
Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 1

Implementing a Clonable Network Stack in the FreeBSD Kernel

Marko Zec
University of Zagreb, Faculty of Electrical Engineering and Computing

zec@tel.fer.hr

Abstract

Traditionally, UNIX operating systems have been equipped with monolithic network stack implementations,
meaning all user processes have to cooperatively share a single networking subsystem. The introduction of the
network stack cloning model enables the kernel to simultaneously maintain multiple independent and isolated
network stack instances. Combined with forcible binding of user processes to individual network stacks, this concept
can bring us a step closer to an efficient pseudo virtual machine functionality which opens new possibilities
particularly in virtual hosting applications, as well as in other less obvious areas such as network simulation and
advanced VPN provisioning. This article is focused on design, implementation and performance aspects of
experimental clonable network stack support in the FreeBSD kernel.

1 Introduction

Implementing various models and levels of resource
partitioning and protection has been in focus of
operating systems research ever since the introduction
of the multi-programming paradigm in early days of
computing.

In the 1960s, IBM introduced the concept of virtual
machines (VM). Each VM instance presented a close
yet independent replica of the underlying physical
machine which gave users the illusion of running their
programs directly on the real hardware. VM also
provided benefits like mutual isolation, protection and
resource sharing, as well as the ability to run multiple
independent flavors and configurations of operating
systems (OS) simultaneously on the same physical
machine.

On UNIX systems, user programs run in a simplified
VM model. The OS kernel manages the allocation of
protected virtual memory and schedules CPU cycles to
user processes; however, the processes are not allowed
to access any other hardware resources directly. Instead,
the kernel provides an abstraction layer for accessing
vital system resources, such as I/O devices, filesystems
and network communication facilities. Traditionally,
networking facilities in particular have been
implemented monolithically within the kernel, meaning
all the user processes have to cooperatively share the
networking facilities and addressing space. Over the
years this concept was completely sufficient for most of

the common environments; however it presents some
limits to certain emerging applications, most notably to
more sophisticated scenarios for virtual hosting.

The model of clonable network stacks, presented in
this article, allows multiple independent network stack
instances to coexist within the OS kernel
simultaneously. From the perspective of network
communications, by associating groups of user
processes to an individual network stack instance it is
possible to achieve highly efficient light or pseudo
virtual machine functionality. Each unique collection of
network stack instance and group of associated user
processes will further be referenced as a virtual image.

The fundamental difference between the traditional
VM implementation and pseudo-VM or virtual image
model is illustrated in Figure 1. In both cases each VM
appears as an independent entity from the perspective of
the outside network. However, in the traditional VM
system each VM hosts an entire OS instance with
dedicated partitions of hardware resources such as
physical RAM, raw disks and I/O devices. All I/O
operations, including those dealing with network
interfaces, have to be either controlled or emulated by
the VM monitor. Contrary to this approach, in a
pseudo-VM system, a single OS running on physical
hardware controls multiple independent network stack
instances and associated user processes without the
need to dedicate hardware resources to each pseudo-
VM instance. This allows for significantly less overhead
on the data path from applications to the physical

Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 2

network interfaces, as well as better utilization of other
system resources, particularly CPU and RAM. On the
other hand, the pseudo-VM system cannot run different
OS flavors simultaneously and does not offer the level
of mutual independence and protection available in the
traditional VM model.

Although the described concept of virtual images and
clonable network stacks is generic, this article is
focused on its implementation in the FreeBSD kernel.
With reasonable efforts and enough time, it should be
possible to modify and extend other network stack
implementations to offer such functionality, provided
that the entire OS kernel source tree is available.

The rest of the article is organized as follows. Section
2 describes some previous work and models in
partitioning system resources, with focus on network
communication. Section 3 presents the basic design
ideas behind the concept of network stack cloning. The
implementation details are discussed in Section 4,
followed by an overview of various performance
implications presented in Section 5. Section 6 gives an
example of how the management interface of clonable
network stacks looks to the system administrator.
Finally, Section 7 summarizes the properties of the
clonable network stack infrastructure and outlines the
directions for possible future development and research.

2 Previous work

The goal of running multiple instances of network
protocol suite on a single physical machine can be
accomplished in different ways. As mentioned in the
previous section, one option is virtualization of the
entire machine hardware and running multiple
independent instances of fully self-contained OS images
within the VM. Such an approach requires hardware
virtualization support for efficient operation, which can
usually be found only on large-scale and expensive

system architectures, such as IBM’s S/390 mainframe
family. Software-based virtualization of hardware
architectures lacking the inherent virtualization circuitry
is also achievable. Such virtualization products are
available both as OSS and commercial products, such as
VMware [1]. However, this model introduces a
significant bottleneck at emulating I/O operations in
software, which results in performance degradation
during data transfers to and from the network interfaces.
Therefore, often this approach may not be suitable for
heavy-duty network centric applications. Furthermore,
the traditional VM model can lead to suboptimal use of
other hardware resources; for instance, the VM monitor
is typically unaware if an OS instance running within a
VM no longer needs a particular memory page.

