
A Distributed Shared Memory Facilityfor FreeBSD�Pedro Soutoyz and Eugene W. StarkxDepartment of Computer ScienceState University of New York at Stony BrookStony Brook, NY 11794 USAAbstractThis paper describes the design and implementa-tion of a distributed shared memory facility we haveimplemented for the FreeBSD operating system (adescendant of 4.4BSD that runs on the PC architec-ture). Interesting aspects of the design are: (1) theconsistency protocol uses unreliable datagram com-munication, but is robust with respect to messageloss, and in the normal case requires only two data-grams to handle a read fault; (2) the facility providesa simple programming interface that does not requireany socket or network programming to use; (3) thefacility extends the FreeBSD VM system in a verynon-intrusive way.1 IntroductionA distributed shared memory (DSM) facility per-mits processes running at separate hosts on a net-work to share virtual memory in a transparent fash-ion, as if the processes were actually running on asingle processor [LH89]. This is accomplished withthe help of the virtual memory (VM) subsystem,which identi�es page faults on DSM pages and in-vokes the DSM subsystem to retrieve data over thenetwork and perform necessary synchronization.This paper describes the design and implemen-tation of a distributed shared memory system wehave built for the FreeBSD 2.1 operating system, adescendant of 4.4BSD that runs on the PC architec-ture. The following goals were important in shapingthe design of our facility:� A simple client application interface, whichwould be as close as possible to ordinary mem-ory.�Product names used in this publication are used for iden-ti�cation purposes only and may be trademarks of their re-spective companies or organizations.ySupported by a PRAXIS XXI fellowship, from the JuntaNacional Cient���ca e Tecnol�ogica of Portugal.zE-mail address: souto@cs.sunysb.eduxE-mail address: stark@cs.sunysb.edu

� To make the basic DSM read page/write pageoperations as e�cient as possible in the normalcase.� A nice �t with the existing FreeBSD VM sys-tem, with minimal changes to existing FreeBSDkernel code, and providing exibility for exper-imentation with di�erent consistency protocols.The programming model presented to client ap-plications centers around the notion of DSM objects,which are used in a fashion analogous to the use ofmemory-mapped �les. No network or socket pro-gramming is required of an application in order touse the DSM facility. At the kernel level, the no-tion of DSM object �ts together nicely with theVM objects that already exist in the Mach-derivedFreeBSD VM subsystem, enabling us to add theDSM facility to FreeBSD in a very non-intrusivefashion.To achieve e�ciency and low communicationcomplexity, we adopted as a basic design decisionthat unreliable datagram communication (our im-plementation uses UDP) should be used wheneverpossible. The protocol we designed, which is a write-invalidate protocol that ensures sequential consis-tency [Lam79], requires in the normal case only twodatagrams (request and reply) to retrieve a copy ofa page from a remote host, and a total of n+ c+ 1datagrams (or an n-way multicast plus c + 1 indi-vidual datagrams) to obtain write permission on acopy of a page, where n is the number of hosts inter-ested in the object and c is the number of hosts thatactually hold copies of the page. The protocol is ro-bust in the face of loss or reordering of datagrams,though in this case or in the case of contention forpages, additional messages may be required. Mea-surements of basic latencies show that our read pagefault are less than 3 ms, which is within 1.5 ms ofthe best published results [BB93] we know of.The implementation of the DSM facility required

only minimal changes to the existing FreeBSD ker-nel code: only about 100 lines of additions or mod-i�cations were made to previously existing kernel�les. The rest of the system is split between about3000 lines of new kernel code and about 5000 linesfor a user-level DSM server program. The user-mode server implements essentially all aspects of theconsistency protocol, and interacts with the kernelthrough a narrow interface, thus allowing easy ex-perimentation with various consistency protocols.The remainder of the paper describes in more de-tail some of the more interesting aspects of our sys-tem.2 Architectural Overview2.1 Programming ModelOur DSM facility centers around the concept ofa DSM object, which is a virtual address space thatconsists of a sequence of shared pages. A processwishing to access a DSM object must �rst obtainfor that object: (1) a UID, which uniquely iden-ti�es that object among all other DSM objects inthe world, and (2) the network address of a DSMserver that knows about that object. A UID isobtained either by requesting the creation of a newDSM object, or else by receiving the UID of an exist-ing DSM object through some communication chan-nel outside the DSM facility. Network addresses areobtained by similar means. Once a process has theUID of a DSM object, and a corresponding serveraddress it requests to attach to the object, using asystem call provided for this purpose. After attach-ing to the object, the process uses another systemcall to map pages from the DSM object into its ownvirtual address space. When a process has �nishedaccessing a DSM object, it asks to detach from theobject; in response to this request the DSM facilitydeletes any existing mappings of that object. The at-tach/map/detach paradigm for DSM objects is anal-ogous to the open/map/close paradigm for memory-mapped �les. It is also quite similar to what is pro-vided by the System V shm [ATT90] shared memoryfacility for interprocess communication.Once a process has mapped DSM pages into itsvirtual address space, normal memory references tothe mapped virtual addresses are used to access datain the DSM object. As usual, such memory ref-erences will cause a page fault if either the corre-sponding page is not resident in physical memory,or else the page does not have the appropriate ac-cess permissions set. When a page fault occurs fora virtual address that has been mapped to a DSMobject, the kernel page fault handler dispatches a re-quest to the DSM subsystem. The DSM subsystem

