Malloc(3) revisited

Poul-Henning Kamg
The FreeBSD Project

ABSTRACT

malloc (3) is one of the oldest parts of the C languaggremment and not surprisingly the
world has changed a bit since it was first comeki Thefact that most UNIX kernels ka
changed from sap/sgment to virtual memory/page based memory management has not been
sufficiently reflected in the implementations of the malloc/free API.

A new implementation was designed, written, tested and bench-marked with an eye on the
workings and performance characteristics of modern Virtual Memory systems. It @korks

Introduction

All but the most trivial programs need to allocate
storage dynamically in addition to whege static
storage the compiler reserved at compile-tinkzo-
gramming languages generally come in threeotles
on this point: those which handle&hide it for the pro-
grammey those which don’alow for it and the C
programming languageAs with so maw other things
the C ervironment hands the programmer all thes ra
bits to play with, and does very little to peat the
programmer from making mistakes.

A modern UNIX kernel preides three means for
dynamic memory allocation: thexeeution stack and
the heap, anthmap (2).

The Stack

The stack is usually put at the far upper end of

the address-space, from where it growwmo as fr
as needed.
text data bss | heap stack

increasing addresses

There is no real kernel interface to the stack as
such. Thekernel will allocate some amount of mem-
ory for the stack, usually noven telling the process
the exact amount. The process will simply try to
access whater it needs, expecting the kernel to
detect the access outside the allocated memory and
treat this as a request fortension. Ifthe kernel &ils
to extend the stack, either because of lack of
resources, lack of permissions or because it may just
be plain impossible to do in the first place, the process
will usually be shot down by the kernel with a termi-
nal signal.

IThis work was not sponsored by yody Poul-Henning
Kamp was supported by his own daytime. jdde would
have loved to do his for some sponsors mgniestead.

2A few nostly obsolete CPU designs can be considered an-
tipodic in this respect.

In the C language, there exists a little used inter
face to the staclalloca (3), which will explicitly allo-
cate space on the stack. This is not a interface to the
kernel, ut an adjustment done to the stack pointer
such that space will bevalable and unharmed by gn
subroutine calls yet to be made while the ceointd
the current subroutine is intacAs a consequence of
this design, there is no need for an actual "free" opera-
tor. The space is returned auto-magically when the
current function returns and the stack frame is disman-
tled. Thisasymmetry is the cause of much grief, and
probably the single most important reason that
alloca(3) is not, and should not be, widely used.

mmap (2).

When hardwre architectures which prided
paging becamevailable, a nev APl was added which
gives the programmer detailed controven the indi-
vidual pages in the proceds The API has tw pri-
mary functionsmmap (2) andmunmap (2) as well as
some auxiliary functions.Unfortunately most pro-
grams do not allocate memory in page-sized chunks,
so this interface is usually only used in specialised and
system applications. One typical and probably the
most widespread use in terms of number of calls to
this APl is shared libraries.

The heap

The heap is anxéension of the data segment of
the process, it starts at the end of ltke section and
extends upwrds. Thestorage in the heap area is
explicitly allocated with the system cddik (2). which
takes one argument: a pointer to where the process
wants the heap to endlhelibc library also provides a
function layered on top dirk (2) calledsbrk (2) which
takes as gjument a (signed) increment to the current
end of the heap.

3To the extent the érnel implements this API that idNot
all kernels implement more than the bare minimum.

Thekernel and memory

Brk(2) is a very incovenient interface, for most
day-to-day uses it is completely impossible to use it.
It is easy to allocate memory with it, but you can only
free it agin in aLIFO order As so nary other things
in UNIX, it was probably defined based on what the
kernel had to offer rather than a theoretical study of
what programmers needed.

Before paged and/or virtual memory systems
became common, the memory managemeuatlity
used for UNIX was ggments. Thiswas dso very
often the only wailable vehicle for imposing protec-
tion on various parts of memonDepending on the
hardware, segments can bey#tring, and consequently
how the kernels exploited themaned a lot from
UNIX to UNIX and from machine to machine.

