
GEOM Tutorial

Poul-Henning Kamp

phk@FreeBSD.org

Outline

� Background and analysis.
� The local architectural scenery
� GEOM fundamentals.
� (tea break)
� Slicers (not a word about libdisk!)
� Tales of the unexpected.
� Q/A etc.

UNIX Disk I/O

� A disk is a one dimensional array of sectors.
� 512 bytes/sector typical, but not required.

� Two I/O operations: read+write
� Sectorrange: First sector + count.
� RAM must be mapped into kernel.

� I/O request contained in struct buf/bio
� Schedule I/O by calling strategy()
� Completion signaled by biodone() callback.

a bit of UNIX history

� Disk partitioning came to UNIX very early.
� Hard coded in the disk device drivers.
� An architecturally clean solution:

� Drivers already have abstractions for multiple
devices.

� Hard coded means no admin tools needed.
� No meta-data modification problem.

Progress...

� The hard coded table became a bother.
� Put partition table in magic sector.
� Read it once, at boot.

� Still an architecturally clean solution.

... is overrated ...

� On the fly modification.
� Add ioctls() to modify label on the fly.
� Add admin tools to do so.
� Some details in the corners hacked around.

� Crumbling of architecture.
� magic 'c' partition.
� boot code stored inside file system partitions.
� special “write-protect label” ioctls.

...but seldom...

� Arrival of PC architecture adds more hacks.
� label inside partially trust-worthy MBR slice.
� hacks to supply MBR distrust workaround.
� “Dangerously Dedicated” and all that...
� magic 'd' partition as “really entire disk”
� tools to modify MBRs.

� Architecture not a concern at this point.

... goes too far.

� Code cleanup adds pseudo-quasi-crypto-
generic two-level slice/partitioning code.

� Two-level structure of IBM/pc becomes “the
model”.

� “compat slice” to allow purists to ignore MBR
“/dev/da0[a-h]” = “/dev/da0s1[a-h]”

� Uses absolute offsets in second level label data
(so we can still distrust the now trustworthy
MBR partition label)

Pressure from the sides.

� CCD stripe/mirror “pseudo” device driver.
� Not “pseudo” at all.
� Stealth use of buffer cache API.
� Fortunately no meta-data.

� Vinum
� CCD on steroids. Veritas aspirations.

� RaidFrame
� Research RAID engine.

What is “a feature” ?

� All US bank-notes are same size and green.
� Originally this was a hack: Cheap, efficient

for production.
� Turned into a feature when people started

to depend on it: wallets, counting machines
vending machines.

� This feature now has a large and addicted
user base.

... and misfeatures.

� Feature becomes misfeature:
� trivially simple to counterfeit greenbacks.

� Drastic alterations impossible, the addicted
user-base would scream and yell.

� and they can afford politics.
� Countermeasures must “fit in format”

� not efficient, you need a microscope.

Our features...

� CCD was a hack.
� For the lack of something better, people

started to depend on it.
� s/hack/feature/
� People wanted more.
� “Hang on while we fix our architecture.”
� “Sure, here's Vinum and RaidFrame!”

Architecture is hard...

� Lets go hacking!
� We stand on the shoulders of giants.
� We tend to forget that too often.
� “Infrastructure” is the key to high quality in

any large program.
� Infrastructure needs to move with the times.

Sheep vs. Wolves

� Some face even bigger problems than us:
� Solaris still reserves “alternate cylinders”

� Not sure what would break, dare not remove.
� Some have heavy legacy code tied in:

� Veritas Volume Manager for instance.
� Some have far less:

� We're Microsoft, we decide the “standards”.

GEOM does what ?

� Sits between DEVFS and device-drivers
� Provides framework for:

� Arbitrary transformations of I/O requests.
� Collection of statistics.
� Disksort like optimizations.
� Automatic configuration
� Directed configuration.

“You are here”

Userland application

Physio() Filesystem

Buffer cache
VM system

DEVFS

GEOM

Device driver

To DEVFS GEOM
looks like a regular
device driver

Disk device drivers use the
disk_*() API to interface to
GEOM

The GEOM design envelope.

� Modular.
� Freely stackable.
� Auto discovery.
� Directed Configuration.
� POLA
� DWIM
� No unwarranted politics.

“Modular”

� You cannot define a new transformation
and insert it into Veritas volume manager,
AIX LVM, Vinum or RaidFrame.

� They are all monolithic and closed.
� “A quaint feature from the seventies”.

Freely stackable.

