An Automated Binary Security Update System for FreeBSD

Colin Percival
Computing Lab, Oxford University
colin.percival@comlab.ox.ac.uk

Abstract that a large number of people find the task of applying
security patches and rebuilding affected programs to be
difficult and/or confusing. Given that releases are on av-

With the present trend towards increased reliance uporrage several months — and several security holes — old

computer systems, the provision and prompt applicatiorby the time they are installed, the possibility arises that

of security patches is becoming vital. Developers of alla new user will find his system compromised before he
operating systems must generally be applauded for thetias a chance to bring it up to date.

success in this area; systems administrators, however,

are often found lacking. Furthermore, there are some circumstances where build-
ing from source is undesirable. Some embedded sys-

Anecdotal evidence suggests that for FreeBSD much ofems might lack sufficient disk space to store the entire

the difficulty arises out of the need to recompile from thesource and object trees; some system administrators re-

source code after applying security patches. Many peomove part or all of the build toolchain in an (arguably

ple, after spending years using closed-source point-andnisguided) attempt to thwart any attempt to build a

click operating systems, find the concept of recompilingrootkit; and the purveyors of application-specific ‘toast-

software to be entirely foreign, and even veteran usergrs’ might very likely wish to keep the complexity of

of open source software are often less than prompt aboutuilding from source entirely hidden from their users.

applying updates. Providing these people with a binary

option should significantly improve the rate at which se-For these reasons, we believe that the provision of a sys-

curity updates are applied. tem of binary security updates is absolutely critical.

This paper describes an automated system for building

and distributing binary security updates for FreeBSD,

and describes the challenges encountered. | also d& Previouswork

scribe some of the limitations of this system, and discuss

some possibilities for future work.
A large number of binary update systems have been
created for various applications and operating systems,
for both security updates and more general software up-

1 Introduction dates. We first consider systems specific to security up-
dates.

Over the past few years, there has been a trend towardsBetween June 2001 and May 2002, many FreeBSD se-
much more rapid exploitation of security holes. It hascurity advisories were accompanied by ‘experimental bi-
been shown with honeypots that insecure systems aneary upgrade’ packages [SA02]. These were built by
often compromised within days or hours of being con-hand based on (human) consideration of which bina-
nected to the internet [An02, Ho02]; it has even beenries should have been modified by a given source patch,
suggested that a significant proportion of systems conand distributed in the standard FreeBSD package format.
nected to the internet could be compromised by a sowWhen a large number of binaries were affected (for ex-
phisticated worm within 30 seconds [SPWO02]. ample, if a library was modified) binary upgrade pack-
ages were not provided.

At the same time, there is a constant influx of new users

into the FreeBSD community; even with detailed in- A similarly experimental, but rather more limited, sys-
structions, traffic on the FreeBSD mailing lists indicatestem has been created for OpenBSD [Ga03]. Here, por-

tions of the ‘world’ are rebuilt according to instructions these tools work on the same general principle — every-
accompanying the official source patches, and a (handhing is ‘packagized’, and the updating process consists
picked) subset of the files built are packaged into a comsimply of removing the old package and installing a new
pressed ‘tar’ archive, which is installed simply by ex- package.
tracting the new files over the old. Again, it does not ap-
pear that any attempt was made to handle patches affect-
ing large numbers of binaries spread across the ‘world’.

o 3 Automated update building
A more sophisticated approach was taken by a commer-
cial service which currently provides binary updates for

N_etB_SD [PSTO3]. Based on Fhe MD,S [Ri92] diggsts 9f In order to build binary updates without human inter-
binaries pre- and post-patching, a list of potential d's'vention, we start with a very simple approach: Build

tribuends is. compi!ed. This list i.s' then inspected by hand;, . \Rel EASE’ world in one directory, build the world
to remove files which are “modified but not related”; we 0 on the latest security patches in another directory,
will describe later how some binaries end up being mOd'and compare. Any files which need to be included in the

ified even without any changes in the source tree. ThIBublished update will have changed. Unfortunately, as
hand-pruned set of binaries is then packaged into a she oted earlier, the converse is not true: Some files will

script which provides the options of installing the new change every time they are built, even if they are built

binaries, reverting to the previous binaries, et cetera. from the same source files: in FreeBSD 4.7. there are

