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Abstra
t

Computers are by their de�nition predi
table. The

problem of obtaining good-quality random numbers

is well known.

There is a great need for entropy in the running

kernel, as well as in user-spa
e. The kernel needs

to randomise TCP sequen
es, seed keys for IPSe
,

randomise PIDs, and so on. Starvation of these

random numbers is a 
riti
al problem. Users need

random keys, random �lenames, nondeterministi


games, random numbers for Monte-Carlo simulation

and so on.

Kelsey, S
hneier and Ferguson proposed an im-

proved algorithm for providing statisti
ally random

numbers, at the same time 
ryptographi
ally pro-

te
ting their sequen
e and state. This is the Yarrow

algorithm.

This work presents an implementation of this al-

gorithm as the entropy devi
e (/dev/random) in

FreeBSD's kernel.

1 Introdu
tion

In an earlier work[Mur00℄, the author introdu
ed

the new entropy devi
e to FreeBSD-CURRENT as

a work-in progress. In that work, atta
k method-

ologies were brie
y dis
ussed, and the di�eren
e be-

tween the older entropy devi
e and this devi
e were

dis
ussed. Yarrow[KSF99℄ was brie
y explained.

It is important to remember that this devi
e is not

designed to produ
e pure

1

random numbers. Com-

puters do not produ
e enough natural randomness

for that approa
h to be useful in entropy-
onsuming

environments.

Instead, this devi
e is a free-running pseudo-random

number generator (PRNG), one in whi
h great ef-

fort has been made to 
ryptographi
ally prote
t the

state of the generator. Further, the internal state is


onstantly perturbed with \harvested" entropy to

thwart atta
kers.

The algorithm is divided into four parts (see Figure

1):
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Figure 1: Simpli�ed Yarrow Stru
ture

� Entropy A

umulator and Pools

These are used to \harvest" entropy from the

running kernel. The API provided by the au-

thor is intended to be simple to use anywhere

in the kernel.

� Reseed

Reseeding is entirely internal to Yarrow. The

author has attempted to stay as 
lose as pos-

sible to the published algorithm.
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In the number-theoreti
 sense; the numbers remain statisti
ally random and in
lude environmental noise



� Reseed Control

Reseeds happen in response to harvested en-

tropy, and to reads from the entropy devi
e.

There are statisti
al requirements to these re-

seeds that are unimplemented.

� Output Generator

The generator is similar to \
lassi
" PRNG's,

ex
epting:

1. It uses a large, 
ryptographi
ally se
ure

hash instead of a simple feedba
k for-

mula.

2. It is perturbed on a regular basis by har-

vested entropy.

2 Design Issues

An API for \harvesting" entropy was needed, so

that kernel programmers 
ould easily provide su
h

randomness their subsystem 
ould produ
e. The re-

quirements were that the API should be extensible,

fast, simple and able to operate in interrupt 
on-

text. Where pra
ti
al, entropy sour
es needed the

ability to be disabled at the whim of the system

administrator.

256-Bit storage pools were desired, as this was

deemed to hold a reasonable amount of entropy

without being overly expensive. It should be

remembered that Yarrow uses two a

umulation

\pools" (fast and slow), so this meant that up to

512 bits of environmental entropy 
ould be held.

This de
ision meant that a 256-bit hashing algo-

rithm and a 256-bit blo
k 
ipher were needed. The

need for a 256-bit hash ruled out using MD2, MD4,

MD5 or SHA-1 unless a lengthening algorithm was

also used. There were a few 
hoi
es for 256-bit blo
k


iphers, however availability (or potential availabil-

ity) in the FreeBSD kernel was a limiting fa
tor. As

a suitable \natural" hash did not exist, a hash had

to be 
onstru
ted using blo
k 
iphers. Likely 
andi-

dates were initially Blow�sh and DES (relu
tantly,

as a blo
k-lengthening pro
ess would be needed).

Other AES 
andidates were 
onsidered, but as a �-

nalist had not been sele
ted they were not initially

used.

The output generator needed to be fast, and also

needed good key-setup speed, as the key is 
hanged

often. In order to preserve the strength of Yarrow,

its blo
k size was deemed to be the same size as the

hash bu�er. This made the 
hoi
e of the en
ryption


ipher simple, as the hash 
ipher 
ould be used.

Further resear
h[S
h96a℄ indi
ated that lengthening

algorithms were most probably unwise.

2.1 Entropy Harvesting

As entropy 
ould be found in any part of the ker-

nel, both bottom-half and top-half, the entropy har-

vesting needed to be 
heap, non-invasive and non-

blo
king.

A �xed-size 
ir
ular bu�er is used to a

umulate en-

tropy for later pro
essing. If the bu�er be
omes full,

further attempts to add entropy are ignored. The

bu�er is never lo
ked when written to; this does not

matter, as data 
orruption would be bene�
ial.

