
An implementation of the Yarrow PRNG for FreeBSD

Mark R. V. Murray

FreeBSD Servies, Ltd

Amersham, Bukinghamshire, UK

markm�freebsd-servies.om

Abstrat

Computers are by their de�nition preditable. The

problem of obtaining good-quality random numbers

is well known.

There is a great need for entropy in the running

kernel, as well as in user-spae. The kernel needs

to randomise TCP sequenes, seed keys for IPSe,

randomise PIDs, and so on. Starvation of these

random numbers is a ritial problem. Users need

random keys, random �lenames, nondeterministi

games, random numbers for Monte-Carlo simulation

and so on.

Kelsey, Shneier and Ferguson proposed an im-

proved algorithm for providing statistially random

numbers, at the same time ryptographially pro-

teting their sequene and state. This is the Yarrow

algorithm.

This work presents an implementation of this al-

gorithm as the entropy devie (/dev/random) in

FreeBSD's kernel.

1 Introdution

In an earlier work[Mur00℄, the author introdued

the new entropy devie to FreeBSD-CURRENT as

a work-in progress. In that work, attak method-

ologies were briey disussed, and the di�erene be-

tween the older entropy devie and this devie were

disussed. Yarrow[KSF99℄ was briey explained.

It is important to remember that this devie is not

designed to produe pure

1

random numbers. Com-

puters do not produe enough natural randomness

for that approah to be useful in entropy-onsuming

environments.

Instead, this devie is a free-running pseudo-random

number generator (PRNG), one in whih great ef-

fort has been made to ryptographially protet the

state of the generator. Further, the internal state is

onstantly perturbed with \harvested" entropy to

thwart attakers.

The algorithm is divided into four parts (see Figure

1):

and Pools

-

�

?

-

- -

Reseed

Control

Entropy

Aumulator

Output

Generator

Reseed

6

?

Figure 1: Simpli�ed Yarrow Struture

� Entropy Aumulator and Pools

These are used to \harvest" entropy from the

running kernel. The API provided by the au-

thor is intended to be simple to use anywhere

in the kernel.

� Reseed

Reseeding is entirely internal to Yarrow. The

author has attempted to stay as lose as pos-

sible to the published algorithm.

1

In the number-theoreti sense; the numbers remain statistially random and inlude environmental noise

� Reseed Control

Reseeds happen in response to harvested en-

tropy, and to reads from the entropy devie.

There are statistial requirements to these re-

seeds that are unimplemented.

� Output Generator

The generator is similar to \lassi" PRNG's,

exepting:

1. It uses a large, ryptographially seure

hash instead of a simple feedbak for-

mula.

2. It is perturbed on a regular basis by har-

vested entropy.

2 Design Issues

An API for \harvesting" entropy was needed, so

that kernel programmers ould easily provide suh

randomness their subsystem ould produe. The re-

quirements were that the API should be extensible,

fast, simple and able to operate in interrupt on-

text. Where pratial, entropy soures needed the

ability to be disabled at the whim of the system

administrator.

256-Bit storage pools were desired, as this was

deemed to hold a reasonable amount of entropy

without being overly expensive. It should be

remembered that Yarrow uses two aumulation

\pools" (fast and slow), so this meant that up to

512 bits of environmental entropy ould be held.

This deision meant that a 256-bit hashing algo-

rithm and a 256-bit blok ipher were needed. The

need for a 256-bit hash ruled out using MD2, MD4,

MD5 or SHA-1 unless a lengthening algorithm was

also used. There were a few hoies for 256-bit blok

iphers, however availability (or potential availabil-

ity) in the FreeBSD kernel was a limiting fator. As

a suitable \natural" hash did not exist, a hash had

to be onstruted using blok iphers. Likely andi-

dates were initially Blow�sh and DES (relutantly,

as a blok-lengthening proess would be needed).

Other AES andidates were onsidered, but as a �-

nalist had not been seleted they were not initially

used.