.) 160 such files, of which 128 are library archives.
Because these systems are specific to security updates,

they all attempt to minimize the number of files Updated'Carefully examining the regions where these files dif-

and they all include human participation in this effort. ¢o 5,q\vs the cause: They contain human-readable time
This raises a significant danger of error; even under th%nd date stamps (hereafter we refer to these, along with
best of conditions, humans make mistakes, and the taslﬁser and host stamps, as ‘build stamps’). Some of these

of determining which files out of a given list had been ;.. \ oIl known and serve obvious purposes: The ker-
affected by a given source code patch requires detaileflq| and boot loader, for example, display at startup the

knowledge of how the files are built. A good example of o hostname, date, and time when they were built, and
this is the SUORPC XDR library bug from March 20_03 the library archives need to record timestamps so that
[CEO3] - few, if any, people would have expected to find y,oir constituent object files can be accurately recreated:

vulnerable XDR code it bi n/mv or/bin/rm We v giher executables, such as those associated with per,

argue therefore that building updates automatically ha?\ITP PPP, and ISDN, have build stamps without any ap-
an advantage of correctness as well as an advantage Bfare,nt pur,pose. '

economy.

. . ! . In order to eliminate false positives introduced by these
On the side of general binary updates, the field iSy i stamps, we change our process as follows: We start
more varied. Perhaps the best known of these is Miy, 1 jiiging the ‘RELEASE’ world twice, adjusting the
crosoft's W'”‘?'OWS Updatg, which distributes Securty cjnck to ensure that the date is different (some files con-
updates, service packs, driver updates, and new Versiongi, the date, but not the time they were built), and then

of Microsoft ‘middleware’; these are installed in the 5406 these two worlds in order to locate the build
same manner as application software. Some applicatioB,mos ~ For binary files, we consider a build stamp to

packaging tools also provide binary patch mechanisms,,qi«t of a byte which differs between the two versions
for_example, In_staIISh|eId has an update service [ISOB]Of the file and up to 128 ‘string’ characters in either di-
which, depending upon the tool purchased, can replacg, qjon: for text files, we consider a build stamp to be

an application entirely, distribute only modified files, or 5 ¢, mpjete line which differs between the two versions
distribute only patches to the modified files. of the file. Once we have located the build stamps, we

. D . build the new world and compare it to the release, ex-
The RedHat and Debian distributions of Linux both havecluding the regions previously marked as build stamps:

bi.na_ry update systems, up2date and.apt-get respectivglgny variation outside of those regions indicates that the
Similar to these are portupgrade (which, as the name ing|e\ 5t file needs to be distributed as part of a binary
dicates, only upgrades software from the ports tree), angl,jate Finally, we rebuild the new world again and lo-

the FreeBSD binup project [Bi02], which aims t0 pro- a4 the new build stamps (this final step is necessary be-

vide a general mechanism for all binary updates, but haﬁause any change to a binary is likely to move the build
unfortunately stalled due to a lack of developer time. All stamps.)

4 A few more complications plications, only the one relating to fortune files has been
incorporated into the main FreeBSD tree. Gce and groff
are ‘contributed’ code, and consequently local modifica-

While the above procedure works for almost all files, 10ns are discouraged (we note, however, that the issue
a few need special treatment — usually in the form 0fwith gccis likely to be corrected in a future version); and

cosmetic patches to the source tree. For some reasome guestion of kernel Iabelling.resulted.in avery Iengthy.
fortune data files are randomized during the build pro_debate when the current practice was first adopted and it

cess, even though fortune(6) already selects a fortung€ems unlikely to change now.
randomly. This causes the fortune data files to build dif-

ferently every time; removing the randomization from

the build process eliminates the variability without any

noticeable effect. 5 Distribution

On a related note, the compiler used for FreeBSD 4.x

(gcc 2.95), in the rare case where it cannot find a proBased on our generated list of which files need to be

grammer written global name in a given file, introducesdistributed, we generate an update index containing lines

a random string for this purpose. (In the FreeBSD 4.70f the form

world, this only occurs when compiling the libobijc li-

brary.) Changing this behaviour to instead generate @pat h/t o/ fi | e$ol dhash$newhash

global name by hashing the current path and the input

filename removes the variability without affecting other where/ pat h/ t o/ fi | e is the full path to the file be-

functionality. [SiO3] ing updatedpl dhash is the MD5 hash [Ri92] of the
old version being replaced, amgwhash is the MD5

When security patches are made to FreeBSD, it is starhash of the new version being installed. Note that up-

dard practice to update a version string contained in thelating one file could result in several associated lines,

kernel. This has the advantage of making it apparent thabne for each ‘old version’; to handle this, we keep a list

the changes have been made; but it has the side-effect of all ‘valid’ old hashes by starting with the hash values

causing the kernel to change when userland-only securom the published binary release and adding the hashes

rity fixes are applied. We override these changes. of any new files we distribute.