handles this request, communicating, if necessary,with DSM servers elsewhere in the network eitherto obtain a copy of the page to be read, or else tosynchronize with the other servers to ensure that awrite operation can be performed on a page withoutviolating data consistency guarantees. Once the re-quired communication and synchronization has beenperformed, the DSM subsystem responds to the pagefault handler, and the faulting process is allowed tocontinue.An important feature of the above programmingmodel is that processes using the DSM feature donot have to contain any code for communication overthe network. The only aspect of network program-ming that shows through the interface is the net-work address required initially to attach to a DSMobject, however, this network address can be treatedopaquely, as simply a string of bits that is passed tothe kernel as an argument to the attach request.2.2 System Structure and Kernel Inter-facesThe DSM subsystem has a client/server struc-ture, and contains both kernel and user-level com-ponents. The overall organization is depicted in Fig-ure 1. Clients are the user-level application processesthat make use of the DSM facility. Arbitrarily manyclients can run on a single host computer. To sup-port the DSM operations of the clients, a single DSMserver process runs on each host computer provid-ing DSM service. The DSM server is also a user-level process, though it is a privileged process thatmakes use of special DSM system calls provided bythe kernel. The kernel portion of the DSM subsys-tem consists of (1) DSM pager code, which runs onbehalf of a client process as a result of a page fault,(2) client system calls, which allow clients to attach,map, and detach DSM objects as described above,and (3) server system calls, which provide the DSMserver process with the access to the VM system itneeds to carry out its function.As described above, the kernel page fault han-dler invokes the DSM pager code in response to apage fault by a client process involving a virtual ad-dress that has been mapped to a page in a DSMobject. The DSM pager does not itself performany communication or synchronization with remoteDSM servers. Instead, it sends a request datagramto the local DSM server indicating the type of ser-vice that is required, and then sleeps awaiting a re-sponse. The local DSM server receives and handlesthis request datagram, possibly communicating withDSM servers elsewhere in the network as a result.When the required communication and synchroniza-tion has been performed, and any requested DSM

User level

DSM PROTOCOL
SERVER

PROCESS

DSM
PAGER

SERVER
PROCESS

DSM
PAGER

Client Interface
System Calls

Server Interface
System Calls

Server Interface
System Calls

CLIENT
PROCESS

Client Interface
System Calls

CLIENT
PROCESS

HOST A HOST B

User level

Kernel level Kernel level

Figure 1: General architecture of the DSM facility.data is available in local physical memory, the DSMserver uses a special system call to awaken the clientprocess sleeping in the DSM pager. The special sys-tem call is used so that the DSM server can wakeup clients directly in the kernel, instead of requiringevery client application to contain code for receivingand interpreting reply datagrams from the server.To simplify the structure of the DSM server pro-gram, no attempt is made by the server to keep trackof the status of client operations in progress and toensure they succeed. Thus, it is possible that a re-quest sent by the local DSM server to a DSM serveron a remote host might fail to elicit a response fromthe remote host; this failure in turn would mean thatthe local server might never respond to the clientthat issued the request. In such a situation, the onusis on the client to get things moving again: if the lo-cal DSM server fails to awaken the client processafter a suitable interval, the client times out fromthe kernel sleep routine and resubmits the requestto the server.The client system call interface consists of thefollowing system calls (Figure 2a): dsmcreate,dsmattach, dsmdetach, dsmmap and dsmwait.The dsmcreate call takes as an argument a sizein bytes, and causes a new DSM object of that sizeto be created. The UID of the newly created objectis returned. The dsmattach call takes as argumentsthe UID of a DSM object and the network addressat which a server who knows about that object canbe contacted, and it arranges for the calling processto become attached to the speci�ed DSM object.The return value indicates success or failure. Thedsmdetach call takes the UID of a DSM object asits single argument, and it causes the calling processto become detached from the speci�ed object. The

dsmcreate, dsmattach, and dsmdetach system callsare not actually executed in the context of the clientprocess. Rather, they cause a request datagram tobe sent to the local DSM server, who performs therequested service and returns a response to the clientwaiting in the kernel.The client dsmmap call is identical to that of thepreviously existing mmap call, used to memory map�les, except that dsmmap requires the UID of a DSMobject to be supplied instead of a �le descriptor. Inspite of the overlap between dsmmap and mmap, wechose to keep them separate in the current imple-mentation to avoid modi�cations to existing code.The dsmwait call is used by a client process to avoidexpensive busy waiting on DSM data. It takes asarguments the UID of a DSM object and the o�setof a particular byte in that object, and it causes thecaller to sleep as long as it can be guaranteed thatthe data byte at that o�set has not been changed. Assoon as this guarantee can no longer be made (for ex-ample, if a remote host obtains write permission onthe page containing the particular byte), the serverawakes the client, which returns to user mode.The server system call interface consists of thefollowing system calls (see Figure 2b): dsmservice,dsmcreate, dsmdelete, dsmrespond, dsminvalid,dsmwritepage, dsmsendpage, and dsmrecvpage.The dsmservice call is used by the DSM server pro-cess on startup to identify itself to the kernel, to pre-vent any other DSM server processes from starting,and to enable access to the remaining server calls.The dsmcreate and dsmdelete calls are used to in-form the kernel of the creation and deletion of a DSMobject. The dsmrespond call is used by the serverto wake up a client process sleeping in the kernelwhile awaiting DSM service. The DSM server uses

int dsmcreate(int size);

int dsmcreate(int size);
int dsmdelete(int objid);
int dsmrespond(int responseid, int result);
int dsmwritepage(int objid, off_t offset);
int dsminvalid(int objid, off_t offset);
int dsmsendpage(int objid, off_t offset, dsm_data_packet_t dpkt,
 struct sockaddr *addr, int len);
int dsmrecvpage(int objid, off_t offset);

b) Server system call interface.

int dsmattach(int objid, struct sockaddr *addr, int len);

caddr_t dsmmap(caddr_t addr, int len, int prot, int flags, int objid, off_t offset);
int dsmwait(int objid, off_t offset);

a) Client system call interface.

int dsmdetach(int objid);

int dsmservice(int socket);

