
Improving the FreeBSD SMP implementation

Greg Lehey
Nan Yang Computer Services Ltd.

PO Box 460
Echunga SA 5153
grog@lemis.com

11 September 2000

ABSTRACT

UNIX-derived operating systems have traditionally have a simplistic approach to process
synchronization which is unsuited to multiprocessor application. Initial FreeBSD SMP
support kept this approach by allowing only one process to run in kernel mode at any
time, and also blocked interrupts across multiple processors, causing seriously suboptimal
performance of I/O bound systems. This paper describes work done to remove this bot-
tleneck. It derives from work done on BSD/OS and has many similarities with the ap-
proach taken in SunOS 5. Synchronization is performed by mutexes. In general, mutexes
attempt to block rather than to spin in cases where the likely wait time is long enough to
warrant a process switch. The issue of blocking interrupt handlers is addressed by attach-
ing a process context to the interrupt handlers.

This paper is a snapshot of a work in progress. An up-to-date version is available at
http://www.lemis.com/SMPng/.

Introduction

A crucial issue in the design of an operating system is the manner in which it shares re-
sources such as memory, data structures and processor time. In the UNIX model, the
main clients for resources are processes and interrupt handlers. Interrupt handlers operate
completely in kernel space, primarily on behalf of the system. Processes normally run in
one of two different modes, user mode and kernel mode. User mode code is the code of
the program from which the process is derived, and kernel mode code is part of the ker-
nel. This structure gives rise to multiple potential conflicts.

Use of processor time
The most obvious demand a process or interrupt routine places on the system is that it
wants to run: it must execute instructions. The rules governing this sharing are:

• There is only one processor. All code runs on it.

• If both an interrupt handler and a process are available to run, the interrupt handler
runs.

1

• Interrupt handlers have different priorities. If one interrupt handler is running and one
with a higher priority becomes runnable, the higher priority interrupt immediately pre-
empts the lower priority interrupt.

• The scheduler runs when a process voluntarily relinquishes the processor, its time
slice expires, or a higher-priority process becomes runnable. The scheduler chooses
the highest priority process which is ready to run.

• If the process is in kernel mode when its time slice expires or a higher priority process
becomes runnable, the system waits until it returns to user mode or sleeps before run-
ning the scheduler.

This method works acceptably for the single processor machines for which it was de-
signed. In the following section, we’ll see the reasoning behind the last decision.

Kernel data objects
The most obvious problem is access to memory. Modern UNIX systems run with memo-
ry protection, which prevents processes in user mode from accessing the address space of
other processes. This protection no longer applies in kernel mode: all processes share the
kernel address space, and they need to access data shared between all processes. For ex-
ample, the fork() system call needs to allocate a proc structure for the new process.
The file sys/kern_fork.c contains the following code:

int
fork1(p1, flags, procp)

struct proc *p1;
int flags;
struct proc **procp;

{
struct proc *p2, *pptr;

...
/* Allocate new proc. */
newproc = zalloc(proc_zone);

The function zalloc takes a struct proc entry off a freelist and returns its address:

item = z->zitems;
z->zitems = ((void **) item)[0];

...
return item;

What happens if the currently executing process is interrupted exactly between the first
two lines of the code above, maybe because a higher priority process wants to run?
item contains the pointer to the process structure, but z->z_items still points to it. If
the interrupting code also allocates a process structure, it will go through the same code
and return a pointer to the same memory area, creating the process equivalent of Siamese
twins.

UNIX solves this issue with the rule ‘‘The UNIX kernel is non-preemptive’’. This means
that when a process is running in kernel mode, no other process can execute kernel code
until the first process relinquishes the kernel voluntarily, either by returning to user mode,
or by sleeping.

2

Synchronizing processes and interrupts
The non-preemption rule only applies to processes. Interrupts happen independently of
process context, so a different method is needed. In device drivers, the process context
(‘‘top half’’) and the interrupt context (‘‘bottom half’’) must share data. Tw o separate is-
sues arise here:

Protection
Each half must protect its data against change by the other half. For example, the buffer
header structure contains a flags word with 32 flags, some set and reset by both halves.
Setting and resetting bits requires multiple instructions on most architectures, so without
some kind of synchronization the data would be corrupted. UNIX performs this synchro-
nization by locking out interrupts during critical sections. Top half code must explicitly
lock out interrupts with the spl functions.1 One of the most significant sources of bugs
in drivers is inadequate synchronization with the bottom half.