The output generator needed to be fast, and also

needed good key-setup speed, as the key is hanged

often. In order to preserve the strength of Yarrow,

its blok size was deemed to be the same size as the

hash bu�er. This made the hoie of the enryption

ipher simple, as the hash ipher ould be used.

Further researh[Sh96a℄ indiated that lengthening

algorithms were most probably unwise.

2.1 Entropy Harvesting

As entropy ould be found in any part of the ker-

nel, both bottom-half and top-half, the entropy har-

vesting needed to be heap, non-invasive and non-

bloking.

A �xed-size irular bu�er is used to aumulate en-

tropy for later proessing. If the bu�er beomes full,

further attempts to add entropy are ignored. The

bu�er is never loked when written to; this does not

matter, as data orruption would be bene�ial.

Entropy is added to the bu�er by a subsystem all-

ing the random harvest(9) funtion. This is de-

lared in sys/random.h as follows:

enum esoure { \

RANDOM_WRITE, RANDOM_KEYBOARD, \

RANDOM_MOUSE, RANDOM_NET, \

RANDOM_INTERRUPT, ENTROPYSOURCE \

};

void random_harvest(void *data, \

u_int ount, u_int bits, \

u_int fra, enum esoure soure);

Entropy is aumulated in up to HARVESTSIZE

2

byte

hunks.

The arguments are:

data a pointer to the stohasti data

ount the number of bytes of data

bits an estimate of the random bits

fra as above, exept frational (

fra

1024

bits)

soure the soure of the entropy

2

Currently 16

The stohasti events added to the bu�er are stored

in a struture:

strut harvest {

u_int64_t someounter;

u_har entropy[HARVESTSIZE℄;

u_int size, bits, fra;

enum esoure soure;

};

The struture holds all of the information provided

by random harvest plus a timestamp.

The timestamp is taken from the CPU's fast ounter

register (like the Intel Pentium(tm) proessor's TSC

register). CPUs that do not have this register (like

the Intel i386) use nanotime(9) instead. This has

an unfortunate time penalty.

It is not important that this timestamp is an au-

rate reetion of real-world time, nor is it impor-

tant that multiple CPUs in an SMP environment

would have di�erent values. It is important that

the ounter/timestamp inrease quikly and linearly

with time.

A ount of aumulated entropy is kept, and this

is used to reseed the output generator on oasion.

The frational entropy ount supplied in the fra

parameter is used in very low entropy situations.

For example, a partiular devie an be said to pro-

due 1 bit of randomness every 20 events.

Kernel programmers wishing to supply entropy from

their ode should extend the enum esoure list,

leaving the onstant at the end of the list. Then,

the randomness should be gathered and supplied as

eÆiently as possible.

In sys/random.h:

enum esoure {

RANDOM_WRITE,

RANDOM_KEYBOARD,

RANDOM_MOUSE,

RANDOM_NET,

RANDOM_INTERRUPT,

RANDOM_MYSTUFF, /* New */

ENTROPYSOURCE };

In the ode to be harvested:

:

#inlude <sys/types>

:

#inlude <sys/random>

int

somefun(...)

{

:

strut {

u_int32_t junk;

u_int32_t garbage;

u_har rubbish[8℄;

} randomstuff;

:

randomstuff.junk = someloaljunk;

randomstuff.garbage = otherjunk;

strnpy(randomstuff.rubbish, dirt, 8);

:

/* harvest the entropy in

* randomstuff. Be really

* onservative and estimate the

* the random bit ount as only 4.

*/

random_harvest(randomstuff,

sizeof(randomstuff), 4, 0,

RANDOM_MYSTUFF);

:

If ontrol over the new harvesting is re-

quired, then a systl may be added to

sr/sys/dev/random/randomdev.[h℄:

SYSCTL_PROC(_kern_random_sys_harvest,

OID_AUTO, interrupt,

CTLTYPE_INT|CTLFLAG_RW,

&harvest.mystuff, 0,

random_hek_boolean, "I",

"Harvest mystuff entropy");

The all to random harvest should then be made

onditional on harvest.mystuff:

:

if (random.mystuff)

random_harvest(randomstuff,

sizeof(randomstuff), 4, 0,

RANDOM_MYSTUFF);

:

Writing to the entropy devie from the user's per-

spetive (ie, writing to /dev/random) is similar to

writing to /dev/null; it has no disernible e�et.

