
Dummynet: a simple approach to the evaluation of

network protocols

Luigi Rizzo

1

Dipartimento di Ingegneria dell'Informazione, Universit�a di Pisa

via Diotisalvi 2 { 56126 Pisa (Italy)

email: l.rizzo@iet.unipi.it

Abstract

Network protocols are usually tested in operational networks or in simulated environments.

With the former approach it is not easy to set and control the various operational parameters such

as bandwidth, delays, queue sizes. Simulators are easier to control, but they are often only an

approximate model of the desired setting, especially for what regards the various tra�c generators

(both producers and consumers) and their interaction with the protocol itself.

In this paper we show how a simple, yet 
exible and accurate network simulator { dummynet {

can be built with minimal modi�cations to an existing protocol stack, allowing experiments to be

run on a standalone system. dummynet works by intercepting communications of the protocol layer

under test and simulating the e�ects of �nite queues, bandwidth limitations and communication

delays. It runs in a fully operational system, hence allowing the use of real tra�c generators and

protocol implementations, while solving the problem of simulating unusual environments. With our

tool, doing experiments with network protocols is as simple as running the desired set of applications

on a workstation.

A FreeBSD implementation of dummynet, targeted to TCP, is available from the author. This

implementation is highly portable and compatible with other BSD-derived systems, and takes less

than 300 lines of kernel code.
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1 Introduction

Studies on the e�ectiveness and performance of network protocols are usually done in operational net-

works, and/or through simulations. The former approach is limited by the availability of an operational

network with the desired features. Also, the actual operating conditions (queue sizes, delays, external

tra�c sources) are often unknown and/or not easily controllable. On the other hand, testing in a real

network relieves the researcher from the need of modeling and building the various tra�c sources to

be used in the experiments, as real world applications can be used for this purpose.

Simulations have the advantage of being much more controllable and reproducible. However, a

simulated environment is always just an approximation of the reality; this is especially true for the

various tra�c generators [4] which usually interact with the protocol itself. As an example, consider a

simple FTP transfer over TCP. The 
ow of data is regulated by a number of factors, such as the size
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of windows, the speed of disks at the sender and the receiver side, the CPU load and scheduling of

processes at the two nodes, the acknowledgement generation policy, etc. Such factors are often hard to

model accurately in simulators, possibly resulting in inaccurate or unreliable results. Nevertheless, the

di�culties of setting up a real network with the desired features has stimulated the development of a

number of network simulators, such as REAL [11], Netsim [7, 8] and ns [12]. The x-kernel framework [9]

has also been used for the implementation and testing of network protocols.

In most cases, the aim of experiments on network protocols is to determine their behaviour in a

complex network made of many nodes, routers and links, with di�erent queueing policies, queue sizes,

bandwidths, propagation delays. The di�culty of modeling complex environments often suggests the

use of simpli�ed networks (Figure 1) where the connection under observation goes through a pair of

routers (which model the presence of queues of �nite size) and a bottleneck link with given bandwidth

and delay, modeling the overall bandwidth and delay. Quite often, in experiments on real networks, one

of the routers is modi�ed to act as a \
akeway", introducing arti�cial delays, random packet losses and

reordering. In some cases, the e�ects of bandwidth limitations can be simulated [15]. Still, a couple of

workstations and a bottleneck link or a local network are generally necessary to set up an experimental

testbed.
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Figure 1: Typical settings used in the study of network protocols. The thin line represents the bottle-

neck link.

In this paper we extend the concept of a 
akeway and propose a simple yet very e�ective approach

to insert a model of this simpli�ed network in an operational protocol stack, and run experiments on a

standalone system. Our approach, called dummynet, is applicable to any protocol. It works by simply

intercepting communication between the protocol layer under analysis and the underlying one (Fig-

ure 2), and simulating the presence of a real network with �nite-size queues, bandwidth limitations,

communication delays, and possibly lossy links. The dummynet approach gives most of the advantages

of both simulation and real-world testing: great control over operating parameters, simplicity, abil-

ity to use real tra�c generators. With our tool one can run experiments such as the one mentioned

in [2, 3, 5, 9, 10, 14] on a single workstation, by using unmodi�ed real-world applications (e.g. FTP,

Telnet, Web browsers) as tra�c generators. As a consequence, running an experiment is as easy (and

quick) as running the desired set of applications on a workstation. Since dummynet introduces almost

no overhead in the communication, experiments can be done up to the maximum operating speed

supported by the system in use.