Interrupt code does not need to perform any special synchronization: by definition, pro-
cesses don’t run when interrupt code is active.

Blocking interrupts has a potential danger that an interrupt will not be serviced in a time-
ly fashion. On PC hardware, this is particularly evident with serial I/O, which frequently
generates an interrupt for every character. At 115200 bps, this equates to an interrupt
ev ery 85 µs. In the past, this has given rise to the dreaded silo overflows; even on fast
modern hardware it can be a problem. It’s also not easy to decide interrupt priorities: in
the early days, disk I/O was given a high priority in order to avoid overruns, while serial
I/O had a low priority. Now adays disk controllers can handle transfers by themselves, but
overruns are still a problem with serial I/O.

Waiting for the other half
In other cases, a process will need to wait for some event to complete. The most obvious
example is I/O: a process issues an I/O request, and the driver initiates the transfer. It can
be a long time before the transfer completes: if it’s reading keyboard input, for example,
it could be weeks before the I/O completes. When the transfer completes, it causes an in-
terrupt, so it’s the interrupt handler which finally determines that the transfer is complete
and notifies the process. UNIX performs this synchronization with the functions sleep
and wakeup.2 The top half of a driver calls sleep or tsleep when it wants to wait for
an event, and the bottom half calls wakeup when the event occurs. In more detail,

1. The naming goes back to the early days of UNIX on the PDP-11. The PDP-11 had a relatively simplistic level-based interrupt
structure. When running at a specific level, only higher priority interrupts were allowed. UNIX named functions for setting the
interrupt priority level after the PDP-11 SPL instruction, so initially the functions had names like spl4 and spl7. Later machines
came out with interrupt masks, and BSD changed the names to more descriptive names such as splbio (for block I/O) and
splhigh (block out all interrupts).

2. FreeBSD no longer uses sleep, having replaced it with tsleep, which offers additional functionality.

3

• The process issues a system call read, which brings it into kernel mode.

• read locates the driver for the device and calls it to initiate a transfer.

• read next calls tsleep, passing it the address of some unique object related to the
request. tsleep stores the address in the proc structure, marks the process as sleep-
ing and relinquishes the processor. At this point, the process is sleeping.

• At some later point, when the request is complete, the interrupt handler calls wakeup
with the address which was passed to tsleep. wakeup runs through a list of sleep-
ing processes and wakes all processes waiting on this particular address.

This method has problems even on single processors: the time to wake processes depends
on the number of sleeping processes, which is usually only slightly less than the number
of processes in the system. FreeBSD addresses this problem with 128 hashed sleep
queues, effectively diminishing the search time by a factor of 128. A large system might
have 10,000 processes running at the same time, so this is only a partial solution.

In addition, it is permissible for more than one process to wait on a specific address. In
extreme cases dozens of processes wait on a specific address, but only one will be able to
run when the resource becomes available; the rest call tsleep again. The term thunder-
ing horde has been devised to describe this situation. FreeBSD has partially solved this
issue with the wakeup_one function, which only wakes the first process it finds. This
still involves a linear search through a possibly large number of process structures.

Adapting the UNIX model to SMP

A number of the basic assumptions of this model no longer apply to SMP, and others be-
come more of a problem:

• More than one processor is available. Code can run in parallel.

• Interrupt handlers and user processes can run on different processors at the same time.

• The ‘‘non-preemption’’ rule is no longer sufficient to ensure that two processes can’t
execute at the same time, so it would theoretically be possible for two processes to al-
locate the same memory.

• Locking out interrupts must happen in every processor. This can adversely affect per-
formance.