Typically a process would ka ane segment for
the text section, one for the data and bss section com-
bined and one for the stack.

data
bss
heap

text stack

increasing addresses >
In this setup all thdrk(2) system call needs to
do is to find the right amount of free storage, possibly
moving things around in pfsical memory maybe
even swapping out a segment or vmo make Pace,
and change the upper limit on the datansent
according to the address/gn.

In a more modern page based virtual memory
implementation this is still pretty much the situation,
except that the granularity is wopages. Thekernel
finds the right number of free pages, possibly paging
some pages out to free them up, and then plugs them
into the page-table of the process.

Only very fav programs deal with thérk(2)
interface directly The fav that do usually hae their
own memory managementadilities. LISP, MOD-
ULA-3 or FORTH interpreters and runtimes are good
examples. Mostother programs use thealloc(3)
interface instead, and fea it to the malloc implemen-
tation to usebrk(2) to get storage allocated from the
kernel.

40n some systems thexteshared a segment with the data
and bss, and was consequently just as writable as them.
Some people will remember the undocumented way of com-
piling awk (1) programs: gien the right optionawk(1)
would load and parse the program and then write the address
space from the start of the text to the top of the heap into a
file. Anotheroption read this file back in. This reduced the
startup time because the program was already parsed into in-
ternal form. The initial version of this hack ditimork on
machines where the text segment could not be written to.
TeX and GNU-emacs are other programs whictvénased
similar methods for similar reasons.

_end

Malloc(3), realloc(3) and free(3)

The archetypical malloc(3) implementation
keeps track of the memory between the end of the bss
section, as defined by thend symbol, and the cur
rentbrk(2) point using a linkd list of chunks of mem-
ory. Each item on the list has a status as either free or
used, a pointer to the next entry and in most cases to
the previous as well, to speed up inserts and deletes in
the list.

| | | | | |

brk
When amalloc(3) request comes in, the list is
traversed from the front and if a free chunk big enough
to hold the request is found, it is returndfithe free
chunk is bigger than the size requested, & free
chunk is made from the excess and put back on the
list. Whena chunk isfree(3)’ed, the chunk is found
in the list, its status is changed to free and if one or
both of the surrounding chunks are freeythes col-
lapsed to one.

A third kind of requestrealloc(3), will resize a
chunk, trying to woid copying the contents if possible.
It is seldom used, and has only had a significant
impact on performance in awespecial situations.
The typical pattern of use is toalloc(3) a chunk of
the maximum size needed, read in the data and adjust
the size of the chunk to match the size of the data read
using realloc(3), or alternatiely, to dlocate with
malloc (3) a chunk which can handle adarfraction
of the requests, and if this mes insuficient, reallo-
cating withrealloc (3), possibly seeral times, until the
necessary amount of memory has been obtained.

For reasons of &tiengy, the original implemen-
tation ofmalloc (3) put the small data structure used to
contain the ne and previous pointers plus the state of
the chunk right before the chunk itself. As a matter of
fact, the canonicamalloc(3) implementation can be
studied in the “Old testament”, chapter 8 verse 7

Various optimisations can be applied to the
abore kasic algorithm:

 If when freeing a chunk, we end up with the last
chunk on the list being free, we can return that to the
kernel by callingbrk (2)with address of that chunk
and then mak the previous chunk the last on the
chain by terminating its “nextpointer.

* A best-fit algorithm can be used instead of first-fit at
an expense of memgqrpecause statistically feer
chances tdrk (2)backwards

» Splitting the list in two, one for used and one for
free chunks, to speed the searching.

* Putting free chunks on one of v&eal free lists,

5Kernighan & Ritchie: The C programming language

depending on their size, to speed allocation.
* &c &c &c

Theproblems

Even thoughmalloc(3) is a lot simpler to use
than the rav brk(2) interface, or maybe xactly
because of that, a lot of problems arise from its use.

» Writing to memory outside the allocated chunk.

» Freeing a pointer to memory not allocated by mal-
loc.

 Freeing a modified pointer.
Freeing the same pointer more than once.

» Accessing memory in a chunk after it has been
free(3)’ed.