An alternative model, the jail [2] facility implemented
in FreeBSD, provides the ability to partition the OS into
multiple separated process groups with limited network
addressing space. The kernel prevents user processes
running in jailed environments from managing the
processes and certain system resources outside their
own jailed protection domain. All the jailed
environments share the same network stack; however
each jail is restricted to use a unique IP address, and
cannot interfere with other network traffic. Creating
jailed pseudo virtual machines in this manner has many
potential uses; thus far the most popular one has been
for providing highly efficient virtual machine services
in Internet Service Provider environments. It should be
noted that the standard jail architecture still uses a
monolithic network stack. Therefore the jails do not
maintain private instances of subsystems such as routing
tables, traffic counters, packet filters and traffic shapers
etc., so they must rely on the master OS environment to
manage those facilities.

Several reports describe efforts to implement network
stacks as specialized userland processes, with the focus
in network simulation applications. Frameworks such as
ENTRAPID [7] or Alpine [8] successfully accomplish

Applications

Operating System

Virtual Machine

Applications

Operating System

Virtual Machine

Virtual Machine Monitor

Physical Machine

Operating System

Physical Machine

Applications Applications

VM #1 VM #2

VM #1 VM #2

Private Resources
(network, CPU...)

Private Resources
(network, CPU...)

Figure 1: Traditional VM model (left) and pseudo-VM virtual image model (right)

Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 3

their primary goals in network simulation, however at
the cost of poor overall performance compared to the
in-the-kernel network stack implementation on the same
hardware. The Harvard network simulator [9] takes a
different approach as it creates the illusion of having
multiple independent kernel routing tables by providing
transparent IP address remapping between user and
kernel space. While the kernel still maintains a single
routing table with unique (non-overlapping) entries, for
each virtual node a translation map is maintained which
has to be consulted on each userland-to-kernel network
transaction. Despite such an approach offering notably
better performance than the ENTRAPID and Alpine
architectures, it is still significantly constrained by
numerous translation lookups that have to be performed
on each kernel-to-userland packet transition, and vice
versa. However, a major advantage of the Harvard
architecture over the other two mentioned simulator
frameworks is the ability to use the existing UNIX
network applications in a virtualized environment
without any modifications.

Although none of the above network simulation
frameworks have been designed for use in general-
purpose or virtual hosting applications, some of their
concepts and objectives were partially adopted in the
implementation of the clonable network stacks model.
This is particularly true for the idea of preserving full
compatibility with the existing userland binaries running
on a modified kernel, which was one of the important
design goals in the experimental clonable network stack
implementation.

3 Design concepts

By setting the goal to implement a system that would
perform equally well in generic and virtual hosting,
VPN packet routing/switching or network simulation
applications, the idea was born to reuse an existing
reliable but monolithic network stack implementation
and extend it to support cloning in multiple independent
and isolated instances.

To virtualize the entire network stack of the base
OS, and not just the selected portions needed for certain
applications, was the most important design decision.
Further, it was decided to implement all the
modifications entirely within the OS kernel. Such an
implementation not only allows the new code to be
highly efficient, but also provides a significant level of
security and isolation between the virtualized
environments needed in any virtual hosting application.
If the virtualization extensions would be even partially
implemented in userland, for example by replacing the

standard system dynamic libraries, it would be left up to
the userland programs whether or not they would
comply with their designation in a virtualized network
stack. Another problem that would arise by choosing
such an approach is that it could only work
transparently for dynamically linked programs.
Statically linked programs would have to be
recompiled, which would clearly violate the
requirement for transparent API/ABI compatibility with
the user programs.

Preserving the complete functionality of the base
OS serving as a development platform, while making
the network stack extensions as universal as possible,
was another important design goal. It became apparent
that it would be highly desirable to preserve complete
application programming and binary interface
(API/ABI) compatibility with the existing application
and utility programs running on the base OS. Such an
approach would ensure simplicity and speed in both
code development and testing, as well as in later real-
world applications. If the API were not preserved, the
end result would probably be a highly specialized
system tuned for a particular application, not a general-
purpose one as desired. Another important objective
was the preservation of the performance of the existing
base system. Obviously, if the modified system
noticeably underperforms the original it could probably
still be useful for certain specific applications; however,
in such case the general-purpose criteria could not be
met.

The introduction of virtual images was a key
concept on which the clonable network stack framework
is based. Each virtual image is an isolated kernel entity
with its own independent network stack instance. All
network interfaces and all user processes in a
virtualized system are supposed to be associated with a
unique virtual image, as shown in Figure 2.