In atual fat, the data written is \harvested" using

the harvesting alls, with the proviso that the en-

tropy is estimated to be nothing. This has the e�et

of not ausing reseeds, but perturbing the internal

state anyway. If the user is the superuser, then los-

ing the devie after a write will ause an expliit

reseed.

A kernel thread \kthread" onstantly runs, polling

the irular bu�er, and if data is present, it aumu-

lates eah event alternately into the two aumula-

tion hashes (or \entropy pools").

2.2 Aumulation Pools

An initial version of the 256-bit aumulation hash

was onstruted using a Davies-Meyer[Sh96b℄ hash

with Blow�sh[Sh96℄ as the blok ipher.

The hash works by repeatedly enrypting an initial

(zero) state while yling the hash data through the

key. At eah iteration, the previous value of the hash

is exlusive-or-ed into the newly enrypted value.

This an be represented as:

H

i

= E

M

i

(H

i�1

)�H

i�1

where H

n

is the n

th

iteration of the hash result, M

j

is the j

th

fragment of the data to be hashed and

E

k

(m) is the result of enrypting m with blok i-

pher E() and key k.

E()

-

?

-

6

M

k

H

l

Figure 2: Davies-Meyer hash from blok ipher.

While this worked, it was unbearably slow as Blow-

�sh has an extremely expensive key shedule. Slow-

ness was experiened as very bad kernel lateny,

and a kernel thread running with unaeptably high

CPU usage.

The (by this time) newly released AES

(\Rijndael")[NIS℄ algorithm was then tried, and

a rude benhmark produed extremely promising

results. (Here, Blow�sh was replaed with Rijn-

dael.)

The benhmark is a timed 16MB read from eah

devie:

$ dd if=${DEVICE} of=/dev/null \

ount=16 bs=1048576

For omparison, /dev/zero was also read.

The time is the time in seonds for the 16MB read,

and the rate is measured in KB=s.

$devie Time (s) Rate (kB=s)

Blow�sh 137.7 122

AES 6.5 2595

Zero 0.2 81861

After onsulting literature [SKW

+

℄[WSB℄[FKL

+

℄, it

was suspeted that AES was the ideal algorithm,

but further investigation was onsidered prudent,

partiularly as the benhmark measured output per-

formane, not hashing performane.

The hash routines were broken out of the kernel,

and various speeds were measured using alternative

blok iphers. A Null algorithm and 160-bit SHA-1

were inluded for omparison.

The \Null" ipher simply dupliates the input data,

ignoring the key:

N

k

(m) = m

This redued the Davies-Meyer algorithm to the

XOR and data-movement parts only.

Eah result represents the time taken to hash 2MB

of pseudo-random data.

Algorithm Time (s) Rate (kB=s)

AES 3.1 461.6

Blow�sh 40.2 35.2

DES 2.9 491.7

SHA-1 2.0 693.3

Null 1.8 786.7

It an be seen that AES with 256-bit keys and 256-

bit bloks is approximately as fast as DES with 56-

bit keys and 64-bit bloks.

160-bit SHA-1 is about 50% faster than the AES

hash, but the AES hash has an approximately 50%

larger apaity for storing bits.

The \Null" algorithm on�rms that enryption

overhead is aeptably low in omparison with other

ode overhead.

2.3 Output Generator

The output generator is a ounter that is repeatedly

enrypted, produing the output:

E()

-

66

�

C

k

Figure 3: The Output Generator

O

i

= E

k

(C

t

)

C

t+1

= C

t

+ 1

where C

t

is the (256-bit) ounter

3

at time t, O

i

is

the i

th

output, and E

k

(C

t

) is the result of enrypt-

ing ounter C

t

using ipher E() and key k.