The initial FreeBSD model
The original version of FreeBSD SMP support solved these problems in a manner de-
signed for reliability rather than performance: effectively it found a method to simulate
the single-processor paradigm on multiple processors. Specifically, only one process
could run in the kernel at any one time. The system ensured this with a spinlock, the so-
called Big Kernel Lock (BKL), which ensured that only one processor could be in the
kernel at a time. On entry to the kernel, each processor attempted to get the BKL. If an-
other processor was executing in kernel mode, the other processor performed a busy wait

4

until the lock became free:

MPgetlock_edx:
1:

movl (%edx), %eax /* Get current contents of lock */
movl %eax, %ecx
andl $CPU_FIELD,%ecx
cmpl _cpu_lockid, %ecx /* Do we already own the lock? */
jne 2f
incl %eax /* yes, just bump the count */
movl %eax, (%edx) /* serialization not required */
ret

2:
movl $FREE_LOCK, %eax /* lock must be free */
movl _cpu_lockid, %ecx
incl %ecx
lock
cmpxchg %ecx, (%edx) /* attempt to replace %eax<->%ecx */
jne 1b
GRAB_HWI /* 1st acquire, grab hw INTs */
ret

In an extreme case, this waiting could degrade SMP performance to below that of a single
processor machine.

How to solve the dilemma

Multiple processor machines have been around for a long time, since before UNIX was
written. During this time, a number of solutions to this kind of problem have been de-
vised. The problem was less to find a solution than to find a solution which would fit in
the UNIX environment. At least the following synchronization primitives hav e been used
in the past:

• Counting semaphores were originally designed to share a certain number of resources
amongst potentially more consumers. To get access, a consumer decrements the
semaphore counter, and when it is finished it increments it again. If the semaphore
counter goes negative, the process is placed on a sleep queue. If it goes from -1 to 0,
the first process on the sleep queue is activated. This approach is a possible alterna-
tive to tsleep and wakeup synchronization. In particular, it avoids a lengthy se-
quential search of sleeping processes.

• SunOS 5 uses turnstiles to address the sequential search problem in tsleep and
wakeup synchronization. A turnstile is a separate queue associated with a specific
wait address, so the need for a sequential search disappears.

• Spin locks have already been mentioned. FreeBSD used to spin indefinitely on the
BKL, which doesn’t make any sense, but they are useful in cases where the wait is
short; a longer wait will result in a process being suspended and subsequently
rescheduled. If the average wait for a resource is less than this time, then it makes
sense to spin instead.

• Blocking locks are the alternative to spin locks when the wait is likely to be longer
than it would take to reschedule. A typical implementation is similar to a counting
semaphore with a count of 1.

5

• Condition variables are a kind of blocking lock where the lock is based on a condi-
tion, for example the absence of entries in a queue.

• Read/write locks address a different issue: frequently multiple processes may read
specific data in parallel, but only one may write it.

There is some confusion in terminology with these locking primitives. In particular, the
term mutex has been applied to nearly all of them at different times. We’ll look at how
FreeBSD uses the term in the next section.

One big problem with all locking primitives with the exception of spin locks is that they
can block. This requires a process context: an interrupt handler can’t block. This is one
of the reasons that the old BGL was a spinlock, even though it could potentially use up
most of processor time spinning.

The new FreeBSD implementation

The new implementation of SMP on FreeBSD bases heavily on the implementation in
BSD/OS 5.0, which has not yet been released. Even the name SMPng (‘‘new genera-
tion’’) was taken from BSD/OS. Due to the open source nature of FreeBSD, SMPng is
available on FreeBSD before on BSD/OS.

The most radical difference in SMPng is that interrupt lockout primitives (splfoo) hav e
been removed. The low-level interrupt code still needs to block interrupts briefly, but the
interrupt service routines themselves run with interrupts enabled. Instead of locking out
interrupts, the system uses mutexes, which may be either spin locks or blocking locks.

Interrupt threads
The use of blocking locks requires a process context, so interrupts are now handled as
threads. The initial implementation is very similar to normal processes, with the follow-
ing differences:

• Interrupt processes run in their own scheduling class, which is scheduled ahead of the
other three classes which FreeBSD supplies.

• An additional process state SWAIT has been introduced for interrupt processes which
are currently idle: the normal ‘‘idle’’ state is SSLEEP, which implies that the process
is sleeping.