Upon system startup only one (default) virtual image
exists in the system, which contains all the network
interfaces and user processes. System administrators
can later dynamically create new virtual images and
associate real or pseudo network interfaces with them
and run user processes in those environments. User
processes running in one virtual image will be able to
interact only with their own network stack instance,
therefore only with the network traffic and interfaces
that are associated with its own virtual image. The
default virtual image is no exception to this rule. As the
virtual images are logically organized in a hierarchical
manner, the parent virtual image is allowed to spawn a
new process in its child for management purposes.
Obviously, the child is prohibited from managing its
siblings and the parent virtual image.

Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 4

Although the high-level goal was to make virtual
images as isolated and independent from each other as
possible, they should be able to be interconnected if
desired. This can be accomplished either via bridged
virtual or physical Ethernet interfaces, or through virtual
point-to-point channels constructed using the netgraph
[10] framework. The former bridging method allows
virtual images to become accessible from the outer
world in a transparent manner, with almost neglectable
overhead introduced by bridging code logic and
processing.

4 Implementation

The experimental framework allowing multiple
network stacks to be simultaneously active on a system
was implemented as an extension to the FreeBSD 4.8
kernel. Each network stack instance was made fully
independent of all others, so that each instance
maintained its own private routing table, set of
communication sockets and associated protocol control
blocks etc. Later, the network stack virtualization
experiment was extended to include optional
networking facilities, such as packet filters, traffic
shapers, bridging code and various sysctl [3] tunable
variables controlling different aspects of network stack
behavior.

4.1 Overview
As UNIX systems traditionally maintain only a single

network stack within the kernel, an important design
step has been selecting the optimal method for user
processes to manage multiple network stacks. One
option was modification of the standard Berkeley socket
interface [4] by extending the argument lists with the
network stack identifier. A variation of such approach
was proposed in [11]. However, this concept has a
significant drawback since it requires the existing user
programs to be modified and recompiled in order to be
able to run on the new / extended OS kernel. Therefore,
an alternative approach was chosen. Each process
control block (struct proc) in the kernel was
transparently extended with a tag which associates it
with a network stack instance. This tag is inherited by
subsequent processes from its parents without any need
for intervention from the programmer. Additionally, a
new programming interface was introduced allowing a
process to change its network stack association. This
approach allowed for complete application
programming and binary interface (API / ABI)
compatibility to be preserved between the original and
modified OS kernel, thus mitigating any need for
modifications in the existing userland applications or
utilities.

The described tagging of user processes was
combined with the already available jail resource
protection framework in FreeBSD, which resulted in

Kernel space

User space

NIC
driver

Virtual image #0

U
se

r
pr

oc
es

s

NIC
handle

U
se

r
pr

oc
es

s

So
ck

et

So
ck

et

TCP UDP raw ...
IP ...

features (ipfw...) ...

So
ck

et

Virtual image #1

U
se

r
pr

oc
es

s

Virtual NIC
handle

U
se

r
pr

oc
es

s

TCP UDP raw ...
IP ...

features (ipfw...) ...

So
ck

et

Virtual image #n

U
se

r
pr

oc
es

s
So

ck
et

TCP UDP raw ...
IP ...

features (ipfw...) ...

NIC
driver

NIC
handle

bridging

Figure 2: Operating system partitioned in virtual images

Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 5

user processes associated with one network stack being
effectively invisible to the other processes running on
the system, and vice versa. The newly developed
framework, which combined different areas of resource
protection mechanisms into one entity, successfully
achieved the main properties of pseudo virtual machine
functionality. The virtual image concept was further
extended by including modifications to the CPU
scheduler in such a way that each virtual image could be
limited in average CPU usage so that runaway or
maliciously constructed processes or groups of
processes might be prevented from monopolizing and
starving all the real CPU resources. This also allowed
system load monitoring to be performed on a per virtual
image basis, which provided more fine-grained control
rather than accounting resource usage solely on physical
machine level. Finally, a basic API for managing the
virtual images was implemented, accompanied by a
simple userland management utility.

The fundamental approach taken in implementation of
the described modifications to the FreeBSD kernel was
the introduction of a new vimage kernel structure,
which serves as a container for all virtualized variables
and symbols. Gradually, most of the global and static
symbols used by network stack code were replaced by
their equivalent counterparts residing in independent

vimage structures. Network interface descriptors,
which have traditionally been maintained in a single
linked list, are now associated with vimage structures
so that each network stack instance has its own list of
network interfaces. Each network interface contains a
pointer back to its vimage structure so that incoming
traffic can be easily demultiplexed to the appropriate
network stack depending on the interface the traffic is
received on. A basic schematic diagram outlining the
relationships between most important kernel structures
in the clonable network stack implementation is shown
in Figure 3.