The handling of these problemsvieatadition-
ally been weak.A core-dump was the most common
form for “handling’, but in rare cases one coulgpe-
rience the dmous “malloc: corrupt arerig.or smi-
larly informative messages right before the core dump.
Much worse though, ery often the program will just
continue, quite possibly gng wrong results or weird
behaviour.

An entirely diferent kind of problem is normal
sloppy thinking: The manual pages clearly state the
memory returned bynalloc (3) can contain gnvalue,
and that one shouldxplicitly initialise the memory
before use. Unfortunately moserkels, correctly so,
zero out the storage therovide with brk (2) for secu-
rity reasons, and thus the storagpalloc(3) return
happen to be zeroed in nyanases as well, so pro-
grammers are not particular apt to notice that their
code depends on malloc’ed storage being zero.

Malloc (3) has somehat deserved the reputation
it has gotten for being the first of “the usual suspécts’
to round up when programs act weird.

Alternative implementations

Detecting some or all of these problems was the
inspiration for the first alternag malloc implementa-
tions. Sincetheir main aim was debugging, the
would often use techniques ékdlocating a guard
zone before and after the chunk, usually filling these
guard zones with some known predictable pattem

detects if the first reference is a read (whicbuld
return undefined alues) and other such violations.
Purify is a commercial product of high quality and
priced to reflect this.

Later actual complete alternai implementa-
tions of malloc arsied, but mag of these as well as
the code which sat comfortably in the libc library of
FreeBSD, still based their ofkings on the basic
schema mentioned pieusly, oblivious to the &ct
that in the meantime virtual memory and pagingeha
become the standard véronment rather than ge
ments.

The most widely useddlternative” malloc is
undoubtedly ‘gnumalloc’ which has receed wide
acclaim and certainly runs faster than most stock mal-
locs. It does, hwever, just like nost other malloc
implementations, he a tndeng to fare badly in
cases where paging is the norm rather thanxbepe
tion.

The particular malloc that prompted thionk
basically didnt bother reusing storage until therkel
forced it to do so by refusing further allocations with
sbrk(2). Thatmay male €nse if you work alone on
your avn personal mainframe, but as a general polic
it is much less than optimal.

In order to select a candidate amongst the-v
ous &ailable free implementations of malloc, | tried to
benchmark them from end to othdrhis was done on
a tiny laptop with only 8MB ofRAM 7, and it soon
transpired that as soon &\M was over-committed
things went downhill verydst. Thisprompted me to
study what ‘performance’ meant for a malloc imple-
mentation.

Performance

Performance for enalloc (3) has tvo sdes:

A) How much time does it use for searching and
manipulating data structure§Ve will refer to this
as “overhead”.

B) How well does it manage the storage. This rather
vague metric we call “quality of allocation”.

The orerhead is easy to measure: Just do a lot of
malloc/free calls of arious kinds and combination,
and compare the resultsThis is unfortunately the

that write accesses outside the allocated chunk could most common basis for systematic comparison of mal-
be detected as changes to these patterns with someloc implementations! say “unfortunately’ because it

decent probability Another widely used technique is
to use tables to keep track of which chunks are actu-
ally in which state and so on.

This class of debugging has beenetako its
practical extreme by the produt®urify’’ which does
the entire memory-colouringxercise and not only
keeps track of what is and what ism use, but also

6Amongst the man creative patterns areOXDEADBEEFR
0XxCOFEBABE OXxDEADDEAD and so on.

should be obvious to anybody that if you cavesast
one disk access, you can do almost anything yau lik
to your internal data structures forvemal millisec-
onds and still come out being faster in the efid.
compound this wersight, most people who & com-
pared malloc implementations veadne so on sys-
tems where RAM was nower-committed, and conse-
qguently the implementations abilities in this aremeha

A ‘‘GateWay 2000 Handbook”, too bad thelon't make
them anymore.

not been measured.

The "quality of allocation" metric tries to mea-
sure this aspectlt is actually horribly compbe to
measure. lrfiact, the only manageableay to measure
it is to run some compkeand deterministic test cases
on a system where RAM isver-committed, measure
the time it took and use that as the metric.