Entropy is added to the bu�er by a subsystem 
all-

ing the random harvest(9) fun
tion. This is de-


lared in sys/random.h as follows:

enum esour
e { \

RANDOM_WRITE, RANDOM_KEYBOARD, \

RANDOM_MOUSE, RANDOM_NET, \

RANDOM_INTERRUPT, ENTROPYSOURCE \

};

void random_harvest(void *data, \

u_int 
ount, u_int bits, \

u_int fra
, enum esour
e sour
e);

Entropy is a

umulated in up to HARVESTSIZE

2

byte


hunks.

The arguments are:

data a pointer to the sto
hasti
 data


ount the number of bytes of data

bits an estimate of the random bits

fra
 as above, ex
ept fra
tional (

fra


1024

bits)

sour
e the sour
e of the entropy

2
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The sto
hasti
 events added to the bu�er are stored

in a stru
ture:

stru
t harvest {

u_int64_t some
ounter;

u_
har entropy[HARVESTSIZE℄;

u_int size, bits, fra
;

enum esour
e sour
e;

};

The stru
ture holds all of the information provided

by random harvest plus a timestamp.

The timestamp is taken from the CPU's fast 
ounter

register (like the Intel Pentium(tm) pro
essor's TSC

register). CPUs that do not have this register (like

the Intel i386) use nanotime(9) instead. This has

an unfortunate time penalty.

It is not important that this timestamp is an a

u-

rate re
e
tion of real-world time, nor is it impor-

tant that multiple CPUs in an SMP environment

would have di�erent values. It is important that

the 
ounter/timestamp in
rease qui
kly and linearly

with time.

A 
ount of a

umulated entropy is kept, and this

is used to reseed the output generator on o

asion.

The fra
tional entropy 
ount supplied in the fra


parameter is used in very low entropy situations.

For example, a parti
ular devi
e 
an be said to pro-

du
e 1 bit of randomness every 20 events.

Kernel programmers wishing to supply entropy from

their 
ode should extend the enum esour
e list,

leaving the 
onstant at the end of the list. Then,

the randomness should be gathered and supplied as

eÆ
iently as possible.

In sys/random.h:

enum esour
e {

RANDOM_WRITE,

RANDOM_KEYBOARD,

RANDOM_MOUSE,

RANDOM_NET,

RANDOM_INTERRUPT,

RANDOM_MYSTUFF, /* New */

ENTROPYSOURCE };

In the 
ode to be harvested:

:

#in
lude <sys/types>

:

#in
lude <sys/random>

int

somefun
(...)

{

:

stru
t {

u_int32_t junk;

u_int32_t garbage;

u_
har rubbish[8℄;

} randomstuff;

:

randomstuff.junk = somelo
aljunk;

randomstuff.garbage = otherjunk;

strn
py(randomstuff.rubbish, dirt, 8);

:

/* harvest the entropy in

* randomstuff. Be really

* 
onservative and estimate the

* the random bit 
ount as only 4.

*/

random_harvest(randomstuff,

sizeof(randomstuff), 4, 0,

RANDOM_MYSTUFF);

:

If 
ontrol over the new harvesting is re-

quired, then a sys
tl may be added to

sr
/sys/dev/random/randomdev.[
h℄:

SYSCTL_PROC(_kern_random_sys_harvest,

OID_AUTO, interrupt,

CTLTYPE_INT|CTLFLAG_RW,

&harvest.mystuff, 0,

random_
he
k_boolean, "I",

"Harvest mystuff entropy");

The 
all to random harvest should then be made


onditional on harvest.mystuff:

:

if (random.mystuff)

random_harvest(randomstuff,

sizeof(randomstuff), 4, 0,

RANDOM_MYSTUFF);

:



Writing to the entropy devi
e from the user's per-

spe
tive (ie, writing to /dev/random) is similar to

writing to /dev/null; it has no dis
ernible e�e
t.

In a
tual fa
t, the data written is \harvested" using

the harvesting 
alls, with the proviso that the en-

tropy is estimated to be nothing. This has the e�e
t

of not 
ausing reseeds, but perturbing the internal

state anyway. If the user is the superuser, then 
los-

ing the devi
e after a write will 
ause an expli
it

reseed.

A kernel thread \kthread" 
onstantly runs, polling

the 
ir
ular bu�er, and if data is present, it a

umu-

lates ea
h event alternately into the two a

umula-

tion hashes (or \entropy pools").

2.2 A

umulation Pools

An initial version of the 256-bit a

umulation hash

was 
onstru
ted using a Davies-Meyer[S
h96b℄ hash

with Blow�sh[S
h96
℄ as the blo
k 
ipher.

The hash works by repeatedly en
rypting an initial

(zero) state while 
y
ling the hash data through the

key. At ea
h iteration, the previous value of the hash

is ex
lusive-or-ed into the newly en
rypted value.