The current implementation imposes a scheduling overhead which decreases performance
significantly, but it is relatively stable. In the month up to the time when this paper was
submitted, we have seen no stability problems with the implementation. At a later date,
but before release, we will reimplement interrupt threads in a manner similar to the
BSD/OS implementation. This lightweight threads implementation involves lazy
scheduling of the interrupt thread: since normally interrupts interrupt processes and not
other interrupts, and since they thus normally run at a higher priority, they can take con-
trol of the processor directly. They only need to be scheduled if they hav e to block. The
situation becomes significantly more complicated if interrupts occur while an interrupt

6

handler is running, in particular regarding relative interrupt priorities. As a result we
have decided to do the implementation in two steps, particularly after reports of experi-
ence with BSD/OS, which implemented light-weight threads directly.

Not all interrupts have been changed to threaded interrupts. In particular, the old fast in-
terrupts remain relatively unchanged, with the restriction that they may not use any
blocking mutexes. Fast interrupts have typically been used for the serial drivers.

Mutexes
The mutex implementation defines two basic types of mutex:

• The default mutex is the spin/sleep mutex. If the process cannot obtain the mutex, it is
placed on a sleep queue and woken when the resource becomes available. This is sim-
ilar in concept to semaphores, but the implementation allows spinning for a certain pe-
riod of time if this appears to be of benefit (in other words, if it is likely that the mutex
will become free in less time than it would take to schedule another process). It also
allows the user to specify that the mutex should not spin.

• Alternatively, a mutex may be defined as a spin mutex. In this case, it will never sleep.
Effectively, this is the spin lock which was already present in the system.

The mutex implementation was derived almost directly from BSD/OS.

Removing the Big Kernel Lock
These modifications made it possible to remove the Big Kernel Lock. The current imple-
mentation has replaced it with two mutexes:

• Giant is used in a similar manner to the BKL, but it is a blocking mutex. Currently
it protects all entry to the kernel, including interrupt handlers. In order to be able to
block, it must allow scheduling to continue.

• sched_lock is a spin lock which protects the scheduler queues.

This combination of locks supplies the bare minimum of locks necessary to build the new
framework. In itself, it does not improve the performance of the system, since processes
still block on Giant.

Idle processes
The planned light-weight interrupt threads need a process context in order to work. In the
traditional UNIX kernel, there is not always a process context: the pointer curproc can
be NULL. SMPng solves this problem by having an idle process which runs when no
other process is

Other features
In addition to the basic changes above, a number of debugging aids were ported from
BSD/OS:

7

• The ktr package provides a method of tracing kernel events. For example, the func-
tion sched_ithd, which schedules the interrupt threads, contains the following
code:

CTR3(KTR_INTR, "sched_ithd pid %d(%s) need=%d",
ir->it_proc->p_pid, ir->it_proc->p_comm, ir->it_need);

...
if (ir->it_proc->p_stat == SWAIT) { /* not on run queue */

CTR1(KTR_INTR, "sched_ithd: setrunqueue %d",
ir->it_proc->p_pid);

The function ithd_loop, which runs the interrupt in process context, contains the
following code at the beginning and end of the main loop:

for (;;) {
CTR3(KTR_INTR, "ithd_loop pid %d(%s) need=%d",

me->it_proc->p_pid, me->it_proc->p_comm, me->it_need);
...

CTR1(KTR_INTR, "ithd_loop pid %d: done",
me->it_proc->p_pid);

mi_switch();
CTR1(KTR_INTR, "ithd_loop pid %d: resumed",

me->it_proc->p_pid);

The calls CTR1 and CTR3 are two macros which only compile any kind of code when
the kernel is built with the KTR kernel option. If the kernel contains this option and
the BIT KTR_INTR is set in the variable ktr_mask, then these events will be
masked to a circular buffer in the kernel. Currently gdb macros are available to de-
code them, giving a relatively useful means of tracing the interaction between process-
es:

2791 968643993:219224100 cpu1 ../../i386/isa/ithread.c:214
ithd_loop pid 21 ih=0xc235f200: 0xc0324d98(0) flg=100

2790 968643993:219214043 cpu1 ../../i386/isa/ithread.c:197
ithd_loop pid 21(irq0: clk) need=1