Figure 2: System call interface.the dsmwritepage call to tell the kernel that it issafe to write enable a particular page of DSM data.The dsminvalid call causes the kernel to invalidateany copies it may have of a particular page of DSMdata, so that subsequent attempts by clients to ac-cess these pages will fault. Finally, the dsmsendpageand dsmrecvpage are called by the server to sendand receive a page of DSM data over the network.System calls are provided for this in order to enablethe transmission and reception of DSM data directlyfrom or to the appropriate page of physical memory,so that the user-level server process never touchesthe actual DSM data. Without these calls, send-ing a page of DSM data to a remote host would be amuch more costly operation involving the copying ofdata from the kernel to the server process' addressspace, then copying the data back into the kernelfor transmission over the network, followed by thereverse sequence at the destination host.Note that although the system call interface pro-vides several logically separate system calls, in factthe implementation uses only one actual system en-try, dsmsys(), which dispatches on its �rst argumentto invoke the appropriate function. This schemesaves system call numbers and is similar to the sys-tem call interface of System V shared memory.In the �rst version of our system, the DSM serverexecuted completely in the kernel, similar to whatoccurs in the NFS network �le system. This wasdone for e�ciency reasons, and because at the out-set we did not have a clear picture of what sortof kernel interface would be required for a user-level server. Unfortunately, the complexity of the

server data structures and storage management is-sues were such that it became too di�cult to com-pletely debug a kernel-mode server. In fact, one ofthe most di�cult aspects of the server implementa-tion was implementing a suitable reference countingscheme for DSM data structures, so that DSM re-sources would be reclaimed automatically when noprocesses were using them any more. To aid in de-bugging, we decided to reimplement the server asa user-level process, which communicates with thekernel through the narrow, system call interface justdescribed. This interface is largely independent ofthe details of the consistency protocol, a feature wehave found very useful while re�ning and debuggingour particular protocol.3 Details of the Kernel DSM Subsys-temAn important design goal for our DSM facilitywas to have it mesh nicely with the structure of theFreeBSD VM system, and to require minimal modi�-cations to existing code. We feel we were reasonablysuccessful at meeting this goal; in the rest of thissection we describe in more detail some of the moreinteresting aspects of the design.The FreeBSD virtual memory system is based onthat of 4.4BSD [MBKQ96], which in turn is derivedfrom that of Mach (Figure 3). A fundamental con-cept in the Mach VM system [Tev87] is the conceptof a VM object, which consists essentially of a place-holder for a sequence of physical pages, together withan associated pager, which is a set of functions thatcan be invoked to retrieve data from a backing store,

VM Object

Mapping

User or Kernel
Address Space

Physical
Page

PagerFigure 3: Simpli�ed view of the Mach VM architec-ture.such as a swap area, a �le, or a hardware device. Aprocess obtains access to the data in a VM objectby mapping some or all of its pages into its addressspace. Typically a process has only a few mappingsof VM objects at a time, but actually there is nolimit on the number of mappings or the number ofVM objects whose pages are mapped.In the FreeBSD VM system, the allocation ofphysical memory pages for a VM object is decou-pled from the mapping of the object into a process'address space. Physical pages only need to be allo-cated in a VM object when an attempt is actuallymade by a process to access data at an o�set in aVM object for which no page has yet been allocated.Such an attempt produces a page fault, and the pagefault handler not only allocates a physical page forthat data, but also invokes the pager to retrieve thedata from backing store. The stock FreeBSD VMsystem supports three di�erent types of pagers: aswap pager, which manages the swap area, a vnodepager, which is used to page data to and from disk�les, and a device pager, which is used to page datadirectly to a hardware device. Additional types ofpagers are easily de�ned.Our DSM facility was designed to take advantageof the existing FreeBSD VM subsystem. Each DSMobject contains an underlying VM object. Mappinga DSM object into a process' address space amountsto simply mapping the underlying VM object. Tosupport the fetching of data over the network, weintroduced a new type of pager, called a DSM pager.When a fault occurs on a memory address that ismapped to a page in a DSM object, the page faulthandler invokes the DSM pager. The DSM pagerdetermines the status of that page by checking data

structures maintained by the DSM subsystem, andthen requests the local DSM server to perform anycommunication or synchronization required to bringa copy of the data into local physical memory, andto write enable it, if necessary.At the rather coarse level of detail of the descrip-tion so far, the interaction of the DSM facility withthe page fault handler seems quite simple. Howeverthere are some technical issues that make things abit more complex than they seem at �rst. First ofall, the stock FreeBSD page fault handler is an ex-tremely complex routine involving many subtle syn-chronization issues. In order to avoid a di�cult de-bugging task, and to make it easier to track futurereleases of FreeBSD, we wanted to modify as littleof the page fault handler as possible. Some modi-�cation to the page fault handler was necessary, be-cause whereas the DSM pager needed to be informedas to whether a read fault or write fault was beinghandled, the pager interface in FreeBSD did not con-tain any provision for passing this information to thepager from the page fault handler.A second technical issue was that the DSM sub-system had to be responsive to requests from thepageout daemon to clean pages of physical memory.The obvious thing for the DSM pager to do whenasked to clean a page would be to write it to theswap area. However, I/O to the swap area has tobe asynchronous to avoid blocking the pageout dae-mon, and since there was already an existing swappager that contained the complicated code neces-sary to perform this asynchronous I/O, we wantedto make use of it if possible.A third issue was how the user-level DSM servercould arrange for DSM data stored at the local hostto be transmitted over the network, even if this datahappens to currently reside in the swap area.To understand how we dealt with the above tech-nical issues, it is necessary for us to describe onemore feature of the FreeBSD/Mach VM system. Inthe FreeBSD VM system, VM objects can be linkedtogether in so-called \shadow chains," which have aspecial signi�cance to the page fault handler. Whena page fault occurs for a page mapped to the �rstobject in a chain, the page fault handler �rst con-sults the associated pager (if any) for that object,to try to handle the fault. If the pager for the �rstobject fails to handle the fault, then the page faulthandler tries the second object in the chain, andso on. Thus, each object in such a chain serves asa \backing object" for the preceding object, in thesense that if a page is not found in the precedingobject, an attempt is made to obtain the page fromthe next object. In the original literature [Tev87]