� Put your transformations in the order you
like.

� Mirror ad0 + ad1, partition the result.
� Partition ad0 and ad1, mirror ad0a+ad1a,

ad0b+ad1b, ad0c+ad1c, ad0d+ad1d ...
� Strictly defined interfaces between classes.

Auto discovery.

� Classes allowed to “automagically” respond
to detectable clues.

� Typically reacts to on-disk meta-data.
� MBR, disklabel etc

� Could also be other types of stimuli.

Directed configuration

� “root is always right”
 -- the kernel.

� Root should always be able to say “You may
think it sounds stupid, but I want it!”

� ...as long as it does not compromise kernel
integrity.

POLA

� Principle of Least Astonishment.
� Pola is not the same as

“retain 1.0 compatibility at any cost!”
� Very hard to describe or codify, but

intuitively obvious when violated.

DWIM

� Do What I Mean.
� Have sensible defaults.
� Make interfaces versatile but precise.
� Make sure interfaces have the right

granularity.
� Be liberal to input, conservative in output.
� And be a total bastard to the programmers.

Say again ?

� I detest people who take short-cuts rather
than do things right, because they leave shit
for the rest of us to clean up.

� GEOM is fascist to prevent certain “obvious”
hacks.

� Try to sleep in the I/O path -> panic.
� Lots of KASSERTS.
� Etc.

No unwarranted Policies.

� “FreeBSD: tools, not policies”.
� We are not in the business of telling people

how they should do their work.
� We are in the business of giving them the

best tools for their job.
� “UNIX is a tool-chest”

No unwarranted Policies.

� Leave maximal flexibility to the admin.
� Don't restrict use based on your:

� High moral ground posturing
� “Telnet is insecure, REMOVE IT!”

� Unfounded theories
� More or less anything Terry ever said.

� Weak assumptions
� “Heck nobody would ever do that!”

Technical requirements.

� SMPng style.
� Giant-less.
� Good granularity.
� Strict but sensible locking.

� Break the kernel stack depth.
� a class can be complex, a stack of classes can be

very complex, direct calling is not an option.
� Efficient.

GEOM, the big view.

Topology
management
Code.

Open / Close/Ioctl

Topology changes

“alien interface”

“alien interface”

“up” path“down” path

Statistics
Collection

GEOM terminology.

� “A transformation”
� The concept of a particular way to modify I/O

requests.
� Partitioning (BSD, MBR, GPT, PC98...).
� Mirroring
� Striping
� RAID-5
� Integrity checking
� Redundant path selection.

GEOM terminology.

� “A class”
� An implementation of a particular

transformation.
� MBR (partitioning)
� BSD (ditto)
� Mirroring
� RAID-5
� ...

GEOM terminology.

� “A geom” (NB: lower case)
� An instance of a class.

� “the MBR which partitions the ad0 device”
� “the BSD which partitions the ad0s1 device”
� “the MIRROR which mirrors the ad2 and ad3

devices”
� ...

GEOM terminology.

� “A Provider”
� A service point offered by a geom.
� Corresponds loosely to “/dev entry”

� ad0
� ad0s1
� ad0s1a
� ad0.ad1.mirror

GEOM terminology.

� “A consumer”
� The hook which a geom attach to a provider.
� name-less, but not anonymous.

GEOM topology.

G

C
G

C

P
G

C

P P

C

G
P

G G
C

NO LOOPS!

Topology limits:

� A geom can have 0..N consumers
� A geom can have 0..N providers.
� A consumer can be attached to a single

provider.
� A provider can have many consumers

attached.
� Topology must be a strictly directed graph.

� No loops allowed.

I/O path.

� Requests are contained in “struct bio”.
� A request is not transitive.

� Clone it
� Modify the clone
� ... and pass the clone down.

� “start” entry point in geom used to schedule
requests.

� bio->bio_done used to signal completion.

I/O path

� Sleeping in I/O path is NOT allowed.
� Queue the request and use a kthread or

taskqueue.
� ENOMEM handling is automatic

� Returning a request with ENOMEM triggers retry
with automatic backoff.

� Dedicated non-sleepable threads for
pushing bios around.

I/O efficiency.

� Cannot sleep in up/down path
� Enforced with hidden mutex.

� Don't do CPU heavy tasks in the up/down
paths, use separate kthreads or task queue.

� Only one thread for each direction
� Simplifies locking for classes.
� Typically use .1% of cpu power.

I/O locking.

� Mutex on individual bio queues.
� Bio request scheduled on consumer.

