
FreeBSD Timecounters

Poul-Henning Kamp

phk@FreeBSD.org

The FreeBSD Project

At the sound of the tone...

� We don't know what time actually is.

� We can measure it very, very precisely.

� We define length and other fundamental units of
measurement using time.

� Everybody has a very good mental model of time.

� ... but we still don't know what time is.

Counting oscillations

� All relevant timekeeping is based on counting
oscillations of some sort.

� Linear phenomena has higher losses than
rotational phenomena.

� Linear phenomena has more boundary conditions
than rotational phenomena.

� Suitable rotational phenomena available.

Build your own clock.

� A clock consists of:

� Oscillator.

� Counter.

� Counting is trivial, forget the counter.

� Three important properties of the oscillator:

� Stability.

� Resolution.

� Precision.

Oscillators

� Mechanical oscillators are ok, but they wear out
and generally are a lot of work.

� Quartz is a fantastic good oscillator due to a lucky
mix of special properties.

� Hyperfine atomic emission lines are probably as
good as it gets, since nothing much can disturb
the phenomena, only our measurement of it.

Timescales

� A timescale consists of an “origo” and some well
defined timeinterval repeated thereafter.

� We cannot “go back to the origo and measure
again”

� We must rely on “dead reckoning” and count very
carefully.

TAI

� “Time Atomic International”

� Sequence of SI-seconds starting 1958.

� SI-seconds defined as:

� The duration of 9,192,631,770 periods of the
radiation corresponding to the transition between the
two hyperfine levels of the ground state of the
caesium 133 atom.

UTC

� Universal Time Coordinated.

� Also known as “Zulu-time”

� Same second as TAI, counts from random
middle-east event, inserts or deletes “leap-
seconds” to match local astronomy.

� The Earth is not a very precise clock.

� Leap-seconds are a pain, often just ignored.

UNIX Time

� Like UTC.

� Counts SI seconds since 1970, ignoring leap-
seconds when they happen.

� Timeintervals are wrong if they span a
leapsecond.

� NTP has an interesting task coping with this
braindamage.

UNIX timestamps.

� time_t

� Seconds since 1970

� Struct timeval

� time_t + microseconds.

� Struct timespec

� time_t + nanoseconds.

POSIX BRAINDAMAGE

tv->tv_sec = tv1->tv_sec + tv2->tv_sec;
tv->tv_usec = tv1->tv_usec + tv2->tv_usec;
if (tv->tv_usec > 1000000) {
 tv->tv_sec++;
 tv->tv_usec -= 1000000;
}

Struct bintime

�

� time_t with 64 bit binary fractional seconds.

� Resolution = 5.421E-20 seconds.

� Simple arithmetic.

� Simple conversion:

� nanosec = (fraction * 1000000000) >> 64;

� Fraction = nanosec * (2^64/1000000000);

CPU frequency vs. Resolution

� 32 bits is just not enough:

� 2^32 Hz = 4.294... GHz.

� 2^32 Hz = 7cm wavelength

�

� 64 bits is enough:

� 2^64 Hz = 18 GigaGiga Hz

� 2^64 Hz = 16 pico-meter wavelength

Timecounter hardware support

� Requirements:

� A binary counter of sufficient width.

� Running at a constant known frequency.

� Optional:

� Readable in single atomic operation.

� External event latch

Figuring out the time:

� Read hardware count.

� Subtract reference count.

� Scale to “bintime” resolution & format.

� Add reference timestamp

� (done)

Avoiding overrun

� At regular intervals:

� Read hardware count.

� Calculate timestamp (as on previous slide)

� (Do seconds-rollover NTP/PLL/FLL routine.)

� Count and timestamp becomes new reference.

� Update cached timestamps.

� (done)

Avoiding locks

� Acquiring a free lock is still expensive.

� Time has specific predictable properties.

� Use stable-storage with generation-number.

A ring of clocks...

� All structures are valid

� One of them is “current”

� Periodic update makes the
next in turn the “current”

� Timestamping always starts
with “current”

� Generation number to spot
any races.

�

Periodic update.

�

th = timehands->next;
gen= th->generation;
th->generation = 0;
/* update things */
if (++gen == 0)
 gen = 1;
th->generation = gen;
timehands = th;

Timestamps, once more

�

do {
 gen = tc->generation;
 /* the timestamp math */
} while (tc->generation != gen || gen == 0);

“Update things”

�

� count = read_counter(th->th_counter);
th->timestamps = math(th, count);
th->offset = count;
if (new second)
 Call NTP/PLL/FLL
 calc_factors(th)

Changing hardware.

� th = timehands->next;
ocount = read_counter(th->th_counter);
th->timestamp = math(ocount);
th->th_counter = newhardware;
th->offset = read_counter(th->th_counter);
calc_factors(th);
timehands = th;

� Generation stuff elided for clarity.

Changing frequency.

� th = timehands->next;
th->offset = read_counter(th->th_counter);
th->timestamp = math(th->offset);
calc_factors(th);
timehands = th;

� Generation stuff elided for clarity.

Hardware interface (1)

� Struct timecounter {
 tsc_get_timecount, /* get function */
 0, /* No poll_pps */
 ~0u, /* Counter mask */
 0, /* Frequency */
 “TSC” /* Name */
} tsc_timecounter;

� Frequency calibrated and filled in by boot code.

Hardware interface (2)

� static unsigned
tsc_get_timecount(struct timecounter *tc)
{
 return (rdtsc());
}

� [...]
if (tsc_freq != 0 && !tsc_broken) {
 tsc_timecounter.tc_frequency = tsc_freq;
 tc_init(&tsc_timecounter);
}

Timestamps API

� [get]{bin,nano,micro}[up]time();

� “get” -> low resolution, approx 1-10 msec.

� “bin” -> struct bintime

� “nano” -> struct timespec

� “micro” -> struct timeval

� “up” -> time since boot (else POSIX/UTC)

� “time_second” and “time_uptime” globals.

� for very low granularity needs.

Conclusion.

� Timecounters work in FreeBSD.

� They have exposed a fair bit of code which didn't.

� “microuptime went backwards”

� Hardware limited performance.

� Rich API for delivering time.

� Adding new hardware takes very little code

� (Not counting code to deal with broken HW).