The dashed line represents the data path during a

gate event. The key \k" is inserted during a re-

seed. This is the point at whih environmental noise

(\harvested" entropy) is used.

To ompromise the output generator, a key om-

promise of the ipher is neessary. This is ompu-

tationally diÆult; nevertheless, to thwart this, the

ounter is regularly replaed with data from the out-

put stream:

C

t+1

= C

t

+ 1

C

t+1

= E

k

(C)

The data thus used is not used as part of the out-

put. This is alled a gate event, and it happens at

a time on�gurable by the system administrator via

systl(9). It defaults to happening every 10 bloks.

If a user proess reads less than a 256-bit blok, the

remainder is ahed for future reads.

To show that the output was statistially aept-

able, some tests were done.

A simple histogram of 8M single-byte values was

plotted:

30000

31000

32000

33000

34000

35000

36000

0 50 100 150 200 250 300

+/- 32k samples/byte

Random
32k

Figure 4: Spetrum of 8M 8-bit values

A straight line was �tted to this data, and was found

to substantiate the fat that the slope was � 0 and

the mean value was � 32k.

3

Internal to the FreeBSD kernel, the 256-bit value is represented as a struture ontaining four 64-bit unsigned integers.

Only 64 bits are inremented. The author does not believe this is a problem.

The spread of values around 32k was plotted, and

the distribution found to be reassuringly normal:

0

2

4

6

8

10

12

14

16

32000 32500 33000 33500

Spread of 1-byte values

Distribution
f(x)

Figure 5: Distribution of values around ex-

peted norm of 32k

This orresponded to a mean (�) of 32759:5 and a

� of 187:2

Further tests were done using a more sophisti-

ated random number \torture hamber" alled

Diehard[Mar℄. Its use produed voluminous output

whih indiated, on areful perusal, that the gener-

ator's output was statistially aeptable.

It must be noted that the output generator does not

blok. This is intentional.

2.4 Reseed Control

This is the trikiest part of the algorithm to write.

The Yarrow spei�ation mandates three separate

estimates of inoming entropy \harvest-units":

1. A programmer-supplied estimate. This has

been very onservatively set. This is given as

a onstant to eah entropy-harvesting all.

2. A system-wide \density". This is set at

1

2

,

meaning no sample of N bits an supply more

than

N

2

bits of entropy.

3. A statistially determined, per-soure ontin-

uous estimate. This is unimplemented, as the

mehanism for doing the statistial estimation

has been deemed too expensive for the kernel.

The algorithm states that the lowest of these three

is taken as the entropy supplied for the individual

unit. The author has endeavoured to ensure that

the programmer-supplied estimate will always be

low enough.

3 Impat on the Running System

The running devie has great potential to be very

invasive to the running kernel, as early experiments

with slow iphers showed. In the urrent ode, how-

ever, the system is proving to be no suh hindrane.

