Refining FreeBSD's Kernel Crypto
Framework

John Baldwin
BSDCan
June 2022



Overview

What is the kernel crypto framework?
Brief History

Changes in FreeBSD 13

Future Work



What is OCF?

OCF (formerly OpenBSD Crypto Framework, now Open
Crypto Framework) is an interface around crypto
drivers

Supports symmetric operations (encryption,
authentication)

Aimed at supporting in-kernel uses (IPsec, KTLS, GELI)

Does not include “library” APls for direct software
crypto

— Software “drivers” sometimes use these APIs



OCF History

OCF originally ported from OpenBSD to FreeBSD
5.0 by Sam Leffler

Initial version supported IPsec and userland
/dev/crypto interface

Supported asymmetric operations useful for
public-key via /dev/crypto

Contemporary ciphers: DES-CBC, MD5, SHA-1,
Encrypt-then-Authenticate (EtA)



OCF History

* AES-GCM added as an Authenticated
Encryption with Associated Data (AEAD)
algorithm in 11.0 by John-Mark Gurney

* OpenSSL’s engine using /dev/crypto
rewritten in 1.1.0 dropping asymmetric
support



Motivation

 Worked on porting two crypto drivers from
Linux to FreeBSD in 12.0-CURRENT

* Netflix’s KTLS used a home-grown crypto layer
due to OCF performing poorly



State of OCF in 11

e Sessions described by a linked-list of
structures

* Operations described by a linked-list of
descriptors

* Drivers would typically walk the linked-lists
once to determine cipher vs auth before
performing other checks



State of OCF in 11

* AEAD integration was workable, but not always
Intuitive
— Separate algorithms for cipher and auth
— Shared key specified twice for each

— Auth descriptor described AAD, auth was implicit for
cipher descriptor (did not match how EtA worked)

— MAC/tag verified in driver (EtA verified in consumer)



State of OCF in 11

* |V handling was a kind of tri-state to support random
IV’s generated by hardware

— But no drivers in the tree did this

* Crypto session handles shared between drivers and
consumers were integer IDs
— Required drivers to map integer to private pointer for each
operation

— Drivers either used an O(n) loop that did not scale or table
with a lock



What To Do?

From a driver author’s perspective, OCF was clunky and
obtuse

OCF seemed overly flexible

— Arbitrary linked lists of operations

Modern hardware and use cases (IPsec and TLS) were
more constrained

— Combinations of only two operations (AEAD, MtE, EtA)
— Fairly consistent layout of buffers (AAD, 1V, payload, MAC)



Goal: Make OCF Easier to Work With

e As adriver author, | just wanted something less painful

— Replace linked lists with flat structures
— Abstractions around crypto buffers

 Wanted some different flexibility for KTLS

— Separate input/output buffers
— Separate AAD buffers

* Was not aiming for performance
— But reducing complexity might help



One fix in FreeBSD 12

* Crypto session integer ids replaced with opaque
crypto session t type by Conrad Meyer

* Object is a pointer to an allocated structure that
contains a pointer to a driver-private structure
allocated by the framework

— crypto _get driver session

* Replaces locked O(n) lookup in operations with
lock-less O(1)



Session Parameters

* New structure describing session parameters:
struct crypto session params
— Explicit mode (Cipher, Digest, EtA, AEAD,
Compression)
— Algorithms and parameters (e.g. key and MAC lengths)
— Flags for optional features
— Session keys if not using per-op keys



Session Probe

New device driver hook: cryptodev_probesession

Previously, drivers claimed support for algorithms and
OCF assumed combinations like EtA were supported

— Driver would have to fail session creation if unsupported
Driver’s probe hook can check all session parameters

Probe hook returns a bidding value like device probe
routines

— Differentiate accelerated software (e.g. AES-NI) vs co-
processor



Request Structure

* Linked-list of descriptors replaced with new
inline members

— Start and length of AAD, payload, MAC
— Separate |V buffer
— Per-request keys

* Crypto buffer fields moved into separate
structure (still stored inline)



IV / Nonce

* Tri-state removed by moving random
generation out of drivers and into OCF itself

— |V exists either in separate buffer or inline from
driver’s perspective

 crypto read 1iv helper eliminated
copy/pasted code in almost all drivers



Crypto Buffers

New type: struct crypto buffer
Supported flat buffers, iovecs, and mbufs initially

Later extended with array of pages by Alan
Somers

Cursor objects permit iterating over virtual
address ranges in drivers and software backends

New bus_dma method for drivers



Semantic Changes

 AEAD algorithms now have a single algorithm
and key

* Drivers validate EtA MAC during decrypt
operations like AEAD



Testing Drivers

e Testing coverage for drivers was uneven

— NIST KAT tests for AES-GCM and AES-CBC added by John-
Mark Gurney in 11.0

e Useful to have reproducible, simple KAT tests for all
algorithms

* New tool: cryptocheck

— Generates a random buffer, key, and 1V/nonce
— Uses OpenSSL as gold standard

— Can test various AAD and buffer sizes



Later Extensions

Added as new flags in session parameters
— Drivers can opt-in

— Support in software fallback required
Separate input and output buffers
Separate AAD buffer

IPsec ESN added by Semihalf



New Ciphers Added

* AES-CCM (AEAD) for ZFS

* ChaCha20-Poly1305 and XChaCha20-Poly1305
(both AEAD) for TLS and WireGuard



Things Removed

 Asymmetric cryptography (Gone in 14)
— Modern OpenSSL doesn’t use it
— Undocumented
— No software fallback, limited driver support

* Various older ciphers deprecated by industry
(Gone in 13)

— DES, 3DES, Blowfish, MD5 HMAC



Is It Better?

Less duplicated code in drivers

Less “busy” work in drivers (don’t have to intuit
mode from linked-list)

KTLS now uses OCF instead of custom framework

Other developers have added extensions
— Unmapped I/O for GELI (Alan Somers)
— |Psec ESN (Semihalf)



Future Work

e Scheduling of async requests (Mark Johnston
has done some work here, but semantics still
a bit odd)

* Move compression out of OCF

* Split consumer sessions (IPsec) from driver
sessions



Q&A

* Thanks to Chelsio Communications and Netflix
for sponsoring much of my work

e Questions?