Some of the documentation for groff uses the currentAlong with the update index is distributed a 2048 bit
date in examples; this would be handled properly as gublic RSA key, the MD5 hash of the update index
timestamp, except that “March” is shorter than “Febru-signed with the private part of the RSA key, the new ver-
ary”, and causes cascading differences in the line breaksions of the files, identified by their MD5 hashes, and
Modifying the examples avoids this problem. binary diffs generated with BSDiff [Pe03], identified by
the MD5 hashes of the old and new versions. Note that
Finally, some files are not entirely replaced during thethese files, once created, are entirely static.
build process: The directory used by info(1) and perl's
perllocal.pod both have entries appended to them dur&iven that the update index contains file hashes and the
ing the build process, but are never cleaned; the kernalpdate index is signed, the only step which needs to be
building code keeps a count of how many times the kerperformed securely is the publication of the public key.
nel has been compiled; and some files (the kernel, mod¥his is done by verifying the MD5 hash of the public
ules, boot loader, and init) are backed up. Removing théey; at present, a configuration file is distributed with the
info directory, perllocal.pod, the kernel compile counter client software which includes the hash of a key belong-
and the backup files eliminates the spurious variabilitying to the author (the mechanics of securely distributing
which they introduce. application software is a bootstrapping issue and outside
the scope of this paper); anyone else using this code to
One additional complication is introduced by crypto- publish their own binary updates would naturally have
graphic export laws. Some files exist in multiple ver- to distribute their own key.
sions: Non-cryptographic, cryptographic, kerberos 4,
and kerberos 5. We handle this by building the afflictedEverything else can be done insecurely: The update files
files, in all applicable forms, in separate directories. can be distributed over insecure HTTP, can be mirrored
easily, and can be transported via sneakernet to update
Out of the patches necessary to work around these conma system which has no internet connection at all. This

also has the advantage of allowing updates to be built ofess; no database is kept of which updates have been in-
a system which is physically disconnected from the out-stalled — instead, at each point, the currently installed
side world, with source patches carried in and publishediles are examined to determine if they are ‘old’. There is
updates carried out manually. no mechanism for installing some, but not all, available
updates — we assume that nobody would wish to patch
some, but not all, security holes; indeed, there is no con-
cept of an individual ‘update’. Since the updates are
6 Installation produced by comparing the results of builds at various
points along a security branch, there is no mechanism
for identifying which particular security advisory corre-

Machines attempting to update themselves first down-Sponds to particular binary changes (unless, of course,

load the RSA public key and verify that it has the correctNeré has only been one advisory in the applicable time
MD5 hash; the update index is then downloaded, and thé/indow). Any administrator wishing to verify that he

signature is verified. For each line in the update index,12S notforgotten to update a system must simply run the

the MD5 hash of the currently installed file is then com- Client software; indeed, we encourage all potential users
puted; if it matches thel dhash value contained in the (i.e. people who started from a binary install and have

update index, the binary diff is downloaded and the new! recompiled any part of the world) to set a cron job to