� Fails if not attached and open(ed enough).
� Bio records “from + to”.
� Bio reply follows recorded “to->from” path

� Possible to answer after path has been removed.

Locking hierarchy

� To initiate I/O request:
� Must have non-zero access count on consumer.

� To set access count on consumer:
� Must hold “topology lock”
� Consumer must be attached to provider.
� Provider must accept.

Topology rules

� To attach consumer to provider:
� Must not create a loop.

� To detach consumer
� Must have zero access counts.
� No outstanding I/O requests.

Topology rules

� To destroy consumer
� Must not be attached.

� To destroy provider
� Must not be attached.

Topology locking.

� The “topology lock”
� Must be held to change the topology.
� Must be held during open/close processing.
� Not needed for I/O processing.
� Doesn't stop I/O processing.

� Single “giantissimo” lock warranted by low
frequency of use.

Class primitives.

� Create Class
� Adds class to list of classes.

� Destroy Class
� Fails if class in use.

� Normally handled by standard GEOM/KLD
macros.

Geom primitives

� Create geom of specified class.
� Destroy geom

� Fails if geom has consumers
� Fails if geom has providers.

Provider primitives.

� Create provider on specified geom.
� Set provider error code.

� Specify error code to start/stop all I/O.
� Orphan provider.

� Tell consumers to bugger off.
� Destroy provider

� Fails if attached.

Provider properties

� Name
� Mediasize

� Total bytes on device
� Sectorsize

� Size of addressable unit
� Stripesize and Stripoffset

� Defines optimal request boundaries.

Other optional properties

� Can be queried with GET_ATTR() request.
� Namespace is string

� “class::attribute”
� “GEOM::attribute”

� Examples:
� GEOM::fwsectors
� MBR::type
� BSD::labelsum

Consumer primitives.

� Create consumer on specified geom.
� Attach consumer to specified provider
� Change access counts of consumer.

� Fails if not permitted or not attached.
� Detach

� Fails if non-zero access or I/O counts.
� Destroy

� Fails if attached

Access counts.

� Access is tracked as three reference counts:
� Read gives read access.
� Write gives write access.
� Exclusive prevents others write access.

� Consumer and providers have associated
counts.

� Providers count is the sum of all attached
consumers counts.

How access counts work (1)

BSD

MBR

DISK
ad0 r0w0e0

ad0s1 r0w0e0 ad0s2 r0w0e0

ad0s1a r0w0e0 ad0s1a r0w0e0

r0w0e0

r0w0e0

DEV DEV

DEV

DEV

r0w0e0

r0w0e0 r0w0e0

r0w0e0

DEV
r0w0e0

grab topology lock

How access counts work (2)

BSD

MBR

DISK
ad0 r0w0e0

ad0s1 r0w0e0 ad0s2 r0w0e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r0w0e0

DEV DEV

DEV

DEV

r0w0e0

r0w0e0 r0w0e0

r0w0e0

DEV
r0w0e0

How access counts work (3)

BSD

MBR

DISK
ad0 r0w0e0

ad0s1 r2w0e1 ad0s2 r0w0e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r0w0e0

DEV DEV

DEV

DEV

r0w0e0

r2w0e1 r0w0e0

r0w0e0

DEV
r0w0e0

How access counts work (4)

BSD

MBR

DISK
ad0 r3w0e2

ad0s1 r2w0e1 ad0s2 r0w0e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r3w0e2

DEV DEV

DEV

DEV

r0w0e0

r2w0e1 r0w0e0

r0w0e0

DEV
r0w0e0

SUCCESS!
release topology lock.

How access counts work (5)

BSD

MBR

DISK
ad0 r3w0e2

ad0s1 r2w0e1 ad0s2 r0w0e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r3w0e2

DEV DEV

DEV

DEV

r0w0e0

r2w0e1 r0w0e0

r0w0e0

DEV
r0w0e0

grab topology lock.

How access counts work (6)

BSD

MBR

DISK
ad0 r3w0e2

ad0s1 r2w0e1 ad0s2 r1w1e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r3w0e2

DEV DEV

DEV

DEV

r0w0e0

r2w0e1 r0w0e0

r0w0e0

DEV
r1w1e0

MBR checks for overlap
with other open slices.