To design an algorithm on the other hand, an
analytical attack is needed. Here is the one | used in
the design of my malloc implementation:

One indicator of this quality is the size of the
process, that should obviously be minimis@chother
indicator is the xecution time of the process. This is
not an obvious indicator of quality for mallocutb
people will generally agree that it should be min-
imised as well, and ifmalloc(3), as we will see
shortly, can do anything to do so, it should.

In a traditional sgment/svap lernel, because the
entire process will either be swapped out to disk or be
resident in RAM, the desirable behaviour of a process
is to keep theébrk(2) point as lav as mssible, thus
minimising the size of the data/bss/heamnsent,
which in turn translates to a smaller process and a
smaller probability of the process being swapped out.
QED: faster recution time as anvarage.

In a paging environment this is not a bad choice
for a default, bt a couple of details needs to be ledk
at much more carefullyFirst of all, the size of a pro-

out. Fromthe point of viev of the OS it should be
tuned to maximise the total throughput of all the pro-
cesses running on the machine at that time. This is
usually done using various kinds of least-recently-
used replacement algorithms to select page candidates
for replacement.

With this miniature analysis, we can define the
performance goals for a modemalloc (3) implemen-
tation asMinimise the number of pages accessed.

This really is the core of it alllf the number of
accessed pages is smaltken locality of reference is
higher and all kinds of caches (which is essentially
what the primary storage in a VM system is) work bet-
ter.

It's interesting to notice that the classical malloc,
and most of the alternaéis available, fail decisiely
according to this criteriaThe information about free
chunks is kpt in the free chunks themse$s Inother
words, &en though the application as such do not
need these chunks of memgailye malloc implementa-
tion still does, and consequently those pages if paged
out, will not stay there longer than till thexteall to
malloc (3) orfree(3) needs to trarse the free-list.

In some of the benchmarks this came out as all
the pages being paged ivery time a malloc call as
made. Thismade as much difference as a factor of
five in wall-clock time for certain scenarios.

The secondary goal is morevident: Try to

cess becomes a more vague concept since only thework in pages. That males it easier for theeknel,

pages that are actually used need to be in primary stor
age for &ecution to progress, and thenly need to be
there when used. That implies that manore pro-
cesses can fit in the same amount of primary storage,
since most processesvieaa ligh degree of locality of
reference and thus only need some fraction of their
pages to actually do their jolrom this it follows that

the interesting size of the process is a subset of the
total amount of virtual memory occupied by the pro-
cess. Thisubset isi’a mnstant. livaries depending

on the whereabouts of the process, and it may indeed
fluctuate wildly wer the lifetime of the process.

One of the names for this vague concepfisr-
rent working set’ This is a most horribly ill-defined
number but for nov we can simply say that it is the

number of pages the process needs in order to run at a

acceptable v paging rate in a congested primary
storage. Ifthe number of pages is too small, the pro-
cess will wait for its pages to be read from secondary
storage much of the time. If §t'too big, the space
could be used better for something else. If primary
storage isit’ congested, this may not seem important.
But mary kernels today can use yaavailable pages
for disk-cache or similar functions, so from that-per
spectve main storage is alays congested.

From the vigv of any dngle process, this number
of pages is of course “all of my pages”, since this
guarantees that no pages will need to be paged in or

and wastes less virtual memorylost modern imple-
mentations do this when thénteract with the &rnel,
but only a faw try to avoid objects spanning pages.

If an objects dze is less than or equal to a page,
there is no reason for it to spanotyages. Haing
objects span pages means thab tgages must be
paged in, if that object is accessed.

I mplementation

The implementation is 1136 lines of C code, and
can be found in FreeBSD 2.2 and later versions of
FreeBSD as src/lib/libc/stdlib/malloc.c.

The main data structure is thmge-directory
which contains aoid* for each page we ka wntrol
over. The value can be one of:

* MALLOC_NOT_MINE Another part of the code
may callbrk(2) to get a piece of the cak Conse-
quently we annot rely on the memory we get from
the kernel being one consesatigece of memory
and therefore we need a way to mark such pages as
"untouchable".