version of the file is generated; as a backup method, ifun the update client.
the file generated from the binary diff does not have the
correct hash, the entire new file is downloaded (and ver-
ified to have the correct hash).
7 Caveats
This use of binary diffs provides a remarkable reduction
in bandwidth usage. Updating a typical installation of
FreeBSD 4.7 (specifically, one which includes cryptog-There are a few problems with the approach we take.
raphy, but does not include either version of Kerberos)First, because we rely upon the MD5 hash of currently
to include all the applicable security fixes as of mid- installed files to determine which files need to be up-
June 2003 involves replacing 97 files which total 36MB. dated (and, in the case of export differences, which new
The binary diffs for these total 621kB, a reduction by aversion should be installed), any variation in the insthlle
factor of 58. Even if all the HTTP/TCP/IP overhead is files will result in updates not being performed. This
added, the total bandwidth required for updating such aneans that the set of potential users is restricted to those
system is under 1.6MB — less than half of the 3.6MBwho have performed a binary install and not recompiled
used by cvsup [Po02] when performing the same updatany FreeBSD files. We do not consider this to be a se-
on the source tree. Indeed, based on an estimate fromous limitation, considering that our stated target audi-
Netcraft that there are between 50 and 60 thousand pulence is those users who are unable or unwilling to re-
licly accessible web servers running FreeBSD world-compile from source.
wide [Pr03], and data from FreshPorts [La03] which
suggests that web servers constitute slightly less thaAnother limitation arises from the fact that we onbr
half of the machines running FreeBSD around the world placefiles, rather than adding or removing them. This
we believe that it would be possible for a single low-endimmediately means that this system is restricted to up-
server to provide binary updates to every FreeBSD sysdates within a single version — while the effect of a se-
tem in the world within a single day. curity patch will be to modify some files, upgrading to a
new version would require installing entirely new files.
After the updated files have been fetched and/or gendpgrading from one FreeBSD release to another can al-
erated via patches, the updates are installed by backeady be performed simply by performing a binary in-
ing up the old files and moving the new files over the stall from the published release images.
old (subject to maintaining permissions, ownership, and
file flags). Any supplemental tasks necessary for theA more serious issue arises with the kernel: We can only
updates to take effect (restarting daemons, recompilingrovide updates for the GENERIC kernel. While this
staticly linked application software which uses modified may be sufficient for some users, a very obvious class
libraries, and/or rebooting) is left to the system adminis-exists for whom this is not sufficient — those with multi-
trator. processor systems. We suggest therefore that it would
be a Good Thing if FreeBSD releases also included at
It is important to note that this process is entirely state-least a GENERIC-MP kernel, identical to the GENERIC

kernel except for the addition of multi-processor sup-dates. Second, there is no “security branch” for the ports
port; indeed, it might be adviseable to add ‘bloat’ to thetree; consequently, updating from one version to another
GENERIC kernel in the interest of reducing the proba-is quite likely to involve adding or removing files, which
bility that someone would be required to build a customis beyond the scope of this system. Third, the large num-
kernel — noting, of course, that kernel modules can béer of ports, the time necessary for building them, and
updated, so features which can be fully supported viahe (quite common) cases where some ports cannot be
modules would not need to be compiled into the kernel.successfully built would all contribute to making such an
attempt a logistical nightmare. We note, in any case, that
Perhaps the most serious issue arises with configuratioportupgrade already makes the updating of ports quite
files and metadata. There are circumstances where a ssimple.
curity update might need to change an option in a (user-
serviceable) configuration file, or change the ownershipOn the other hand, this tool is ideally suited to self-
permissions, or flags on a file. This could be handled bycontained “toasters”. Providing that a vendor can con-
transmitting patches for text files rather than simply dis-struct an automated mechanism for building all installed
tributing the new version, and recording which patchessoftware (operating system and software), binary up-
have already been applied; changes in ownership, pedates can be built and distributed in exactly the same
missions, or flags could be handled in a similar mannermanner as for an operating system alone.
However, such a mechanism would carry with it a con-
siderable risk of damaging a customized configurationOne possible future modification would be to keep a
consequently we feel that the principle of least astonish-clean’ copy of configuration files, and use mergemas-
ment requires that such (rare) fixes be left up to a humarer(8) to merge any changes if the configuration files
administrator. were changed (in the same manner as when recompil-
ing the entire world). This would not be automated —
A final issue arises from the use of the MD5 messageanerging any changes would require the intervention of
digest. Although no collisions have been found, therethe system administrator — but it would at least be a step
is an ongoing attack [NP03]; indeed, it has been recomin the right direction.
mended for many years that MD5 not be used for ap-
plications where collision resistance is required [R096].The most interesting possibility, however, is for hav-
We note that even given the ability to compute MD5 col- ing several machines build updates and cross-sign. This
lisions an attack would be very difficult, since it would would be far from trivial, since each machine would (due
require that specially crafted source code be introducedb the build stamps) produce different updates (the same
into the security branch; consequently, we consider thdiles would be modified, but the new values would be
risk introduced by using MD5 to be negligible, and jus- different). However, it should be possible for each ma-
tifiable in light of the lack of stronger hash programs in chine to fetch the updates built by each of the others and
the base FreeBSD distribution. remove the build stamps before comparing; in this man-
ner, they could each verify that each others’ builds were
identical up to (security-irrelevant) build stamps. Ctien
machines could then be configured with a list of trusted
8 Futurework keys, and could require that a certain quorum had signed
a set of updates before installing. Since, at present, com-
promising the security of the single machine which is