describing this scheme, each object in a chain is saidto be a \shadow" of the next object. However, thisterminology has turned out to be very confusing, sowe prefer to use the \backing object" terminologyinstead.A major purpose of the chains of VM objectsin FreeBSD is to support \copy-on-write" for e�-cient forking. However, for the DSM facility we usethese chains in a di�erent way (Figure 4), which wenow describe. We have already mentioned that eachDSM object has an underlying VM object, which isthe actual target of mapping operations by a pro-cess. This underlying object has an associated DSMpager, which encapsulates knowledge of how to ob-tain pages over the network and how to synchronizewith the DSM subsystem at remote hosts. In addi-tion, when a DSM object is created, we also create asecond VM object that serves as a backing object forthe �rst, so that underlying a DSM object is alwaysa chain of two VM objects. The pager associatedwith the backing object is not a DSM pager, butrather a swap pager.When a page fault occurs for an address mappedinto a DSM object, the normal operation of the pagefault handler is to check the �rst of the two under-lying VM objects to try to obtain the page. Whenthe DSM pager associated with the �rst object is in-voked, it determines: (1) that no copy of the page isavailable at the local host, or (2) that a copy of thepage is locally available, but it might be paged outlocally to the swap area. In case (1), the DSM pagersends a datagram to the local DSM server request-ing the transfer of a copy of the page to the localhost, and it sleeps awaiting the arrival of the page.In case (2), the DSM pager returns a failure indica-tion to the page fault handler, which then moves tothe backing object. The page fault handler either�nds the requested data already in physical mem-ory mapped from the backing object, or else invokesthe swap pager associated with the backing objectto bring the data in from the swap area.The utility of the two-element chain underlyinga DSM object becomes evident when one considershow to implement the \pageout" operation of theDSM pager. Rather than having the DSM pager per-form a complicated algorithm for asynchronous I/Oto the swap area, in response to a \clean" requestfrom the pageout daemon, the DSM pager simplycopies the data from the �rst object in the chainto the corresponding position in the second object.This doesn't immediately free up physical memory,but if there is a high demand for memory, the page-out daemon will eventually ask the swap pager asso-ciated with the second object in the chain to clean

its page, in which case the data will be written tothe swap area using the standard pageout code.Thus, the two-element chain of VM objects un-derlying each DSM object permits the DSM systemeasy access to the normal swap area, with hardlyany additional code required. This organization alsopays o� when the DSM server wishes to transmit toa remote host DSM data that has been paged outlocally. As discussed above, transmission of DSMdata is accomplished by the special dsmsendpageserver system call, to minimize the number of copiesof a page's data when sending that page to a remoteserver. This system call simply maps the page ofthe �rst object in the two-object chain into the ker-nel address space, and then copies data from thatpage to the network subsystem. If the page hap-pens not to be resident in physical memory, a pagefault will occur, and since the DSM pager does nothave the page, the page fault handler will follow theobject chain and �nd the page in the backing object.Similarly, the reception of DSM data makes useof the special dsmrecvpage server system call, tominimize the number of copies of DSM data duringreception. This system call temporarily maps thephysical page, which was allocated when the pagefault �rst occurred, into the kernel address spaceand copies the data from the network subsystem tothat page.To support the scheme described above, the ker-nel needs to have a certain amount of informationabout the state of the DSM subsystem. In particu-lar, the kernel keeps a data structure for each DSMobject that points to the associated VM objects, andkeeps track of the location and status (available lo-cally/available remotely, resident/nonresident, writeenabled/write protected) of each page in the object.It also keeps a list of pending DSM requests fromclients, so that the proper client process can be iden-ti�ed and awakened when the DSM server respondsto such a request. The kernel does not need to knowanything about the particulars of the DSM protocolor about remote sites participating in the DSM pro-tocol; this is entirely the responsibility of the user-level DSM server process.4 DSM ProtocolThis section describes the DSM protocol executedby our user-level DSM server processes. Essentially,there are two related protocols: (1) a membershipprotocol, which keeps track of hosts that are cur-rently interested in accessing a DSM object, and (2)the consistency protocol, which is executed by hostswishing to read or write pages in DSM objects. Theconsistency protocol is executed frequently: every

Page

Network

Shadow Chain

Mapping

User or Kernel
Address Space

Backing
VM Object

Local
Swap

Swap Pager

DSM Pager

VM Object

Physical

Figure 4: Use of object shadow chains by the DSM facility.time a host requires an up-to-date copy of a DSMpage or needs to obtain write permission on a page.The membership protocol is executed less frequently,but it must be reliable in the sense that the correct-ness of the consistency protocol depends on the accu-racy of the information maintained by the member-ship protocol. For e�ciency, the frequently executedconsistency protocol uses unreliable datagrams in allsituations but one. On the other hand, the less-frequently executed membership protocol uses re-liable datagrams for all communications, where byreliable we mean that a timeout/retransmit schemeis used to guarantee delivery, and ordering of data-grams between each pair of hosts is maintained usinga sequence numbering scheme.To explain the protocol, we �rst need to introducesome preliminary concepts and terminology. When aDSM object is �rst created, the only host that knowsabout that object is the host at which the object iscreated. This host is called the object manager, andit plays a special role in some aspects of the DSMprotocol. Application processes at other hosts be-come informed about the existence of a DSM objectby receiving its UID via some form of communica-tion outside the DSM system. The �rst time anapplication process at a host tries to attach to theDSM object, the DSM server at that host applies tothe manager of the object for membership in the ob-ject; that is, it asks to be added to the list of all hoststhat are currently interested in that object. Whenthe manager grants membership to a new member,it informs all previous members about the new mem-ber, and it informs the new member of the current

membership list, so that each member of a DSM ob-ject knows at all times who all the other membersare. Members of an object can resign their member-ship at any time; in this case a message is sent tothe manager, who informs the remaining membersabout the change.The consistency protocol belongs to the class ofprotocols that Li [LH89] calls \dynamic distributedmanager algorithms with page invalidation." Just aseach DSM object has a manager, each page withina DSM object has an owner. However, unlike theobject manager, which is �xed at the time the objectis created and never changes, the owner of a pagechanges during execution. Initially, the manager ofan object owns all pages in the object. Each time ahost receives write permission on a page in an object,it becomes the owner of that page. The owner of apage has the responsibility of safeguarding the datain a page, until it has determined which host will bethe next owner and has successfully transferred thedata to that host.Each host that is a member of a DSM objectmaintains the following state information for the ob-ject as a whole: (1) the number of local clients at-tached to this object; (2) the identity of the objectmanager; (3) the object UID; (4) the current mem-bership list for the object; (5) the size of the object,in bytes and pages.In addition, for each page in the object, the fol-lowing state is maintained: (1) an \owner hint" in-dicating who the current owner of that page mightbe; (2) a \version hint" indicating the current ver-sion number of the page; (3) a \copies hint" indi-

