensible output format (text, json, xml, ...) within reason

● Modularity with a portable library for use in say, OpenZFS

● Possibility of OpenZFS syntax... smart -o 5,196,197

● Possibility of exposure via sysctls

● ISC, BSD or MIT-licensed for universal compatibility

smart(8) “Hey, that sounds interesting”

● Chuck had attempted to port NVMe’s SMART to an ATA-oriented application

○ ATA vs. NVMe health reporting data elements vary wildly

○ !@#$ "I don't have time for this" → PUNT

● Is libsmart possible?

○ smart(8) could provide the test platform

○ https://github.com/ctuffli/smart (mirror)

○ FreeBSD ports/pkg : sysutils/smart

https://github.com/ctuffli/smart

S.M.A.R.T. Crash Course

● Brief History

● Your devices to not output anything near what you see in smartctl

● “S.M.A.R.T.” data is either a list, structure, or log pages of numerical values

● Vendors do not agree on the log page values

● A Venn diagram between ATA, SCSI, and NVMe is mostly possible

ATA != NVMe != SCSI

ATA != NVMe != SCSI

● Each protocol retrieves disk health differently

○ ATA : SMART Read Data command

○ NVMe : SMART/Health Information log page

○ SCSI/SAS : Write/Read/Verify/Non-Medium/Last N Error, ... log pages

ATA != NVMe != SCSI

● Content mostly different. Sort of.

○ ATA : Write Error Rate

○ NVMe : Media and Data Integrity Errors

○ SCSI : Write Total uncorrected errors

ATA != NVMe != SCSI

● Standards-based vs. ... not

● NVMe and SCSI : Content of log page(s) defined by standards groups

○ NVM Express Technical Working Group

○ T10

● ATA : no standard(*) / each vendor allowed to

○ decided which attribute ID's to support

○ decide what the attribute ID means

What would I want?

if (protocol == ATA)

 buf = ata_alloc_buf();

else if (protocol == NVME)

 buf = nvme_alloc_buf();

else if (protocol == SCSI)

 buf = scsi_alloc_buf();

What would I want?

if (protocol == ATA)

 buf = ata_alloc_buf();

else if (protocol == NVME)

 buf = nvme_alloc_buf();

else if (protocol == SCSI)

 buf = scsi_alloc_buf();

● Protocol independent structure for

data (“DUMB”)

● Self-describing buffer (“Maps”)

● OS dependent / independent split

What would I want?

if (protocol == ATA)

 buf = ata_alloc_buf();

else if (protocol == NVME)

 buf = nvme_alloc_buf();

else if (protocol == SCSI)

 buf = scsi_alloc_buf();

Dumb Unified Model for smart Buffers (“DUMB”)

ATA NVMe SCSI

How SMART Read Data command SMART/Health Information Log page Write Errors log page
Read Errors log page
Verify Errors log page
Non-medium Errors log page
Last N Errors log page
Temperature log page
Start-Stop Cycle Count log page
Informational Exceptions log page

Elements List of attribute ID’s Packed data structure “Parameter Codes” + packed data
structure

Data Raw value, flags, min, max,
threshold (8-48 bits)

Number (1-128 bits) Numbers (big endian), strings (!@#$)
Variable size

Dumb Unified Model for smart Buffers (“DUMB”)

● Object Model for Health Data

○ List of log pages

○ Page is list of unique attribute ID’s

○ Attributes have a value, description, size, etc.