It seems very likely that the same approach, and mudt;ui_lding the updates would allow an attacker_ to issge
or all of the same code, can be used for building binar)frojaned updates” to a large number of machines, dis-

security updates to other BSD operating systems. TheriPuting the building process would certainly be advan-

would, almost certainly, be a different set of patches nec!a9€ous-

essary to remove spurious variabilities; but it would be

very surprising if those necessary patches could not eadd€@lly, one would hope that some day the convoluted
ily be found. methods used here will be unnecessary. Software in-

stalled from the ports tree, and some other operating
On the other hand, for various reasons it seems unlikelgYSt€Ms, have the advantage of being completely pack-

that this same approach could be applied to softwaré‘g'zed; this makes it easy to install or remove specific
from the FreeBSD ports tree. First, while pre-built pack- packages, and consequently makes it trivial to update

ages are available, most people build ports from sourceEV€"Ything on the system. If FreeBSD were split into

as noted earlier, this makes it impossible to provide up-SUCh independent packages, a wide range of problems

would be simplified; however, performing such a task[Ga03]
would most likely require reworking the entire build sys-

tem, and it seems likely that development will never stop
for long enough to make such an effort possible, even if

someone could be found with the necessary capabilit

and time to perform such a task.

9 Acknowledgements

The author would like to thank Chad David and Terry

YHo02]

[1S03]

Lambert for their assistance in explaining the FreeBSD
build process; Nathan Sidwell for his assistance with[La03]
gce; and Graham Percival for replacing a dead haquPOS]
drive, repairing a broken filesystem on a working hard
drive, and otherwise helping to maintain the author’s
FreeBSD box while he was 4700 miles away.

[Pe03]

The author would also like to acknowledge support from
the Commonwealth Scholarship Commission, which is
funding his studies at Oxford University.

10 Availability

[P002]

[Pro3]
[PSTO3]

The client (update installing) and server (update build-
ing) code is available under an open source license from

http://ww. daemonol ogy. net/ freebsd- updat e/

[Ri92]

[RO96]

[Si03]
[SPWO02]

[SA02]

The client code is also available in the FreeBSD ports
tree.
References
[An02] M. Anuzis, Incident Analysis of a Compro-
mised OpenBSD 3.0 Honeypot
http: //ww. anuzi snet wor ki ng. com
whi t epaper s/ obsd30/ (2002).
[Bi02] FreeBSD Binary Updater Project (binup)
http://ww. freebsd. org/
proj ects/updater. htnm (2002).
[CEO3] CERT Advisory CA-2003-10 Integer overflow

in Sun RPC XDR library routings
http://ww. cert. org/

advi sori es/ CA-2003- 10. ht i (2003).

Gerardo Santana 6Gez Garrido, Binary
patches for OpenBSD

http://ww. openbsd. org. mx/

~sant ana/ bi npatch. ht i (2003).

S. Holcroft, Incident Analysis of a Compro-
mised RedHat Linux 6.2 Honeypot
http://ww. hol croft. org/ honeypot/

I nci dent/shol croft-4.1-2002. htm
(2002).

InstallShield InstallShield - Update Service
http://ww. installshield.conisus/
(2003).

D. Langille, Personal email (23 June 2003).

The NEO Project
http://ww.t heneoproj ect. conl
(2003).

C. PercivalNaive Differences of Executable
Code

http://ww. daenonol ogy. net/ bsdi ff/
(2003).

J. PolstraCVSup
http://ww. cvsup. or g/ (2002).

M. Prettejohn, Personal email (27 May 2003).

Puget Sound Technolodginary Updates for
NetBSD

http:// puget soundt echnol ogy. com
servi ces/ net bsd/ updat es/ (2003).

R. Rivest, The MD5 Message-Digest Algo-
rithm, RFC 1321 (1992).

M.J.B. Robshawn Recent Results for MD2,
MD4, and MD5 RSA Laboratories Bulletin,
November 1996.

N. Sidwell, Personal email (14 Feb 2003).

S. Staniford, V. Paxson, and N. Weavéow
to Own the Internet in Your Spare Tinero-
ceedings of the 11th USENIX Security Sym-
posium (2002).

FreeBSD Security Advisories SA-01:40,
SA-01:42, SA-01:48, SA-01:49, SA-01:51,
SA-01:52, SA-01:53, SA-01:55, SA-01:56,
SA-01:57, SA-01:58, SA-01:59, SA-01:62,
SA-01:63, SA-02:08, SA-02:13, and SA-
02:25
http://ww. freebsd. org/ security
(2002).