cating how many copies there might be of the page;(4) a ag indicating whether this host has a copy ofthe page; (5) a ag indicating whether this host haswrite permission on the page.The purpose of the owner hint for a page is totry to route requests for a page quickly to the DSMserver that has the most recent data for that page.This hint may become stale, but the protocol guar-antees that the host mentioned in the hint is alwayscloser to the actual owner than the host holding thehint. Furthermore, the owner hint is always accu-rate if the host currently has a copy of the page.The version hint is used to �lter out datagrams re-ceived out of order, which, if processed, might leadthe system to an inconsistent state. The copies hintis an estimate of the number of copies of the pagethat exist. This estimate is conservative in the sensethat the estimate held by the owner of a page is al-ways at least as large as the actual number of copiesin existence.There are two basic operations of the DSM proto-col: READ (reading a page) and (WRITE) writinga page. We now discuss these operations in somedetail.4.1 Reading a PageFigures 5a) to 5c) show three interesting cases of aREAD operation. Figure 5a) shows a simple READ,in which the host wishing to obtain a copy of a pagehas an accurate owner hint, and no messages arelost. In this case, only two messages are required:a READ message from the requesting host to theowner, and a DATA reply from the owner. This isthe situation we expect to occur most frequently inactual execution. Note that because all messagesexchanged in the consistency protocol use unreliabledatagrams, there are no hidden acknowledgments orother messages, and so exactly two messages are re-quired to read a page in this situation.A slightly more complicated case is when theowner hint held by the requesting host is stale. Inthis case, the host that receives the READ messageuses its own hint to forward the message toward theactual owner, as depicted in Figure 5b). The DATAreply goes directly to the requesting host, who up-dates its owner hint upon receipt. Since owner hintsare updated whenever a host receives new informa-tion about the owner of a page, we expect thatREAD messages will generally be forwarded only afew hops.Figure 5c) shows a scenario in which a DATAmes-sage is lost. In this case, a timeout at the requestinghost (by a process sleeping in the DSM pager code)triggers the retransmission of the READ message.

This mechanism may lead to the reception of mul-tiple DATA messages containing the same data. Todetect this situation, DATA messages include thecurrent version number of the page, and a host re-ceiving a DATA message discards the message if theversion is either older than the most recent versionof which the host is aware, or the same as the versionof any currently held copy. To provide quick errorrecovery, but to avoid ooding the system with re-transmitted READ messages in case of heavy load,we use an exponential backo� scheme with an up-per bound to increase the timeout value in casethe READ message has to be retransmitted severaltimes.4.2 Writing a PageWe use a write-invalidate strategy to ensure se-quential consistency. That is, before the DSM serverat a host allows a client process to modify a page,it invalidates all copies of that page that exist atremote hosts.In order for a host to initiate a WRITE opera-tion, it is �rst required to have a copy of the cur-rent version of the page. If it wishes to perform aWRITE, but it does not have a current copy, it �rstexecutes a READ operation to obtain a copy as de-scribed above. There are two reasons for requiringa host wishing to write to have a current copy: (1)it ensures that the host knows the current owner ofthe page, and (2) it ensures that subsequent messageloss during the WRITE operation cannot cause theloss of the data in the page.Our protocol for writing a page has some uncom-mon features not usually found in protocols of thistype. First, the owner of a page keeps track only ofthe number of copies of that page, rather than theactual identities of the hosts that have those copies.Second, whereas in all the similar protocols that weknow of the write part of the protocol has two dis-tinct operations: the ownership transfer operationand the remote copies invalidation operation, in ourprotocol the transfer of ownership and the invalida-tion are combined into a single operation.Figure 6a) shows what we expect to be the mostcommon case of the WRITE operation, in whichthere are only a few copies of the page, the owner'scopies hint is accurate, and only one host is at-tempting to write the page. In this situation, thehost wishing to write multicasts a WRITE mes-sage to every host in the current membership listfor the DSM object containing the page to be writ-ten. When a member receives the WRITE mes-sage, it updates its owner hint to point to the hostthat issued the WRITE message, and then, if andonly if it has a copy of the page, it invalidates that

READ

READ

READ(fwd)

DATA

a) b) c)

Owner Owner Owner

READ

DATA

READ

DATA

DATA

Figure 5: Read operation of the DSM protocol.copy and responds with a WRITEOK message. TheWRITEOK message sent by the current owner ofthe page implicitly carries with it a transfer of own-ership of that page to the requesting host, who, uponreceipt of such a message, becomes the new owner,and issues an acknowledgment to the previous ownerto release it from any further ownership responsibil-ities. The WRITEOK message sent by the previousowner also includes a copies hint, which is then usedby the new owner to determine when all the remotecopies of the page have been invalidated. Speci�-cally, the new owner knows that all copies have beeninvalidated when the number of WRITEOK mes-sages it has received is equal to the copies hint itreceived in the WRITEOK message from the previ-ous owner.As it is absolutely essential that there be no ambi-guity about whether ownership has been transferred,the previous owner must wait for its WRITEOKmessage to be acknowledged, retransmitting theWRITEOK if necessary, before continuing with anyother activity regarding this page. The WRITEOKfrom the previous owner to the new owner is theonly reliable datagram used in the consistency pro-tocol. However, observe that the acknowledgementmessage used by the reliable datagram service is notin the critical path, as the new owner does not haveto wait for the acknowledgement to reach the previ-ous owner.Figure 6b) illustrates what happens in the case ofwrite contention; that is, when two or more hosts tryto write the same DSM page at the same time. Whenthe owner of the page processes the �rst WRITEmessage for that page, it invalidates its copy of thepage and replies with a WRITEOK. If it later seesa WRITE message from some other host for thesame version of the page, it simply discards the later