● "That looks like SCSI"

Page: ID=2, “widget”
[0] = 7, “foo”
[1] = 42, “bar”
[4] = 0, “bike shed”

Page: ID=3, “spatula”
[174] = 6
[180] = 298714029
[181] = 0

Page: ID=13, “antlers”
[0] = 0, “past”
[1] = 1, “present”
[2] = 0, “yet to come”

Object Model Mapping – ATA

● Doesn't have log pages. Use value from Command Feature field

○ E.g. SMART READ DATA (0xd0 or 208 decimal)

● Use Attribute IDs (unique)

● Use returned raw value and divining rod for description(*)

Object Model Mapping – ATA

● Doesn't have log pages. Use value from Command Feature field

○ E.g. SMART READ DATA (0xd0 or 208 decimal)

● Use Attribute IDs (unique)

● Use returned raw value and divining rod for description(*)

smart ada0 | head -3
208 5 0
208 12 73
208 175 0

● Use SMART/Health Information log page ID (0x2)

● Use byte offset of each field as the attribute ID (unique)

● Use value / description as defined by NVMe specification

Object Model Mapping – NVMe

Object Model Mapping – NVMe

● Use SMART/Health Information log page ID (0x2)

● Use byte offset of each field as the attribute ID (unique)

● Use value / description as defined by NVMe specification

smart nda0 | head -3
2 0 0
2 1 309
2 3 100

Bytes Description

00 Critical Warning: This field indicates critical warnings for the state of the controller.

02:01 Composite Temperature: Contains a value corresponding to a temperature in Kelvins

03 Available Spare: Contains a normalized percentage (0% to 100%) of the remaining spare
capacity available.

Figure 207: Get Log Page – SMART / Health Information Log

Object Model Mapping – NVMe

● Use SMART/Health log page ID (0x2)

● Use byte offset of each field as the attribute ID (unique)

● Use value / description as defined by NVMe specification

smart nda0 | head -3
2 0 0
2 1 309
2 3 100

Bytes Description

00 Critical Warning: This field indicates critical warnings for the state of the controller.

02:01 Composite Temperature: Contains a value corresponding to a temperature in Kelvins

03 Available Spare: Contains a normalized percentage (0% to 100%) of the remaining spare
capacity available.

Figure 207: Get Log Page – SMART / Health Information LogNeeds the CAM NVMe driver!

hw.nvme.
use_nvd=

0

Object Model Mapping – SCSI

● Use log page ID

● Use parameter code as the attribute ID (not unique across pages!)

● Use value / description as defined by SCSI specification

Object Model Mapping – SCSI

● Use log page ID

● Use parameter code as the attribute ID (not unique across pages!)

● Use value / description as defined by SCSI specification

smart da0
2 0 0
2 1 108277
5 0 0
5 1 0
6 0 0
13 0 31
13 1 85

Page Code Log Page Name

02h Write Error Counter

05h Verify Error Counter

06h Non-Medium Error

0Dh Temperature

Table 264 Log page codes

Parameter
Code

Description

0000h Temperature (℃)

0001h Reference Temperature (℃)

Table 351 Temperature log page parameter codes

libsmart

“Handle”

● Abstract connection to lower “gunk”

● Device independent / dependent

● Allocated by device layer typedef void * smart_h;

typedef struct smart_s {
 smart_protocol_e protocol;
 smart_info_t info;
 smart_page_list_t *pg_list;
} smart_t;

struct fbsd_smart {
 smart_t common;
 struct cam_device *camdev;
};

Application

Device independent (library)

Device dependent

“Maps”

● Self-describing buffer of attributes

○ Buffer returned by device

○ Number of attributes

○ Array of attributes

typedef struct smart_map_s {
 smart_buf_t *sb; /* Protocol, OS/device buffer, size , count */
 uint32_t count; /* Number of attributes */
 smart_attr_t attr[]; /* Array of attributes */
} smart_map_t;

“Attributes”

● Identifier tuple (page + id)

● Pointer to data

○ Size of data (number of bytes)

○ Flags (big endian, data is a string, ...)

typedef struct smart_attr_s {
 uint32_t page;
 uint32_t id;
 char *description; /* human readable description */
 uint32_t bytes;
 uint32_t flags;
 void *raw;
 struct smart_map_s *thresh; /* Threshold values (if any) */
} smart_attr_t;