last pid: 19524; load averages: 0.25, 0.22, 0.18 up 3+09:01:43 21:52:53

92 proesses: 3 running, 74 sleeping, 15 waiting

CPU states: 4.3% user, 0.0% nie, 2.3% system, 0.4% interrupt, 93.0% idle

Mem: 27M Ative, 5536K Inat, 18M Wired, 4348K Cahe, 14M Buf, 4856K Free

Swap: 68M Total, 34M Used, 33M Free, 50% Inuse

PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND

10 root -16 0 0K 12K RUN 59.9H 86.47% 86.47% idle

18128 root 96 0 16636K 5932K selet 15:37 1.61% 1.61% XFree86

18169 mark 96 0 15884K 3216K selet 4:53 1.61% 1.61% kdeinit

18217 mark 96 0 17116K 4540K selet 1:47 0.39% 0.39% kdeinit

18227 mark 96 0 10872K 5916K selet 1:59 0.29% 0.29% xemas-21.1.1

19524 mark 96 0 2096K 1144K RUN 0:00 0.75% 0.20% top

22 root -64 -183 0K 12K WAIT 40:57 0.10% 0.10% irq14: ata0

12 root -48 -167 0K 12K RUN 20:06 0.10% 0.10% swi6: tty:sio

18205 mark 96 0 17836K 5928K selet 1:38 0.10% 0.10% kdeinit

18203 mark 96 0 21428K 4080K selet 1:07 0.10% 0.10% kdeinit

6 root 20 0 0K 12K syner 4:02 0.00% 0.00% syner

14 root 76 0 0K 12K sleep 3:19 0.00% 0.00% random

18183 mark 60 -36 5244K 2044K selet 3:09 0.00% 0.00% artsd

15 root -28 -147 0K 12K WAIT 2:58 0.00% 0.00% swi5: task qu

18810 mark 96 0 9728K 3076K selet 1:30 0.00% 0.00% aroread

18208 mark 96 0 16372K 3964K selet 1:21 0.00% 0.00% kdeinit

Figure 6: Snapshot of a running system

This snapshot of a running FreeBSD workstation

shows that the random proess (the kthread that

runs the reseed proess) has approximately the same

impat on the system as the syner proess, ie neg-

ligible.

The use of random numbers by seurity-onsious

engineers has been taken into aount over and

above the onerns of the professional ryptographi

ommunity. Speed was deemed to be more im-

portant than the prodution of number-theoreti-

quality random numbers (eg: suited to generating

one-time-pads). It is believed that FreeBSD is used

by many more system-administrators than profes-

sional ryptographers.

The author is, however, appreiative of the onerns

of those who would want a more austere presenta-

tion of random numbers from the operating system.

Those members of the ommunity are onsidered to

be a speialist minority, though.

4 Future plans

There are two main expansion areas in the FreeBSD

entropy devie.

1. More entropy harvesting. Any \heap" en-

tropy that may be found in the kernel may

be used in the future. The user ommunity is

enouraged to submit likely soures. The au-

thor has provisional ode to harvest entropy

from Intel hipsets �tted with hardware ran-

dom number generators.

2. Provision of a \distilled" devie for those

who wish to be assured of an \entropy-in =

entropy-out" onservation-of-entropy devie.

This needs to be onservative enough to not

provide a denial-of-servie attak by its very

existene.

5 Thanks

Thanks are due to Sue Bourne and Brian Somers

for proofreading and helpful omments.

Thanks are also due to FreeBSD Servies, Ltd for

giving me the time to produe this work.

My fondest thanks are also given to my father.

Thanks, Dad. I'll miss you.

Referenes

[FKL

+

℄ Niels Ferguson, John Kelsey, Stefan Luks, Brue Shneier, Mike Stay, David Wagner, and Doug

Whiting. Improved ryptanalysis of rijndael. http://www.ounterpane.om.

[KSF99℄ John Kelsey, Brue Shneier, and Niels Ferguson. Yarrow-160: Notes on the design and analysis of

the yarrow ryptographi pseudorandom number generator. Sixth Annual Workshop on Seleted

Areas in Cryptography, August 1999.

[Mar℄ George Marsaglia. Diehard. http://www/stat.fsu.edu/~geo/diehard.html.

[Mur00℄ Mark R. V. Murray. E�etive entropy from the freebsd kernel. In BSDCon, pages 92{98, 2000.

[NIS℄ NIST. The aes algorithm (rijndael) information. http://sr.nist.gov/enryption/aes/rijndael/.

[Sh96a℄ Brue Shneier. Applied Cryptography, pages 430{431. Wiley, seond edition, 1996.

[Sh96b℄ Brue Shneier. Applied Cryptography, pages 446{455. Wiley, seond edition, 1996.

[Sh96℄ Brue Shneier. Applied Cryptography, pages 336{339. Wiley, seond edition, 1996.

[SKW

+

℄ Brue Shneier, John Kelsey, Doug Whiting, David Wagner, and Chris Hall. Performane om-

parison of the aes submissions. http://www.ounterpane.om.

[WSB℄ Doug Whiting, Brue Shneier, and Steve Bellovin. Aes key agility issues in high-speed ipse

implementations. http://www.ounterpane.om.