MALLOC_FREE This is a free page.

* MALLOC_FIRST This is the first page in a
(multi-)page allocation.

e MALLOC FOLLOW This is a subsequent page in a
multi-page allocation.

* struct pginfo* A pointer to a structure describing a

partitioned page.
In addition, there exists a liel list of small data

To be 100% correct performance-wise these lists
should be ordered according to the recent number of

structures that describe the free space as runs of free@ccesses to that pag&his information is not \ail-

pages.

Notice that these structures are not part of the
free pages themselves, but rather allocated with malloc
so that the free pages themselves averneferenced
while they are free.

When a request for storage comes in, it will be
treated as dpgage’ allocation if it is bigger than half a
page. Thdree list will be searched and the first run of
free pages that can satisfy the request is udéuk
first page gets set tdALLOC_FIRST status. Ifmore
than that one page is needed, the rest of them get
MALLOC_FOLLOW status in the page-directory.

If there were no pages on the free listk(2)
will be called, and the pages will get added to the
page-directory with statuMALLOC_FREE and the
search restarts.

Freeing an allocation of pages is done by chang-
ing their state in the page directoryMaLLOC_FREE,
traversing the free-pages list to find the right place for
this run of pages, collapsing with either or both of the
two neighbouring entries if possible, and if abahe
threshold: releasing some pages back to drael by
callingbrk (2).

If the request is less than or equal to half of a
page, its size will be rounded up to the nearegtepo
of two before being processed and if the request is less
than some minimum size, it is rounded up to that size.

These sub-page allocations are served from
pages which are split up into some number of equal
size chunks.For each of these pagessiruct pginfo
describes the size of the chunks on this page; ho
mary there are, h@ mary are free and so onThe
description consist of a bitmap of used chunks, and
various counters and numbers used to keep track of
the stufin the page.

For each size of sub-page allocation, the pginfo
structures for the pages thatvhdree chunks in them
form a list. The heads of these lists are stored in pre-
determined slots at the ¢ianing of the page directory
to male access fast.

To dlocate a chunk of some size, the head of the
list for the corresponding size iga@nined, and a free
chunk found. The number of free chunks on that page
is decreased by one and, if zero, the pginfo structure is
unlinked from the list.

To free a chunk, the page is ded from the
pointer the pginfo info structure found from the page
directory and the bit corresponding to this chunk is set
in the bitmap, and the counter for free chunks is
increased by onelf this page has exactly one free
chunk nav, it is linked back into the list for chunks of
this size, if all chunks are free both the page and the
pginfo structure ar&ee(3)’ed too.

able and it wuld essentially mean a reordering of the
list on every memory reference to keep it up-to-date.
Instead thg are ordered according to the address of
the pages.Other criteria has been tried and it looks
like any kind of stable and repeatable sorting of these
result in the same performanc&orting by address
statistically keepsbrk(2) as lower.

It is an interesting twist to the implementation
that thestruct pginfo Is allocated with malloc.That
is, "as with malloc" to be painfully correct. The code
knows the special case where the first (couple) of allo-
cations on the page is actually the pginfo structure and
deals with it accordingly This asoids some silly
"chicken and egg" issues.

Bells and whistles.

brk(2) is actually not a very fast system call
when you ask for storage. This is mainly because of
the need for the kernel to zero the pages before hand-
ing them w@er. Therefore this implementation does
not release heap pages until there is a large chunk to
release back to theeknel. Chancesre pretty good
that we will need it again pretty soonyamay. Since
these pages are not accessed at al, wik soon be
paged out and donaffect anything but sap-space
usage.

The page directory is actually kept in a
mmap (2)’'ed piece of anonymous memoryThis
avads some rather silly cases thabwld otherwise
have © be landled when the page directory has to be
extended.