Device / OS Abstraction

● Currently for FreeBSD

○ Storage device interface (aka “CAM”) made this easy

● Did a PoC for Windows

○ via openSeaChest (https://github.com/Seagate/openSeaChest)

API Description

open Open a device to gather SMART information

close Close a device and release the associated resources

read_log Read the log page

https://github.com/Seagate/openSeaChest

Library – libsmart

API Description

open open the specified device + return “handle”

close Close the device

supported Does the device support health data?

read Read health data from device and create a “map”

free Deallocate memory used for “map”

print Print health data

print_device_info Print device information (vendor, device, revision)

Application – smart

Usage: smart [-htxidDv] [-a <attribute id>] <device name>

 -h, --help

 -t, --threshold : also print out the threshold

values

 -x, --hex : print the values out in hexadecimal

 -a, --attribute : print a specific attribute

 -i, --info : print general device information

 -d, --decode: decode the attribute IDs

 -D, --no-decode: don't decode the attribute IDs

 -v, --version : print the version and copyright

 --debug : output diagnostic information

● Option processing

● libxo setup / teardown

● SMART library open, print,

free, close

Output Format

● Original motivation, collect values over time

○ Know specific attribute(s)

○ Only need raw value

○ Called via cron(8) or monitoring framework (e.g. Prometheus)

smart --attribute 5 ada0
0

Output Format

● Driven by libxo

libxo – A Library for Generating Text, XML, JSON, and HTML Output
smart --attribute 5 --libxo=json,pretty ada0
{
 "drive": {
 "attributes": {
 "attribute": [
 {
 "raw": 0
 }
]
 }
 }
}

Output Format

{
 "drive": {
 "device": "SAMSUNG SSD PM871 M.2 2280 256GB",
 "rev": "SAMSUNG SSD PM871 M.2 2280 256GB",
 "serial": "S208NXAGA03210",
 "attributes": {
 "attribute": [
 {
 "page": 208,
 "id": 5,
 "raw": 0
 },
 ...
]
 }
 }
}

Output Format

● By popular demand, attribute decode

○ SCSI : text from the specification
○ NVMe : text from the specification, filtered by version
○ ATA : it’s complicated

smart --decode ada0
Reallocated Sectors Count 5 0
Power Cycle Count 12 74
Power Loss Protection Failure 175 0
Erase Fail Count (chip) 176 0
Wear Range Delta 177 11
208 178 0
Used Reserved Block Count Total 179 0
208 180 771

Decoding ATA – smartmon

● SMART attribute structure specified, but not attributes themselves

● Get definitions from each vendor

● Use regex on drive model + firmware revision
"WDC WD(7500BFCX|10JFCX|[1-6]0EFRX|[68]0E[FZ]ZX|(8|10)0EFAX|120EMFZ)-.*"

○ smartmontools

○ Drive database (drivedb.h)

■ 6200 LoC, 28+KBytes

■ GPL

Decoding ATA – smart

● ANSI - INCITS TR-54 – “SMART Attribute Descriptions (SAD)”

● Documents agreed upon definitions

● Future: include text-based drive database

smart --decode ada0
Reallocated Sectors Count 5 0
Power Cycle Count 12 74
Power Loss Protection Failure 175 0
Erase Fail Count (chip) 176 0
Wear Range Delta 177 11
208 178 0
Used Reserved Block Count Total 179 0
208 180 771

Not all ID’s agreed upon 😿

Thank you!

● https://foss.heptapod.net/bsdutils/smart (development)

● https://github.com/ctuffli/smart (mirror)

● FreeBSD ports/pkg : sysutils/smart

● Contact us

chuck@tuffli.net / @ctuffli

editor@callfortesting.org / @michaeldexter

● Questions?

Thank you!!

https://foss.heptapod.net/bsdutils/smart
https://github.com/ctuffli/smart
mailto:chuck@tuffli.net
mailto:editor@callfortesting.org