In the next Section we discuss the principle of operation of dummynet and its limitations. A brief

description of an actual implementation is then provided, followed by an example of use and a discussion

of possible extensions.

The work presented in this paper has some similarity with the one presented in [15]. The main



di�erence lies in the fact that our approach allows experiments to be run on a standalone system,

without the need of a network, and can be used to simulate networks with arbitrary topologies, as will

be shown in Section 2.5.
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Figure 2: The principle of operation of dummynet

2 Principle of operation

In a typical protocol stack, each layer communicates with the adjacent ones (Figure 2), where the upper

layer is generally connected to one of the communicating peers, and the lower layer connects to \the

network". In order to simulate the presence of a network between two communicating peers, we need

to insert the following elements in the 
ow of data:

� routers with bounded queue size and a given queueing policy;

� communication links (pipes) with given bandwidth and delay.

Additionally, random packet reordering and losses can be introduced to simulate the unreliability of

real networks. Such features are important when the real network has redundant paths, and/or wireless

or other noisy links (losses due to congestion are better simulated by bounded size queues).

As discussed before, the simplest setting usually includes one or two routers and one pipe. Both

elements can be easily modeled by a couple of queues, rq and pq, inserted between the protocol layer

under observation and the lower layer (Figure 2); a pair rq/pq is needed in each direction of the

communication. In the following, we call k the maximum size of rq, B and t

p

the bandwidth and

propagation delay of the pipe, respectively. The following processing is necessary on tra�c exchanged

between the two layers:

1. when a layer communicates with the next one (above or below), packets are inserted in rq.

Insertions are bounded by the maximum queue size, k, and are performed according to the

queueing policy of choice (usually FIFO with tail-drop, but other policies are possible such as

RED [6]). Random reordering of packets can be introduced at this stage.



2. packets are moved from rq to pq at a maximum rate of B bytes per second. pq uses a FIFO

policy;

3. packets remain in pq for t

p

seconds, after which they are dequeued and sent to the next protocol

layer. Random losses can be introduced at this stage.

Steps 2 and 3 can be performed by running a periodic task with period T , where T is a suitable

submultiple of t

p

. In this case, at each run at most BT bytes are moved from rq to pq, while packets

remain in pq for t

p

=T cycles.
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Figure 3: Structure of a node using dummynet

The resulting system looks like the one in Figure 3: local communication is also subject to the

queueing and delay introduced by the simulated network. Such a simple setting is able to simulate

almost all settings used in the literature where a bottleneck link can be identi�ed, e.g. those used

in [2, 3, 5, 9, 10, 14] to cite only some.

2.1 Applications

dummynet is particularly useful when studying the interactions between protocols and application pro-

grams in unusual or hard-to-reproduce settings. We can identify the following broad classes of appli-

cations:

� debugging. The use of real implementations of all the elements which take part in a commu-

nication can in fact evidence bugs or even unexpected features of the implementations which

would almost unavoidably escape in a simulation (unless explicitly modeled, of course). As an

example, consider a TCP implementation which caches route metrics from previous connections.

Such a system has memory of the previous status of the network, but a simulation might not

model properly this behaviour, hence failing in reproducing the response to sudden changes in

the features of the network.



� study of new protocols. The ability to simulate unusual or hard to reproduce settings eases

the study of new protocols. As an example, such a tool can be used to study the behaviour

of existing or new congestion control mechanisms in presence of bottleneck links (e.g. the slow

modem connections which have become so widespread nowadays, or asymmetric links).

� performance evaluation. As a third broad class of applications, this tool can be used to answer

questions such as \How would my application run over a network with bandwidth B and delay �

?". This is extremely useful for users or developers of, say, conferencing applications or some other

kind of collaborative software, which want to evaluate the performance of a their product before

(or when) setting up a possibly expensive communication link. Di�erently from the previous

applications, in this case simulation is not an option because the performance metrics are often

extremely subjective and the test environment must be as close as possible to the real setting.