This 
an be represented as:

H

i

= E

M

i

(H

i�1

)�H

i�1

where H

n

is the n

th

iteration of the hash result, M

j

is the j

th

fragment of the data to be hashed and

E

k

(m) is the result of en
rypting m with blo
k 
i-

pher E() and key k.

E()

-

?

-
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M
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Figure 2: Davies-Meyer hash from blo
k 
ipher.

While this worked, it was unbearably slow as Blow-

�sh has an extremely expensive key s
hedule. Slow-

ness was experien
ed as very bad kernel laten
y,

and a kernel thread running with una

eptably high

CPU usage.

The (by this time) newly released AES

(\Rijndael")[NIS℄ algorithm was then tried, and

a 
rude ben
hmark produ
ed extremely promising

results. (Here, Blow�sh was repla
ed with Rijn-

dael.)

The ben
hmark is a timed 16MB read from ea
h

devi
e:

$ dd if=${DEVICE} of=/dev/null \


ount=16 bs=1048576

For 
omparison, /dev/zero was also read.

The time is the time in se
onds for the 16MB read,

and the rate is measured in KB=s.

$devi
e Time (s) Rate (kB=s)

Blow�sh 137.7 122

AES 6.5 2595

Zero 0.2 81861

After 
onsulting literature [SKW

+

℄[WSB℄[FKL

+

℄, it

was suspe
ted that AES was the ideal algorithm,

but further investigation was 
onsidered prudent,

parti
ularly as the ben
hmark measured output per-

forman
e, not hashing performan
e.

The hash routines were broken out of the kernel,

and various speeds were measured using alternative

blo
k 
iphers. A Null algorithm and 160-bit SHA-1

were in
luded for 
omparison.

The \Null" 
ipher simply dupli
ates the input data,

ignoring the key:

N

k

(m) = m

This redu
ed the Davies-Meyer algorithm to the

XOR and data-movement parts only.

Ea
h result represents the time taken to hash 2MB

of pseudo-random data.

Algorithm Time (s) Rate (kB=s)

AES 3.1 461.6

Blow�sh 40.2 35.2

DES 2.9 491.7

SHA-1 2.0 693.3

Null 1.8 786.7



It 
an be seen that AES with 256-bit keys and 256-

bit blo
ks is approximately as fast as DES with 56-

bit keys and 64-bit blo
ks.

160-bit SHA-1 is about 50% faster than the AES

hash, but the AES hash has an approximately 50%

larger 
apa
ity for storing bits.

The \Null" algorithm 
on�rms that en
ryption

overhead is a

eptably low in 
omparison with other


ode overhead.

2.3 Output Generator

The output generator is a 
ounter that is repeatedly

en
rypted, produ
ing the output:

E()

-

66

�

C

k

Figure 3: The Output Generator

O

i

= E

k

(C

t

)

C

t+1

= C

t

+ 1

where C

t

is the (256-bit) 
ounter

3

at time t, O

i

is

the i

th

output, and E

k

(C

t

) is the result of en
rypt-

ing 
ounter C

t

using 
ipher E() and key k.

The dashed line represents the data path during a

gate event. The key \k" is inserted during a re-

seed. This is the point at whi
h environmental noise

(\harvested" entropy) is used.

To 
ompromise the output generator, a key 
om-

promise of the 
ipher is ne
essary. This is 
ompu-

tationally diÆ
ult; nevertheless, to thwart this, the


ounter is regularly repla
ed with data from the out-

put stream:

C

t+1

= C

t

+ 1

C

t+1

= E

k

(C)

The data thus used is not used as part of the out-

put. This is 
alled a gate event, and it happens at

a time 
on�gurable by the system administrator via

sys
tl(9). It defaults to happening every 10 blo
ks.

If a user pro
ess reads less than a 256-bit blo
k, the

remainder is 
a
hed for future reads.

To show that the output was statisti
ally a

ept-

able, some tests were done.

A simple histogram of 8M single-byte values was

plotted:
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Figure 4: Spe
trum of 8M 8-bit values

A straight line was �tted to this data, and was found

to substantiate the fa
t that the slope was � 0 and

the mean value was � 32k.

3

Internal to the FreeBSD kernel, the 256-bit value is represented as a stru
ture 
ontaining four 64-bit unsigned integers.

Only 64 bits are in
remented. The author does not believe this is a problem.



The spread of values around 32k was plotted, and

the distribution found to be reassuringly normal:
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Figure 5: Distribution of values around ex-

pe
ted norm of 32k

This 
orresponded to a mean (�) of 32759:5 and a

� of 187:2

Further tests were done using a more sophisti-


ated random number \torture 
hamber" 
alled

Diehard[Mar℄. Its use produ
ed voluminous output

whi
h indi
ated, on 
areful perusal, that the gener-

ator's output was statisti
ally a

eptable.