How access counts work (7)

BSD

MBR

DISK
ad0 r4w1e2

ad0s1 r2w0e1 ad0s2 r1w1e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r4w1e2

DEV DEV

DEV

DEV

r0w0e0

r2w0e1 r0w0e0

r0w0e0

DEV
r1w1e0

SUCCESS!
release topology lock

How access counts work (8)

BSD

MBR

DISK
ad0 r4w1e2

ad0s1 r2w0e1 ad0s2 r1w1e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r4w1e2

DEV DEV

DEV

DEV

r0w0e0

r2w0e1 r0w0e0

r0w0e0

DEV
r1w1e0

grab topology lock

How access counts work (9)

BSD

MBR

DISK
ad0 r4w1e2

ad0s1 r2w0e1 ad0s2 r1w1e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r4w1e2

DEV DEV

DEV

DEV

r0w0e0

r2w0e1 r1w1e0

r0w0e0

DEV
r1w1e0

FAILURE!
roll back and release lock.

GEOM ahead of the kernel.

� Kernel didn't used to provide strong access
checks at the disk-IO level.

� Primitives insufficient to express R/W/E
policy fully.

� File systems sloppy with handling even what
is supported.

� mount r/o => open r/o
� remount r/w => no reopen to r/w mode.

Events and all that.

� GEOM has an internal job-queue for
executing auto discovery and other
housekeeping.

� Events posted on a queue.
� Orphan events on dedicated queue.
� Event queue protected by event mutex.

� Dedicated event thread grabs topology lock,
executes event and releases lock.

Event queue

� Strictly FIFO processing.
� Orphans before general events.

� Events tagged by identifiers
� (void *)

� Events can be cancelled by identifier.
� Once Giant is removed, the event kqueue

can become a normal taskqueue function.

User land and events.

� All user land operations which need
topology lock must wait for empty event
queue.

� open/close/ioctl
� Explicit “process all events” calls may be

needed in class code.
� Event queue useful to isolate Giant infected

code from Giant free code.

“New Class” event.

� Posted when a class is added.
� Results in the class being offered a chance to

“taste” all current providers in the system.

“New Provider” event.

� Posted when provider is created.
� All classes gets the offer.

� Posted when a provider write access count
goes to zero.

� Meta data for a class may have been created.
� Only classes not already attached are offered a

chance to taste the provider.

“Orphan” event..

� Devices disappear without notice.
� That's hardware for you...
� Not nice from a UNIX philosophy.
� But we have to cope...

“Orphan” event..

� A provider can be “orphaned” by its geom.
� All future I/O requests fail.
� All In-transit I/O requests can still complete

� They shall complete!
� Consumers get notified.
� Consumers expected to zero access counts and

detach.
� Only then can the provider be destroyed.

How orphaning work (1)

BSD

MBR

DISK
ad0 r4w1e2

ad0s1 r2w0e1 ad0s2 r1w1e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r4w1e2

DEV DEV

DEV

DEV

r0w0e0

r2w0e1 r0w0e0

r0w0e0

DEV
r1w1e0

grab event lock
orphan provider.
release event lock.

How orphaning work (2)

BSD

MBR

DISK
ad0 r4w1e2

ad0s1 r2w0e1 ad0s2 r1w1e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r4w1e2

DEV DEV

DEV

DEV

r0w0e0

r2w0e1 r0w0e0

r0w0e0

DEV
r1w1e0

Consumers gets notified.

How orphaning work (3)

BSD

MBR

DISK
ad0 r4w1e2

ad0s1 r2w0e1 ad0s2 r1w1e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r4w1e2

DEV DEV

DEV

DEV

r0w0e0

r2w0e1 r0w0e0

r0w0e0

DEV
r1w1e0

Idle consumer decides
to selfdestruct.

How orphaning work (4)

BSD

MBR

DISK
ad0 r4w1e2

ad0s1 r2w0e1 ad0s2 r1w1e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r4w1e2

DEV DEV

DEV

r0w0e0

r2w0e1 r0w0e0
DEV

r1w1e0

How orphaning work (5)

BSD

MBR

DISK
ad0 r4w1e2

ad0s1 r2w0e1 ad0s2 r1w1e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r4w1e2

DEV DEV

DEV

r0w0e0

r2w0e1 r0w0e0
DEV

r1w1e0

Consumers gets notified.
MBR Orphans it's providers.

How orphaning work (6)

BSD

MBR

DISK
ad0 r4w1e2

ad0s1 r2w0e1 ad0s2 r1w1e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r4w1e2

DEV DEV
r0w0e0

r2w0e1
DEV

r1w1e0

Idle DEV self destructs.