WRITE message. This ensures that only one hostwill become the owner of the next version of thepage, and consequently at most one host will begranted the right to write that page.A host trying to write a page also discards anyWRITE messages it receives. This is necessary, be-cause the only alternative would be for the host toinvalidate its copy of the page, but then the pagewould be lost if the host should happen to be grantedownership by the previous owner. Thus, without anyspecial provisions, a deadlock could result when twohosts try to write the same page and each stead-fastly refuses to invalidate and send a WRITEOKto the other. To handle this situation, a host startsa timer when it �rst multicasts a WRITE message.If, by the time the timer has expired, it has receivedownership of the page but has not received enoughWRITEOK replies, it multicasts a PURGE messageto the membership list. Upon receiving a PURGEmessage, every member is obligated to invalidate anycopy it holds, to update its owner hint to point to thesender, and to reply to the sender with a WRITEOKmessage. If insu�cient WRITEOK messages are re-ceived after a suitable period, the owner of the pagemulticasts another PURGE message. This scenariorepeats until the owner is sure that all pages havebeen invalidated.To be sure that all copies of a page are actuallyinvalidated, the host issuing a PURGE message hasto be able to distinguish WRITEOK messages sentin response to the initial WRITE message, and alsoin response to subsequent PURGE messages. Forthis purpose, the host maintains a \phase counter,"which is an integer variable that is incremented ev-ery time the server multicasts a new set of WRITEor PURGE messages. Each such message includesthe value of the phase counter, which the recipient

Owner

WRITEWRITE

WRITEOK

ACK

a)

WRITE

WRITE

PURGE

WRITEOK

b)

Owner

WRITE

WRITE

PURGE

WRITE

WRITEOK
ACK

WRITEOK

PURGE

WRITEOK

WRITE

WRITEOK

PURGE

Owner

WRITEOK

WRITE

ACK

c)Figure 6: Write operation of the DSM protocol.echoes back in the WRITEOK response.Another requirement for correctness of the proto-col is that it should not lead to cycles in a page'sowner chain. To satisfy that requirement, once aPURGE message has been processed for a version ofa page, a host must not again update its owner hintfor that page in response to a WRITE message forthe same version of that page. Actually, our proto-col uses the following stronger policy concerning theupdates of owner hints: after processing a WRITEor PURGE message for a version of a page, a hostwill not again update its owner hint for that page inresponse to a WRITE message for the same versionof that page. However, even if a host has previouslyreceived a WRITE message for a version of a page,it will still update its owner hint for that page inresponse to a PURGE message for a version of thatpage, as long as it is not aware of a more recent ver-sion of the page than that speci�ed in the PURGEmessage.As mentioned previously, the copies hint held bythe owner might not be accurate. For example, dueto a slow network or a slow server, a host mightretransmit a READ message before it receives theDATA response sent by the owner of the page inresponse to the original READ message. Since theowner does not keep track of the identity of hoststo which it sent copies of the page, it has no choiceupon receiving a retransmitted READ message butto send another DATA message and increment itscopies hint to maintain a conservative estimate. Thisleads to a possibility that a subsequent WRITE op-eration will deadlock, due to the fact that it will beimpossible to obtain enough WRITEOK messages.Eventually, the host wanting to write will time outas described above. If the host has become the ownerby the time the timeout occurs, it will multicast a

PURGE message as already described. However,there exists the possibility, due to a slow networkor slow response from the previous owner, that bythe time the timeout occurs, the host wanting towrite has not yet become the owner. In this case,that host simply retransmits the WRITE messageto the owner of the page, whose identity it knowsbecause the fact that it has a copy of the page meansthat its owner hint is accurate. Figure 6c) illus-trates such a scenario, in which the previous ownerhas an inaccurate copies hint and the WRITEOKit sends is slow in arriving at the host performingthe WRITE. When the retransmitted WRITE mes-sage arrives at the previous owner, it discards it be-cause the WRITEOK has already been sent. Even-tually, the host performing the WRITE will timeout again. By this time, however, it has receivedthe WRITEOK from the previous owner, and thuswill proceed to a PURGE operation as above.In summary, the basic write protocol just de-scribed consists of a sequence of phases: an initialWRITE phase, then zero or more phases in whichthe WRITE message is retransmitted to the ownerof the page, then zero or more PURGE phases.Message loss has basically the same e�ect forwrite operations as does uncertainty about the num-ber of copies of a page: the server does not receiveenough WRITEOK messages and consequently can-not be sure whether its copy of the page is the onlyone in the system. Thus, the mechanisms used tohandle inaccuracy of the copy hint also handle theloss of messages.In order to reduce the write time, we use one op-timization that is worth mentioning. As shown inFigure 6c), a very slow network or host can trig-ger a new WRITE/PURGE phase, due to the latearrival of a WRITEOK message at the host perform-