Although not its primary purpose, a trivial extension to our dummynet (in order to select tra�c basing

on addresses and ports) allows its use as a simple selective bandwidth limiter for servers which do not

explicitly provide such a feature either in the application or in the operating system itself.

2.2 Limitations

As all simulations of reality, dummynet can only approximate the behaviour of a real system with

given features. Most of the approximations introduced by our tool derive from the granularity and

the precision of the operating system's timer, and in many cases they have little in
uence on the

experiments.

The granularity of the timer, T , limits the resolution in all timing-related measurements. In practice,

this only constitutes a problem when simulating fast networks and short pipes, resulting in an overall

packet delay comparable with T .

A second problem is that the periodic task might be run late, or even miss one or more timer ticks,

depending on the overall system load. In our experiments, however, these events have been extremely

rare even on a relatively slow system running FreeBSD, which is not a real-time OS. Besides, the same

errors a�ect all protocol timers, which are driven by the same clock interrupt.

Finally, it should be noted that events in dummynet (in particular, extractions from queues and

pipes) occur synchronously with the system's timer. In principle, this might hide or amplify some

real-world phenomenona which occur because of race conditions. However, it must be kept in mind

that in a real system there are so many asynchronous events (corresponding to interrupts generated by

external events, e.g. disk or network I/O, console activities, etc.) that the presence of dummynet does

not change the essentially non-deterministic behaviour of a system when analysed with a �ne-grain

(e.g. microseconds) resolution.

When determining packet sizes (needed in the computation of the simulated bandwidth), dummynet

normally uses the size of the payload at the lower layer (IP in our case of dummynet-TCP). It is

straightforward to include link-layer overheads in the computations, if these are known. In particular,

it is possible to simulate the e�ects of link-layer compression, which makes the link appear as a variable-

bandwidth channel.

2.3 Implementation details

We have developed a basic version of dummynet working at the interface between TCP and IP. Our im-

plementation [13] takes less than 300 lines of kernel code in FreeBSD; it intercepts calls to ip output()

made by TCP modules, and those to tcp input() made by the protocol demultiplexer in IP.



Under normal conditions, there is no system overhead for using dummynet. When a TCP commu-

nication occurs, packets are queued according to the description given in Section 2, and a periodic

task is run every T seconds to perform the required queue management. Note that the periodic task

only needs to run when there is data in any of the queues of the system. The only system require-

ment for dummynet is the availability of a timer with a granularity { T { su�ciently small for the

purposes of the simulation. Many BSD-derived systems have a granularity of 10 ms. Some, as in the

case of FreeBSD, allow the use of a di�erent granularity by simply using a kernel compile option, e.g.

option "HZ=1000" sets T to 1 ms, which can be useful for experiments where a higher resolution (or

bandwidth) is required. With current workstations, the overhead deriving from a faster clock rate is

reasonably low.

Since no copies of data are done, and all operations require constant time, the overhead introduced

by dummynet is almost negligible (a few function calls per packet) even when communications are in

progress. It should be kept in mind that the system using dummynet should have su�cient bu�er space

to store both packets in rq (at most k � MSS bytes) and those in transit in the pipe (Bt

p

bytes) in

each direction.

dummynet only intercepts calls between adjacent protocol layers, leaving other tra�c unmodi�ed.

As an example, our implementation of dummynet only acts between TCP and IP, meaning that a system

mounting disks using NFS

1

over UDP can continue to work without performance problems, leaving a

clean simulation environment with only TCP tra�c. Some �ltering rules could also be used, to make

dummynet a�ect only selected tra�c (e.g. TCP tra�c to/from a given port, or all tra�c through a

given interface, etc.)

c)a) b)

Figure 4: Various con�gurations for experiments with dummynet
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dummynet development was done on a completely diskless system, where crashes due to unstable kernels would not

cause annoying disk corruptions



prova# ifconfig lo0 127.0.0.1 mtu 576 # this is to have many pkts per window

prova# ncftp -u localhost

...

ncftp> !sysctl -w net.inet.tcp.dummynet=999900000

--- 0 ms, 9999 KB/s, 0 buffers

ncftp> get 1M a

a: 1048576 bytes received in 0.66 seconds, 1552.17 K/s.

ncftp> !sysctl -w net.inet.tcp.dummynet=20000000

--- 0 ms, 200 KB/s, 0 buffers

ncftp> get 1M a

a: 1048576 bytes received in 6.17 seconds, 166.10 K/s.