How orphaning work (7)

BSD

MBR

DISK
ad0 r3w0e2

ad0s1 r2w0e1 ad0s2 r0w0e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r3w0e2

DEV DEV
r0w0e0

r2w0e1
DEV

r0w0e0

Busy DEV closes

How orphaning work (8)

BSD

MBR

DISK
ad0 r3w0e2

ad0s1 r2w0e1 ad0s2 r0w0e0

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r3w0e2

DEV DEV
r0w0e0

r2w0e1
DEV

r0w0e0

Busy DEV detaches

How orphaning work (9)

BSD

MBR

DISK
ad0 r3w0e2

ad0s1 r2w0e1

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r3w0e2

DEV DEV
r0w0e0

r2w0e1
DEV

and destroys consumer.
Provider destroyed.

How orphaning work (10)

BSD

MBR

DISK
ad0 r3w0e2

ad0s1 r2w0e1

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r3w0e2

DEV DEV
r0w0e0

r2w0e1

More about the DEV later

How orphaning work (11)

BSD

MBR

DISK
ad0 r4w1e2

ad0s1 r2w0e1

ad0s1a r1w0e0 ad0s1a r0w0e0

r1w0e0

r4w1e2

DEV DEV
r0w0e0

r2w0e1

BSD geom decides to
orphan its providers.

How orphaning work (12)

BSD

MBR

DISK
ad0 r4w1e2

ad0s1 r2w0e1

ad0s1a r1w0e0

r1w0e0

r4w1e2

DEV

r2w0e1

Idle consumer explodes
and empty provider can
be destroyed.

How orphaning work (13)

BSD

MBR

DISK
ad0 r4w1e2

ad0s1 r2w0e1

ad0s1a r1w0e0

r1w0e0

r4w1e2

DEV

r2w0e1

Busy “DEV” gets notified

How orphaning work (14)

BSD

MBR

DISK
ad0 r0w0e0

ad0s1 r0w0e0

ad0s1a r0w0e0

r0w0e0

r0w0e0

DEV

r0w0e0

Zeros access count

How orphaning work (15)

BSD

MBR

DISK
ad0 r0w0e0

ad0s1 r0w0e0

ad0s1a r0w0e0

r0w0e0

DEV

r0w0e0

Detaches consumer
and destroys it.

How orphaning work (16)

BSD

MBR

DISK
ad0 r0w0e0

ad0s1 r0w0e0

r0w0e0

DEV

r0w0e0

And things unravel.

How orphaning work (17)

MBR

DISK
ad0 r0w0e0

ad0s1 r0w0e0

r0w0e0

DEV And things unravel.

How orphaning work (18)

DISK
ad0 r0w0e0

DEV Finally, the provider
can be destroyed.

How orphaning work (19)

DEV
The DEV class calls destroy_dev()
and properly selfdestructs.
Leaving the users to their own devices
(Sorry, couldn't resist pun)

Spoiling

� A new disk arrives: /dev/da0
� A NEW_PROVIDER event gets posted.
� All classes gets to taste the disk.
� BSD finds a disklabel and attaches.
� User does: dd if=/dev/zero of=/dev/da0
� The disklabel which configured the BSD is

gone, and the BSD geom needs to know.

“Spoiled” event.

� Posted when a provider gets a non-zero
write access count.

� Can change or destroy a class' metadata.
� All attached consumers, except the guilty

party, notified.

Spoiling (1)

� A class which relies on on-disk meta data
will set exclusive bit if it is open in any way.

� This prevents opens which could overwrite
the meta-data while it is being used.

� Does not solve the problem when the meta
data is not actively being used

� Ie: no partitions on BSD geom open.

Spoiling (2)

� When a provider is opened for writing first
time (write access count goes non-zero):

� Post spoil event on all attached consumers
except the guilty party.

� Consumers which rely on meta data, are
obviously closed (otherwise you couldn't open
for writing) and they typically self destruct.

Spoiling (3)

� When the provider is closed (ie: write access
count goes to zero)

� NEW_PROVIDER event posted on provider.
� All classes gets chance to (re)taste and reattach.

Spoiling Cartoons

DISK
ad0 r0w0e0

Disk device driver calls disk_create()
and the DISK class creates a new geom.

Spoiling Cartoons

DISK
ad0 r0w0e0

BSDDEV
r0w0e0 r0w0e0

Some stuff up here

NEW_PROVIDER event triggers
a round of tasting. DEV always grabs.
BSD discovers label on disk and grabs.