ing the WRITE/PURGE operation. If the situationpersists, the host performing the WRITE/PURGEoperation will never receive enoughWRITEOKmes-sages for a phase before its timer for that phase ex-pires. To prevent such a scenario, a host performinga WRITE operation keeps track of the WRITEOKmessages received for a �xed number of previousWRITE/PURGE phases, and it accepts WRITEOKmessages sent in the scope of any such phase, eventhough it might have initiated several new phases.5 Experimental Results and Discus-sionWe have run reasonably rigorous tests of the con-sistency protocol using some simple exerciser pro-grams, and we have measured some basic perfor-mance parameters. In this section, we describe theresults of these tests. Important testing that we havenot yet done is to use the system for a realistic ap-plication.In order to evaluate the performance of our im-plementation, we performed two sets of experiments:one to determine the basic costs of handling read andwrite faults on DSM pages, and another to assessthe scalability of our protocol. In these experimentswe used PC's each with either Pentium 75 MHz orPentium 100 MHz microprocessors, with 256 Kbyte\write back" second level cache and 16 Mbyte ofmain memory. These machines are interconnectedby an 100 Mbps Ethernet via a SMC EtherPower10/100 adapter, which sits in the PCI bus and sup-ports DMA.To determine the costs of both read and writefaults, we ran a simple \ping-pong" exerciser pro-gram in which two clients running on di�erent hostsalternately write a DSM page in such a way thatthe page bounces back-and-forth between the two,and there is no write contention. Table 1 showsboth the minimum values and the average valuesover 100,000 operations, for both the read and writetimes, measured at the kernel level on machines with75 MHz processors. The read times give the actualtime taken to handle a read fault by a client pro-cess. The write times include only the time taken toexecute the invalidation protocol { in general, han-dling a write fault may also require an initial readoperation to obtain a local copy of the page beforebeginning invalidation.These results are encouraging, they are within 1.5ms of the best published values that we know of[BB93], which were measured on a kernel implemen-tation using a network subsystem specially designedfor performance that accesses the network interfacedirectly, bypassing the UDP and other communica-

tions software layers. Note however, that the valuespresented in that paper were measured using IBMRISC System/6000 Model 530, which run with aclock frequency of 25 MHZ, interconnected by point-to-point 220 Mbps optical �ber network.It is worth mentioning that a \ping" (ICMP echorequest/response) between the machines we used inour experiments takes on average 0.44 ms, and themessages exchanged in a ping neither traverse theUDP layer nor are they processed at user level. Webelieve that improved performance would result dueto reduced IPC costs, if the DSM server were movedinto the kernel.Table 2 shows the breakdown of both the readand write faults times (again, these are averagesover 100,000 operations). The IPC times, RD IPCand WR IPC, measure the time from the momentthe DSM pager sends a request to the local DSMserver to the time that server starts processing thatrequest. Thus it includes the time to send a mes-sage to the local host, the time needed for a con-text switch, the time to receive the message from asocket, the time spent by that message in a queue ofmessages in the DSM server, and the time requiredto do some preprocessing of the message. For thisexperiment, the message queue at the DSM serveris empty, so the message is processed immediately.The DSM server times, RD SRV and WR SRV, arethe times taken by the server to satisfy the DSMpager request; that is, the times taken to get a pagefrom a remote server or to invalidate copies of thepage in remote servers.To assess the scalability of our algorithms we mea-sured the time to invalidate the remote copies of apage under conditions of no contention and whenthe number of copies of the page is equal to thenumber of members of the object. As one wouldhope, the invalidation time depends roughly linearlyon the number of remote copies: our measurementsshowed a constant overhead of 1.3ms, plus an ad-ditional 0.4ms for each copy to be invalidated, overthe range of 2 to 11 remote copies. Note that ourcurrent implementation sends out WRITE messagessequentially. We expect that using a multicast facil-ity for this would decrease the per-copy overhead.We also ran some experiments under conditions ofhigh write contention. These experiments revealedtwo potential problems with our current protocol.First, the slower machines (the 75MHz processors)tended to starve in favor of the faster machines (the100MHz processors). The second problem, whichwas exacerbated by the �rst, is that the simple time-out/retransmit policy with exponential backo� wecurrently use to handle message loss and deadlock

Read Writeminimum time (ms) 2.7 2average time (over 100,000 values) (ms) 2.9 2.2Table 1: Basic read and write times measured at kernel level.RD IPC RD SRV WR IPC WR SRVaverage time (ms) 0.58 2.1 0.57 1.4Table 2: Breakdown of the read and write times shown in Table 1.situations did not adapt well to varying loads, re-sulting in a large number of retransmitted messagesunder conditions of high contention. We are consid-ering ways of improving the timeout heuristics, andof modifying the protocol to alleviate the starvationproblem.A basic aspect of our design that we did not eval-uate experimentally was our decision to use UDPrather than TCP for the consistency protocol. Wecontinue to feel that any simpli�cations in the proto-col that might be a�orded by the use of TCP as anunderlying reliable communications protocol wouldbe more than o�set by the overhead of additionalacknowledgements, the loss of control over the re-transmission policy, and the need for an additionalsoftware layer to re-implement a message-based com-munication model on top of the stream-based TCPprotocol. In addition, the use of TCP would notallow us to take advantage of multicast support pro-vided by IP. In spite of the above, to validate our be-lief in the superiority of datagrams over streams asan underlying protocol, it would probably be worth-while to perform some experiments in which we com-pare the performance of the UDP-based version ofour protocol with a reasonably similar TCP-basedversion.Another interesting question concerns the impacton paging performance of our scheme for \pageout"of DSM pages by copying the data to the secondobject in the shadow chain. It is possible that the\second chance" this scheme gives to pages contain-ing DSM data could have unforseen interactions withthe pre-existing page replacement policy. To exam-ine these questions, we would have to test our systemwith a realistic application, under conditions thatwould cause heavy pageout to the disk. We havenot yet performed such tests.6 Related WorkResearch in the area of DSM systems has beenvery intense and there is an extensive literature[Esk96]. We compare our system to other soft-ware DSM implementations that support a sequen-