ncftp> !sysctl -w net.inet.tcp.dummynet=20000001

--- 1 ms, 200 KB/s, 0 buffers

ncftp> get 1M a

a: 1048576 bytes received in 6.21 seconds, 165.01 K/s.

ncftp> !sysctl -w net.inet.tcp.dummynet=20000050

--- 50 ms, 200 KB/s, 0 buffers

ncftp> get 1M a

a: 1048576 bytes received in 15.53 seconds, 65.96 K/s.

ncftp> !sysctl -w net.inet.tcp.dummynet=20007050

--- 50 ms, 200 KB/s, 7 buffers

ncftp> get 1M a

--- tcp_ip_out drop, have 7 packets (3 times)

a: 1048576 bytes received in 28.01 seconds, 36.56 K/s.

ncftp> !sysctl -w net.inet.tcp.dummynet=20007001

--- 1 ms, 200 KB/s, 7 buffers

ncftp> get 1M a

--- tcp_ip_out drop, have 7 packets (40 times)

a: 1048576 bytes received in 10.88 seconds, 94.09 K/s.

ncftp> !sysctl -w net.inet.tcp.sack=0x10 # enable SACK

ncftp> get 1M a

--- tcp_ip_out drop, have 7 packets (40 times)

a: 1048576 bytes received in 10.14 seconds, 101.01 K/s.

Figure 5: A sample session showing the use of dummynet

2.4 Examples of use

Most features of the simulated network (k, B, t

p

) are controlled by a kernel variable which can be

modi�ed with the sysctl command

2

. Ideally, the operating parameters of the protocol under test (e.g.

MSS, max window size, TCP options in use, etc.), should also be con�gurable at runtime without the

need of rebooting the system; in the case of BSD-derived system they often are via kernel variables.

The simplest way of doing an experiment consists in running a communication between two processes

on the same system. Since the loopback occurs at the end of the pipe (Figure 4a), bu�ering and delays

occur twice, and bu�ers are shared by tra�c in the two directions.

An example of use of this setting is shown in Figure 5, where some FTP transfers are done using

ncftp (we have used this applications because its timings are slightly more accurate than those of ftp).

The system used for the experiments is a Pentium100 with 32MB RAM, running FreeBSD 2.1. Both

client and server run on the same system, together with an X Server and a number of X applications.

2

This is just the low level interface. A trivial C program or shell script can be written to parse a more user-friendly

format such as "dummynet bw 2.6 Mbps queue 30 delay 45 ms"



TCP communications use a 16KB window in this example, so in some cases the throughput is

limited by the window size rather than the available bandwidth. The MSS for the interface is set to a

low value, which limits performance further but allows a larger number of packets to �t in the window

in use. The value of net.inet.tcp.dummynet is given as the decimal number BBBBkkddd, where BBBB

is the bandwidth in KB/s, kk is the queue size, ddd is the value of t

p

in units of T seconds (1 ms in

the experiment). Lines beginning with --- are normally part of the system's log�le.

For each con�guration (except the last three), we show the average throughput value of 10 tests,

to compensate for the variations deriving from concurrent network and CPU activities.

In the �rst test, bandwidth and queue limits are set to a large value in order to determine the

maximum throughput. The second experiment limits the bandwidth to 200KB/s, but the actual

throughput is lower because the channel is shared by data and ACKs, and the TCP header (including

RFC1323 and RFC1644 extensions) consumes a portion of the bandwidth. In the third experiment

a short propagation delay is introduced, which has negligible e�ect on the throughput. Increasing

the delay to 50 ms (making the RTT 200 ms) causes the connection to be limited by the window

size (roughly one window per RTT or 80 KB/s, with various overheads and the cost of slow start

reducing the throughput even further). The next two experiments are run with very limited queue

sizes: here, frequent over
ows occur which reduce the throughput signi�cantly. In the last run, Selective

Acknowledgments are enabled.

In single-system experiments, both communication peers usually run the same implementation of

a protocol (unless the system allows the protocol parameters to be set individually for each process).

Interoperability tests can be done by using two nodes on the same LAN, with dummynet running on

one of them (Figure 4b). This resembles the typical setting for protocol evaluation in real networks,

consisting in two nodes on di�erent LANs connected by one or two routers and a bottleneck link.