Spoiling Cartoons

DISK
ad0 r1w1e0

BSDDEV
r1w1e0 r0w0e0

Some stuff up here

We open /dev/ad0 for writing

Spoiling Cartoons

DISK
ad0 r1w1e0

BSDDEV
r1w1e0 r0w0e0

Some stuff up here

write access count goes non-zero
and we spoil the BSD geom.

Spoiling Cartoons

DISK
ad0 r1w1e0

DEV
r1w1e0

BSD geom decides to
self destruct.

Spoiling Cartoons

DISK
ad0 r0w0e0

DEV
r0w0e0

We write something to the
device and the DEV is closed again.

Spoiling Cartoons

DISK
ad0 r0w0e0

MBRDEV
r0w0e0 r0w0e0

Some stuff up here

A new round of tasting starts
And now MBR finds a label.

This is why...

� You cannot open /dev/ad0 for writing if any
slices or labels are open.

� This is policy in the slicer classes, not in
GEOM.

� Each geom/class must decide for itself how
to react to spoiling.

Special GEOM classes.

� There are no special GEOM classes.

“different” GEOM classes.

� All GEOM classes are treated the same.
� ... But not all GEOM classes have the same

kind of job.
� “DISK” class talks to disk device drivers.

� disk_create(), disk_destroy() etc.
� “DEV” class talks to dev_t/SPECFS/DEVFS.

� make_dev(), destroy_dev() etc.

The DISK geom class.

� Upper side interface: GEOM
� Lower side interface: “disk minilayer”

� disk_create().
� Do magic necessary for disk device-driver.
� Create a provider.

� disk_destroy().
� Orphan provider.
� Do various magic for the disk device-driver.
� Self-destruct when possible.

The DEV geom class.

� Lower side interface: geom consumer.
� Attaches to anything taste presents to it.

� Upper side: disk device-driver.
� Calls make_dev() with suitable args.

� When Orphaned:
� Calls destroy_dev()
� Selfdestructs.

Would it be possible...

� To write a GEOM class to sit on top of the
network ?

� To give disk device drivers a native GEOM
interface instead of using the DISK class ?

� To ... ?
� YES, Geom classes are very very general.

“Slicers” as a concept

� “Slicers” are GEOM classes which partition a
device into some number of sub devices.

� Commonality includes:
� Transformation consists of offset + limit.
� Refuse overlapping slices from opening.
� On-the-fly change of slice configuration.

Trying to raise the bar...

� Use explicit byte-stream decode for on-disk
meta data.

� This gives the geom modules wordsize and
endianess agility.

� Put i386 disk in sparc64 and access the
partitions.

� Not really that useful until file systems are
agile as well.

So what does a slicer take ?

� Three (or Four) “hard” routines:
� “modify”

� Take label image, validate, configure.
� “taste”

� Read label image from disk
� “config”

� Receive label image from userland.
� “hotwrite”

� Intercept label image overwrites.

Management interface(s).

� GEOM needs to be able to report config to
userland.

� Since we don't know what the classes are
and what they can do, we cannot know
what they would like to report.

� => use extensible format.

XML in the KERNEL ???

� No, “XML out of the kernel”.
� There is no point in inventing my own

hierarchal extensible modular format when
there is one with a lot of tools and growing
recognition already.

� Generating XML in the kernel is simple:
� sbufs - string buffers with memory

management.
� sprintf.

Sample XML output

critter phk> sysctl -b kern.geom.confxml | head -20
<mesh>
 <class id="0xc03b1200">
 <name>MBREXT</name>
 </class>
 <class id="0xc03b11a0">
 <name>MBR</name>
 <geom id="0xc4042f40">
 <class ref="0xc03b11a0"/>
 <name>ad0</name>
 <rank>2</rank>
 <config>
 </config>
 <consumer id="0xc406b000">
 <geom ref="0xc4042f40"/>
 <provider ref="0xc4148980"/>
 <mode>r8w8e3</mode>
 <config>
 </config>
 </consumer>
 <provider id="0xc4148800">

Generating XML from a class

� Class implementes “dumpconf” method
� Appends text into provided sbuf.
� Gets called per instance of a class:

� Once with geom argument only.
� For every provider with geom & provider arg.
� For every consumer with geom & consumer arg.