2789 968643993:219205383 cpu1 ../../i386/isa/ithread.c:243
ithd_loop pid 21: resumed

2788 968643993:219190856 cpu1 ../../i386/isa/ithread.c:158
sched_ithd: setrunqueue 21

2787 968643993:219179402 cpu1 ../../i386/isa/ithread.c:120
sched_ithd pid 21(irq0: clk) need=0

The lines here are too wide for the paper, so they are shown wrapped as two lines.
This example traces the arrival and processing of a clock interrupt on the i386 plat-
form, in reverse chronological order. The number at the beginning of the line is the
trace entry number.

• Entry 2787 shows the arrival of an interrupt at the beginning of sched_ithd.
The second value on the trace line is the time since the epoch, followed by the
CPU number and the file name and line number. The remaining values are sup-
plied by the program to the CTR3 function.

• Entry 2788 shows the second trace call in sched_ithd, where the interrupt han-
dler is placed on the run queue.

8

• Entry 2789 shows the entry into the main loop of ithd_loop.

• Entries 2790 and 2791 show the exit from the main loop of ithd_loop.

• The witness code was designed specifically to debug mutex code. At present it is not
greatly needed, since there is little scope for deadlocks, but based on the BSD/OS ex-
perience we expect it will be of great use in the future.

The future

With this new basic structure in place, implementation of finer grained locking can pro-
ceed. Giant will remain as a legacy locking mechanism for code which has not been con-
verted to the new locking mechanism. For example, the main loop of the function
ithd_loop, which runs an interrupt handler, contains the following code:

if ((ih->flags & INTR_MPSAFE) == 0)
mtx_enter(&Giant, MTX_DEF);

ih->handler(ih->argument);
if ((ih->flags & INTR_MPSAFE) == 0)

mtx_exit(&Giant, MTX_DEF);

The flag INTR_MPSAFE indicates that the interrupt handler has its own synchronization
primitives.

A typical strategy planned for migrating device drivers involves the following steps:

• Add a mutex to the driver softc.

• Set the INTR_MPSAFE flag when registering the interrupt.

• Obtain the mutex in the same kind of situation where previously an spl was used.
Unlike spls, however, the interrupt handlers must also obtain the mutex before ac-
cessing shared data structures.

Probably the most difficult part of the process will involve larger components of the sys-
tem, such as the file system and the networking stack. We hav e the example of the
BSD/OS code, but it’s currently not clear that this is the best path to follow.

9

Bibliography

Per Brinch Hansen, Operating System Principles. Prentice-Hall, 1973.

Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, John S. Quarterman, The De-
sign and Implementation of the 4.4BSD Operating System, Addison-Wesley 1996.

Uresh Vahalia, UNIX Internals. Prentice-Hall, 1996.

Greg Lehey: short biography

Greg Lehey is an independent computer consultant specializing in UNIX. Born in Mel-
bourne, Australia, he was educated in Malaysia, Germany and England. He returned to
Australia in 1997 after spending most of his professional career in Germany, where he
worked for computer manufacturers such as Univac, Tandem, and Siemens-Nixdorf, the
German space research agency, nameless software houses and a large user and finally for
himself as a consultant. In the course of more than 25 years in the industry he has per-
formed most jobs, ranging from kernel development to product marketing, from systems
programming to operating, from processing satellite data to programming petrol pumps,
from the production of CD-ROMs of ported free software to DSP instruction set design.
He is also a member of the executive committee of the AUUG and the author of ‘‘Porting
UNIX Software’’ (O’Reilly and Associates, 1995), ‘‘Installing and Running FreeBSD’’
(Walnut Creek, 1996), and ‘‘The Complete FreeBSD’’ (Walnut Creek, 1997—1999).
About the only thing he hasn’t done is writing commercial applications software. Browse
his home page at http://www.lemis.com/˜grog/.

When he can drag himself away from his collection of old UNIX hardware, he is involved
in performing baroque and classical woodwind music on his collection of original instru-
ments, exploring the Australian countryside with his family on their Arabian horses, or
exploring new cookery techniques or ancient and obscure European languages.

10