Finally, more complex simulation settings can be built by using several systems, some of which use

dummynet con�gured with di�erent parameters (Figure 4c).

One would expect that experiments with dummynet { especially those performed with a single

workstation { are completely deterministic and reproducible, since the behaviour of the network is

simulated. These expectations are wrong, but not because of the presence of our tool: even without

it, a real system is intrinsically not deterministic because of the presence and interaction of many

asynchronous components (e.g. network tra�c, disks and other peripherals). This non-determinism is

less and less evident when the analysis becomes more coarse, but there might still exist some micro-

scopic race conditions which cause a di�erent ordering of events in di�erent experiments with possibly

macroscopic e�ects (e.g. occasional queue over
ows). This is an intrinsic limitation of asynchronous

systems which cannot be overcome by our tool.

2.5 Extensions

Even a very basic version of dummynet, comprising one queue and one pipe, su�ces to run on a single

workstation many of the simulations found in the literature. The addition of a module providing

programmable (random or deterministic) packet losses and reordering is straightforward. The use of

such a module is standard practice in simulations of noisy environments (e.g. wireless networks [1]).

Our tool is not limited to the simulation of networks with a single communication link. More

complex topologies can be modeled by de�ning multiple data structures, each comprising one router,

one pipe and a routing table (a bidirectional link is made of two of these objects).

Figure 6 shows a sample network and the routing table associated to each link. When a packet is

extracted from a pipe, its next destination is computed according to the corresponding routing table.

The ability to assign multiple addresses to one interface (e.g. the loopback interface), present in many

modern systems, permits the simulation of complex topologies involving multiple hosts still using a



standalone system. This extension is relatively straightforward: in the current implementation, adding

a router/pipe pair requires just a few lines of code in addition to the tests required to route tra�c into

the appropriate path. Obviously, con�guring such a setting requires a more powerful mechanism (such

as a dedicated socket type with a special setsockopt() call) than a simple kernel variable.
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Figure 6: A method for building a complex network with dummynet. Each unidirectional link is

associated with a suitable routing table used to determine the next hop for each packet. \TCP" and

\IP" mean that the packet is forwarded to that layer in the protocol stack.

The current implementation of dummynet lacks any automated tool to setup an arbitrary network

topology (basically, producing the routing tables shown in Figure 6) starting from a graphical or textual

description. We are dubious about the real usefulness of such a tool for the following reasons:

� most works in the literature, especially regarding protocol implementation, use the simpli�ed

setting that we have implemented. Thanks to the dynamic con�gurability of k, B and t

p

, most

simulations can be run with just a few command lines; complex runs involving di�erent settings

may be run by using existing scripting languages;

� really complex networks might make the experimental results very hard to interpret, unless the

structure of the network is carefully selected and understood by the researcher. Producing a

low-level description of the network such as the one shown in Figure 6 helps in gaining such a

knowledge.

Traces of the tra�c in the network can be produced by using standard tools such as tcpdump, or by

instrumenting dummynet to log all signi�cant events on queues and pipes. The type of information

which can be collected (and the overhead for collecting it) is very similar to that available from a

simulator.



dummynet ought to be implemented as a Loadable Kernel Module (LKM), so as to ease modi�cations

of the simulated network and di�erent tracing options. Since facilities for LKMs are provided by several

operating systems (e.g. SunOS, FreeBSD, Linux) and dummynet has very little interaction with the

rest of the system, such an implementation poses no practical di�culty.

3 Conclusions

We have shown how experiments on network protocols can be done easily on a standalone system using

real world applications as tra�c generators. Our approach gives the advantages of both real-world

testing and simulation: simplicity of use, high control over operating parameters, high accuracy, no

need for complex hardware settings, no overhead for running simulations. Especially, experiments can

be run using a single workstation and do not require the presence of a real network.

The convenience of use of a system such as dummynet really encourages to make experiment with

di�erent system con�gurations, and to try variations to existing protocols. dummynet is especially useful

when developing completely new protocols, as a suitable testbed might simply not exist. The use of

dummynet can speed up dramatically the analysis and development of protocols, making the simulation

environment readily available in a production environment and easily interfaced with other working

systems.
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