Sample dumpconf method

void
g_slice_dumpconf(struct sbuf *sb, const char *indent,
 struct g_geom *gp, struct g_consumer *cp, struct g_provider *pp)
{
 struct g_slicer *gsp;

 gsp = gp->softc;

 if (pp != NULL) {
 sbuf_printf(sb, "%s<index>%u</index>\n", indent, pp->index);
 sbuf_printf(sb, "%s<length>%ju</length>\n",
 indent, (uintmax_t)gsp->slices[pp->index].length);
 sbuf_printf(sb, "%s<seclength>%ju</seclength>\n", indent,
 (uintmax_t)gsp->slices[pp->index].length / 512);
 sbuf_printf(sb, "%s<offset>%ju</offset>\n", indent,
 (uintmax_t)gsp->slices[pp->index].offset);
 sbuf_printf(sb, "%s<secoffset>%ju</secoffset>\n", indent,
 (uintmax_t)gsp->slices[pp->index].offset / 512);
 }
}

Sample class output

 <provider id="0xc4148800">
 <geom ref="0xc4042f40"/>
 <mode>r8w8e2</mode>
 <name>ad0s1</name>
 <mediasize>40007729664</mediasize>
 <sectorsize>512</sectorsize>
 <config>
 <index>0</index>
 <length>40007729664</length>
 <seclength>78140097</seclength>
 <offset>32256</offset>
 <secoffset>63</secoffset>
 <type>165</type>
 </config>
 </provider>

Reading XML from userland

� /usr/src/lib/libexpat
� Snapshot version of Expat XML library.

� /usr/src/lib/libgeom
� Contains handy “xml2tree” function which

builds c-struct representation.

User instruction channel.

� /dev/geom.ctl
� Prefer device over sysctl because it offers access

control mechanisms people can understand.
� Unified command interface.

GEOMs OAM api

� “gctl” api in libgeom used to send requests
to GEOM classes.

� A request holds any number of parameters,
read/only or read/write.

� Error reporting in string form
� Many error situations are too complex to

express with numeric error codes, for some
reason I just don't think we can live with
ECPARTITIONOVERLAPSOPENPARTITION

OAM...

� Accumulative error handling
� Only need to check error at the very end.

� Please use of text for information
� Makes it possible to have portable, extensible

admin tools learn about a new class.
� Not intended for high frequency use.

Gctl_*()

H = gct l _get _handl e() ;
gct l _r o_par am(H, “ ver b” , - 1, “ dest r oy geom”) ;
gct l _r o_par am(H, “ c l ass” , - 1, “ CCD”) ;
spr i nt f (buf , “ ccd%d” , ccd) ;
gct l _r o_par am(H, “ geom” , - 1, buf) ;
er r st r = gct l _i ssue(H) ;
i f (er r st r ! = NULL)
 er r (1, “ Coul d not dest r oy ccd: %s” , er r st r) ;

Receivng gctl_ requests

static void
g_ccd_create(struct gctl_req *req, struct g_class *mp)
{
 int *unit, *ileave, *nprovider;
 struct provider *pp
 [...]

 g_topology_assert();
 unit = gctl_get_paraml(req, "unit", sizeof (*unit));
 ileave = gctl_get_paraml(req, "ileave", sizeof (*ileave));
 nprovider = gctl_get_paraml(req, "nprovider", sizeof (*nprovider));
 [...]
 /* Check all providers are valid */
 for (i = 0; i < *nprovider; i++) {
 sprintf(buf, "provider%d", i);
 pp = gctl_get_provider(req, buf);
 if (pp == NULL)
 return;
 }

Exporting statistics

� Performance statistics are collected on all
consumers and all providers.

� Uses updated libdevstat library
� Export info with shared memory

� Very fast, <1msec update rates possible.
� Now also contains info on response time.

� The gstat(8) program presents statistics in
curses window.

Gstat(8)
DT: 0.510 flag_I 500000us sizeof 240 i -1
 L(q) ops/s r/s kBps ms/r w/s kBps ms/w %busy Name
 1 75 75 149 6.8 0 0 0.0 50.6| ad0
 1 75 75 149 6.8 0 0 0.0 51.0| ad0s1
 0 0 0 0 0.0 0 0 0.0 0.0| ad0s1a
 0 0 0 0 0.0 0 0 0.0 0.0| ad0s1b
 0 0 0 0 0.0 0 0 0.0 0.0| ad0s1c
 0 0 0 0 0.0 0 0 0.0 0.0| ad0s1d
 0 0 0 0 0.0 0 0 0.0 0.0| ad0s1e
 0 0 0 0 0.0 0 0 0.0 0.0| ad0s1f
 1 75 75 149 6.9 0 0 0.0 51.4| ad0s1g
 0 0 0 0 0.0 0 0 0.0 0.0| ad0s1h
 0 0 0 0 0.0 0 0 0.0 0.0| ad0s1f.bde

L(q) = length of queue
ops/s, r/s, w/s = operations, reads and writes per second
kBps = kiloBytes per second
ms/r, ms/w = milliseconds per read and write
%busy = % of time with at least one entry in queue

Some fine points.