It must be noted that the output generator does not

blo
k. This is intentional.

2.4 Reseed Control

This is the tri
kiest part of the algorithm to write.

The Yarrow spe
i�
ation mandates three separate

estimates of in
oming entropy \harvest-units":

1. A programmer-supplied estimate. This has

been very 
onservatively set. This is given as

a 
onstant to ea
h entropy-harvesting 
all.

2. A system-wide \density". This is set at

1

2

,

meaning no sample of N bits 
an supply more

than

N

2

bits of entropy.

3. A statisti
ally determined, per-sour
e 
ontin-

uous estimate. This is unimplemented, as the

me
hanism for doing the statisti
al estimation

has been deemed too expensive for the kernel.

The algorithm states that the lowest of these three

is taken as the entropy supplied for the individual

unit. The author has endeavoured to ensure that

the programmer-supplied estimate will always be

low enough.

3 Impa
t on the Running System

The running devi
e has great potential to be very

invasive to the running kernel, as early experiments

with slow 
iphers showed. In the 
urrent 
ode, how-

ever, the system is proving to be no su
h hindran
e.

last pid: 19524; load averages: 0.25, 0.22, 0.18 up 3+09:01:43 21:52:53

92 pro
esses: 3 running, 74 sleeping, 15 waiting

CPU states: 4.3% user, 0.0% ni
e, 2.3% system, 0.4% interrupt, 93.0% idle

Mem: 27M A
tive, 5536K Ina
t, 18M Wired, 4348K Ca
he, 14M Buf, 4856K Free

Swap: 68M Total, 34M Used, 33M Free, 50% Inuse

PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND

10 root -16 0 0K 12K RUN 59.9H 86.47% 86.47% idle

18128 root 96 0 16636K 5932K sele
t 15:37 1.61% 1.61% XFree86

18169 mark 96 0 15884K 3216K sele
t 4:53 1.61% 1.61% kdeinit

18217 mark 96 0 17116K 4540K sele
t 1:47 0.39% 0.39% kdeinit

18227 mark 96 0 10872K 5916K sele
t 1:59 0.29% 0.29% xema
s-21.1.1

19524 mark 96 0 2096K 1144K RUN 0:00 0.75% 0.20% top

22 root -64 -183 0K 12K WAIT 40:57 0.10% 0.10% irq14: ata0

12 root -48 -167 0K 12K RUN 20:06 0.10% 0.10% swi6: tty:sio

18205 mark 96 0 17836K 5928K sele
t 1:38 0.10% 0.10% kdeinit

18203 mark 96 0 21428K 4080K sele
t 1:07 0.10% 0.10% kdeinit

6 root 20 0 0K 12K syn
er 4:02 0.00% 0.00% syn
er

14 root 76 0 0K 12K sleep 3:19 0.00% 0.00% random

18183 mark 60 -36 5244K 2044K sele
t 3:09 0.00% 0.00% artsd

15 root -28 -147 0K 12K WAIT 2:58 0.00% 0.00% swi5: task qu

18810 mark 96 0 9728K 3076K sele
t 1:30 0.00% 0.00% a
roread

18208 mark 96 0 16372K 3964K sele
t 1:21 0.00% 0.00% kdeinit

Figure 6: Snapshot of a running system

This snapshot of a running FreeBSD workstation

shows that the random pro
ess (the kthread that

runs the reseed pro
ess) has approximately the same

impa
t on the system as the syn
er pro
ess, ie neg-

ligible.

The use of random numbers by se
urity-
ons
ious

engineers has been taken into a

ount over and

above the 
on
erns of the professional 
ryptographi



ommunity. Speed was deemed to be more im-

portant than the produ
tion of number-theoreti
-

quality random numbers (eg: suited to generating

one-time-pads). It is believed that FreeBSD is used

by many more system-administrators than profes-

sional 
ryptographers.

The author is, however, appre
iative of the 
on
erns

of those who would want a more austere presenta-

tion of random numbers from the operating system.



Those members of the 
ommunity are 
onsidered to

be a spe
ialist minority, though.

4 Future plans

There are two main expansion areas in the FreeBSD

entropy devi
e.

1. More entropy harvesting. Any \
heap" en-

tropy that may be found in the kernel may

be used in the future. The user 
ommunity is

en
ouraged to submit likely sour
es. The au-

thor has provisional 
ode to harvest entropy

from Intel 
hipsets �tted with hardware ran-

dom number generators.

2. Provision of a \distilled" devi
e for those

who wish to be assured of an \entropy-in =

entropy-out" 
onservation-of-entropy devi
e.

This needs to be 
onservative enough to not

provide a denial-of-servi
e atta
k by its very

existen
e.
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