One particularly nice feature is that all pointers
passed tdree(3) andrealloc(3) can be chedd con-
clusively for validity. First the pointer is masked to
find the page. The page directory is then examined, it
must contain eitheMALLOC_FIRST, in which case
the pointer must point exactly at the page, or it can
contain a struct pginfo*, in which case the pointer
must point to one of the chunks described by that
structure. VErnings will be printed orstderr and
nothing will be done with the pointer if it is found to
be irvalid.

An environment #riable MALLOC_OPTIONS
allows the user some controvas the behaviour of
malloc. Somef the more interesting options are:

Abort If malloc fails to allocate storage, core-
dump the process with a message rather than
expect it to handle this correctly.

Hint Pass a hint to the kernel about pages we no
longer need using themadvise(2) system call.
This allows the kernel to discard the contents of
the page and reuse it as fred. this process
accesses that page later on, tamkl can just map
a rew page into the address space. This can

improve performance a fair bit in certain applica-
tions since it has the potential toveaa @age-out
and a page-in operation.

Realloc Always do a free and malloc when
realloc(3) is called. For programs doing arbage
collection usingealloc (3), this mak the heap col-
lapse faster since malloc will reallocate from the
lowest aailable address. The dailt is to leae
things alone if the size of the allocation is still in
the same size-bracket.

Junk will explicitly fill the allocated area with a
particular value to try to detect if programs rely on
it being zero. The value used, 0xdO, is selected to
maximize the probability of a coredump.

Zero will explicitly zero out the allocated chunk of
memory while ary space after the allocation in the
chunk will be filled with the junk value to try to
detect out of the chunk references.

sysV quite to my surprise there were one bit of
the API which were not well agreed upowhat
shouldrealloc (3) return when gien a pinter and

a rew sze of zero ?Well, some people expect it to
return a NULL pointerwhich makes sense, and
some people expect it to return a valid pointer
which also makes sense. This option lets the pro-
grammer choose.

All these and a f& other options can also be set
in a system-wide fashion, or at compile timéhey
have poved very popular with deglopers, and users
alike, and in particular the 'H’ option canvgaa eci-
sive performance impact.

Futureimprovements

It is not olvious that having the free-page list is
an actual benefit, it may be equally fast to just search
for free pages in the page directory.

Truly transient programs l&echo(1), date(1)
and similar shouldm’ bother with malloc/free, the
should simply usesbrk(2) for their needs. Maybe a
grace period should be implementednialloc(3) so
serious memory management would only start after a
certain number of chunks or bytesvbactually been
freed back.

Universally huge impreements in performance
in the future seems unéky unless thenalloc (3) API
is changed significantlyBut doing so is by no means
a guarantee of better performanc&he main stum-
bling block is that it is not possible for timaalloc (3)
implementation to relocate in-use memory to inero
locality of reference.

This is not the same as to say that & f&o-
grams out there could not use a better and more intelli-
gent memory allocation polic

Conclusion and experience.

In general the performance differences between
gnumalloc and this malloc are not that bithe major
difference comes when primary storage is seriously
over-committed, and gnumallocastes time paging in
pages i ot going to really use, in such cases as
much as a factor of févin time has been observed for
various programs.

Several legacy programs in the BSD 4.4 Lite dis-
tribution had code that depended on the memory
returned from malloc being zeroedn a couple of
cases, free(3) as called more than once for the same
allocation, and a fe cases een called free(3) with
pointers to objects in the data section or on the stack.

A couple of users h& reported that using this
malloc on other platforms yielded "pretty impressi
results”, but no hard benchmarkvédeen made.

Acknowledgements & references.

The first implementation of this algorithmaw
actually a file system, done in assembler using 5-hole
“Baudot’ paper tape for a drum storage vide
attached to a 20 bit germanium transistor computer
with 2000 words of memonjput that was manyears
ago.

A lot of people hee povided ideas, bg-fixes
and portability changes to the code. Special thanks
and mention goes to: PetereWm, Lars Fredriksen,
Keith Bostic, Dmitrij Tejblum, John-Mark Gurge
Joel Maslak, John Birrell, ®Wner Losh, Kaleb
Keithly, Mike Fitchard, John D. Polstra and Archie
Cobbs.