� Remember that there are 3 I/O primitives:
� Read, Write and Delete.

� Delete is useful in security and for certain
storage technologies

� NAND Flash for instance.

IOCTLs

� IOCTLs are a bad thing in stacking system
� How can you know where to handle the ioctl ?

� IOCTLs can be bad for security
� Giving “oracle” user write access to a disk

partition should not imply access to repartition
the disk.

� IOCTLs are not very flexible
� Use the gctl_ API instead.

Ioctls

� Ioctls gets turned into GETATTR internal
GEOM I/O primitives.

� Simplifies just about everything.
� One drawback: copyin/copyout not possible

from up/down thread context.
� Solution: EDIRIOCTL pseudo return code.

EDIRIOCTL

� If an ioctl needs copyin/copyout or other
similar operations.

� geom's start routine returns bio with pointer
to handling function and error =
EDIRIOCTL.

� DEV class will call function in users original
context where copyin/copyout works as
advertised.

WHY ?

DISK

MBR

BSD

DEV

ioctl(fd, SOMEFOOIOCTL, bla)

DEV doesn't know which layer
wants this ioctl.

Convert ioctl to struct bio, send it
down, until somebody says “mine”

EDIRIOCTL gives option of
handling in original context.

DISK sends ioctl into device driver,
always uses EDIRIOCTL.

Using events

� Says “Please call me from the event queue”.
� Use this for doing things which would sleep

in the up/down I/O path.
� Typically if you need the topology lock.

� Or for Giant isolation.

Debugging GEOM

� Use the XML info
� Contains everything you may need to know.

� Use the regression tests
� /usr/src/tools/regression/geom

� Undocumented debugging tools:
� sysctl -b kern.geom.confdot | dot -Tps > _.ps
� gv _.ps

Debugging GEOM

� sysctl kern.geom.debugflags=N
� N = 1

� Traces topology related stuff
� N=2

� Traces individual I/O requests (very noisy!)
� N=4

� Traces access count related issues.
� N=8

� Enable sanity checks on topology tree.

What then is GEOM ?

� GEOM is an entirely new way to think about
disk-like storage I/O requests.

� GEOM is very very very general compared to
what we had before.

� New possibilities.
� New problems.

� What if two providers both want to be “ad0s1” ?

Status of GEOM...

� GEOM is standard in FreeBSD 5.x
� Major new functionality:

� Sunlabel, gpt, apple - slicers
� GBDE – disk encryption
� VOL_FFS – FFS volume labels.
� FOX – Multipath selection (ie: FibreChannel)

� MAJOR new possibilities.

Future plans:

� Implement pluggable disk sorting.
� Per disk choice of disk-sort algorithm.

� Allow people to play with:
� I/O priorities.
� Silly seek elimination.

� Lots of interesting issues.
� We think we have an idea how to do these.

Future plans, really advanced:

� Mapped/Unmapped scatter/gather struct
bio.

� The next BIG thing performance wise!
� Less copying things around.
� Better (more likely) clustering.
� Less KVM pressure.
� Maybe zero-copy user land->device driver.

� Forces/drives/requires buffer cache
redesign.

Vinum and RaidFrame ?

� Ideally, I would like to see:
� Generic GEOM classes for mirror/stripe/raid5.
� Configuration drivers which reads various on-

disk config formats and DTRT.
� I'm not going to do it

� I'll let whoever is, do what they want.
� I may bitch if they hack it too badly though :-)

What took you so long ?

� I started on this before 386BSD, on Minix.
� A number of roadblocks killed my

prototypes:
� Lack of kernel concept of “a device” [dev_t]
� Missing DEVFS
� Block device aliasing on vnodes.
� Kernel dump hack.

� It may sound simple, but you'll get wiser...

The End.

� A big thanks to:
� Robert Watson for finding, taming milking and

keeping the paper tiger on its diet.
� DARPA/SPAWAR for sponsoring this work

under contract N66001-01-C-8035 ("CBOSS"),
as part of the DARPA CHATS research program.

� All the giants whose shoulders we stand on.
� FreeBSD developers and users for putting up

with me.