tial consistency model. The main points that wefeel distinguish our facility are: (1) The consistencyprotocol is a lightweight, distributed protocol, whichuses unreliable datagrams, but which is robust withrespect to message loss, reordering, or duplication.(2) The facility is for a version of Unix (FreeBSD2.1) for which source code is readily available andwhich runs on commodity hardware. (3) The cleaninterface between the user-level server and the ker-nel should facilitate experimentation with a varietyof DSM protocols.Most of the �rst implementations of softwareDSM systems, including that of IVY [Li88], the DSMsystem for Clouds [RK89] and Mirage [FP89], wereimplemented in operating systems di�erent fromUnix and the consistency protocols used assumedreliable communications. Mether [MF89] is the ex-ception among early implementations. It is a kernellevel implementation of DSM for SunOS 4.0. Al-though it uses UDP, it relies on HW support forerror correction. A more recent implementation ofMirage [FHJ94], although for the AIX operating sys-tem, uses reliable communication services. Further-more, every page request has to be sent to the page'smanager, which sends it to the current owner of thepage.The DSM systems described in [FBS89] and[AAO92] take advantage of the VM external pagerinterface provided by Mach and CHORUS micro-kernels, respectively. The consistency protocol ofMach's DSM uses only a point-to-point reliable com-munication service, in contrast to ours which usesmulticast and unreliable communication services.Chorus's DSM uses one of Li's dynamic managerdistributed algorithms with page invalidation [LH89]but the authors do not specify which and their de-scription of the protocol is rather incomplete. Inaddition, they do not provide details with respect tothe kind of communication services used for IPC. Asdoes our DSM system, Chorus' DSM supports pag-ing out pages to disk, but, in contrast to our system,paging out is handled by the object manager.Both DVSM6K [BB93], a DSM system developed

for AIX v3, and the DSM system developed for theTOPSY multicomputer [SWS92] have an architec-ture very similar to that of our system. However,the latter was designed for a distributed memorymultiprocessor system using a multiprocessor oper-ating system, and DVSM6K assumes that the com-munication system provides reliable communication,i.e. in-order delivery, no message loss and no datacorruption.7 Conclusion and Future WorkIn this paper we described a DSM facility,supporting a sequential consistency model, forFreeBSD, a freely and widely available version ofUnix. We believe that this facility meets most ofour design goals. The consistency protocol is alightweight protocol that uses only UDP/IP, but isnevertheless tolerant to both message reordering andmessage loss. We were able to de�ne a very sim-ple client application interface based on the Unixmmap() interface. One of the most successful as-pects of our design is its smooth integration into theVM subsystem of FreeBSD, which required very lit-tle in the way of modi�cations to existing code. Webelieve that it should be possible, with minimal ef-fort, to port this code to other Unix systems, suchas OSF/1, with Mach-based VM subsystems.Besides improving the performance of our systemin ways that have already been discussed, we areinterested in using the facility for real applications.We are especially interested in the idea of using DSMas a tool for programming distributed applications,rather than for concurrent computation, which hasbeen the focus of most DSM research.8 System AvailabilityWe are making our code available to anyone in-terested under a Berkeley-style copyright and li-cense. The code may be obtained via the URL:http://www.cs.sunysb.edu/~ stark/, or by mail-ing to one of the authors.9 AcknowledgementsWe wish to thank Professor Tzi-cker Chiueh formaking his laboratory facilities available to us, aswell as the other members of the Experimental Com-puter Systems Laboratory for their generous coop-eration in the sharing of these facilities.References[AAO92] V. Abrosimov, F. Armand, and M.I. Or-tega. A Distributed Consistency Serverfor the CHORUS System. In Proc.of the Symposium on Experiences withDistributed and Multiprocessor Systems

(SEDMS III), pages 129{148. USENIX,March 1992.[ATT90] ATT. UNIX SYSTEM V Release 4 -Programmers Guide: System Servicesand Application Packaging Tools. UnixPress, 1990.[BB93] Marion L. Blount and Maria Butrico.DSVM6K: Distributed Shared VirtualMemory on the RISC System/6000.In Proc. of the 38th IEEE Interna-tional Computer Conference (COMP-COM Spring 93), pages 491{500. IEEE,February 1993.[Esk96] M. Rasit Eskicioglu. A Comprehen-sive Bibliography of Distributed SharedMemory. Operating Systems Review,30(1):71{96, January 1996.[FBS89] A. Forin, J. Barrera, and R. Sanzi. TheShared Memory Server. In Proc. ofthe Winter 1989 USENIX Conference,pages 229{243. USENIX, January 1989.[FHJ94] B. D. Fleisch, R.L. Hyde, and N. C.Juul. MIRAGE+: A Kernel Imple-mentation of Distributed Shared Mem-ory on a Network of Personal Comput-ers. Software - Practice and Experience,10(24):887{909, October 1994.[FP89] B. D. Fleisch and G. J. Popek. Mirage:A Coherent Distributed Shared MemoryDesign. In Proc. of 12th ACM Sympo-sium on Operating Systems Principles(SOSP'89), pages 211{223, December1989.[Lam79] L. Lamport. How to make a multipro-cessor computer that correctly executesmultiprocess programs. IEEE Transac-tions on Computers, C28(9):690{691,September 1979.[LH89] Kai Li and Paul Hudak. Memory Co-herence in Shared Virtual Memory Sys-tems. ACM Transactions on ComputerSystems, 7(4):321{359, November 1989.[Li88] Kai Li. IVY: A shared virtual memorysystem for parallel computing. In Proc.of the 1988 International Conference onParallel Processing, pages 94{101, Au-gust 1988.

[MBKQ96] Marshall Kirk McKusick, Keith Bostic,Michael J. Karels, and John S. Quarter-man. The Design and Implementation ofthe 4.4 BSD Operating System. AddisonWesley, 1996.[MF89] Ronald G. Minnich and David J. Far-ber. The Mether System: DistributedShared Memory for SunOS 4.0. In Proc.of the Summer 1989 USENIX Confer-ence, pages 51{60. USENIX, June 1989.[RK89] U. Ramachandran and M. Y. A. Kha-lidi. An Implementation of Distribu-ted Shared Memory. In Proc. of theWorkshop on Experiences with Distribu-ted and Multiprocessor Systems, pages21{38. USENIX, October 1989.[SWS92] T. Stiemerling, T. Wilkinson, andA. Saulsbury. Implementing DVSM onthe TOPSY Multicomputer. In Proc.of the Symposium on Experiences withDistributed and Multiprocessor Systems(SEDMS III), pages 263{279. USENIX,March 1992.[Tev87] Avadis Tevanian. Architecture-Indepen-dent Virtual Memory Management forParallel and Distributed Environments.PhD thesis, Department of ComputerScience, Carnegie Mellon University,December 1987.