4.2 Operation
As the symbols and data structures used for network

processing, previously declared as global, are now
placed inside the vimage structure, each function
dealing with network traffic necessarily needs to know
on which network stack it must operate. Typically, all
the references to old symbols such as:
ip_ttl = ip_defttl;

had to be replaced with constructions such as:
struct vimage *vip = {current_vimage};
ip_ttl = vip->ip_defttl;

Figure 3 : Major kernel data structures separated and linked throughout virtual images

"lo"

p_link

vi[0]

vi[2]
vi[1]

...

struct vimage *vi[]

vi_le
vi_name
ifnethead

vi_le
vi_name
ifnethead

vi_le
vi_name
ifnethead

"master" "bar""foo"

rt_tables[]

...

rt_tables[]

...

rt_tables[]

...

if_link
if_vip

if_name
if_unit

...

0

if_link
if_vip

if_name
if_unit

...

"fxp"
0

if_link
if_vip

if_name
if_unit

...

"lo"
0

if_link
if_vip

if_name
if_unit

...

"lo"
0

if_link
if_vip

if_name
if_unit

...

"vlan"
0

p_vimage

...

p_link
p_vimage

...

p_link
p_vimage

...

p_link
p_vimage

...
00 1 2

struct ifnet struct ifnetstruct ifnetstruct ifnetstruct ifnet

struct vimage struct vimagestruct vimage

struct proc struct procstruct procstruct proc

IN
TE

R
FA

C
ES

PR
O

C
ES

SE
S

VI
M

A
G

E
C

O
N

TR
O

L
B

LO
C

K
S

Virtual
Image #0

Virtual
Image #1

Virtual
Image #2

Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 6

Replacing all occurrences of the relevant global
variables by their virtualized counterparts throughout
the kernel source tree was a textbook example of a time
consuming job. After some unsuccessful attempts at
automation this task was performed almost entirely
manually. The initial patch against 4.7-RELEASE
kernel source tree contained 5053 either modified or
new lines of code in total.

Basic operations on network traffic are triggered by
three types of events: arrival of packets from network
interfaces, requests from user programs, and expiration
of various timers.

The incoming traffic has to be demultiplexed to the
appropriate network stack instance. The network stack
instance is determined based on the interface the packet
is received on, which can be easily accomplished since
network interface descriptors have been extended to
hold a pointer back to its vimage structure. In the
4.4BSD networking code, each packet is stored in
specialized memory structures called mbuf [4]. A field
in an mbuf header is dedicated for holding a pointer to
the ingress interface for received traffic. Therefore, the
functions that process inbound traffic can extract the
information on network stack association for each
received frame using the following or similar code
(example):
void
icmp_input(m, off, proto)
 register struct mbuf *m;
 int off, proto;
{
 struct vimage *vip =

m->m_pkthdr.rcvif->if_vip;
 ...
}

There are certain cases where packets passed to
functions in the receiving data path are not tagged with
rcvif field (it gets set to NULL instead). Some typical
cases include dummynet [12] header processing at the
beginning of ip_input(), or other subroutines that are
used both for inbound and outbound traffic processing,
such as portions of the tcp_syncache [13] facility. In
such cases additional logic was implemented to ensure
proper packet demultiplexing.

It is important to note that although clonable network
stacks are designed to be isolated, "global" facilities
such as bridging and netgraph are used to explicitly
allow network communication between virtual images
and the outside world. In such scenarios it is common
that the packet received on one physical interface is
bridged to a different (typically virtual) interface
residing in another network stack. Therefore the
bridging code and similar multiplexers must provide

proper retagging of the rcvif field in the mbuf header
when passing the packets in the upstream direction.

The standard 4.4BSD model for processing incoming
network traffic is split into two stages [4], resembling
the concept of network protocol layering. During the
first stage, which deals with data link layer, the received
frames are demultiplexed to specific network protocol
queues (IP, IPX...) and a software interrupt is scheduled
by calling schednetisr() for the appropriate
protocol handler. After all received packets are
enqueued, the protocol-level processing is performed in
a netisr() loop, until all protocol-specific receive
queues are completely flushed. While this model works
more or less seamlessly in the original monolithic
network stack implementation, in the clonable stack
framework it does not scale well with large numbers of
network stack instances. The problem is that during
netisr() processing the independent inbound queues
of all network stacks would have to be checked for
pending packets, which is a task with complexity of
O(N), where N denotes the number of network stack
instances present in the system. It is apparent that most
of the checking would be completely unnecessary, since
it can be expected that only a small number of network
stacks are active at the same time.

Therefore the described model of linear traversing
through all network stacks during netisr() processing
has been replaced with a more scalable solution, which
introduced a single global receive queue for all network
stack instances. However, when flooded with excessive
amounts of inbound traffic such as during the typical
denial of service (DoS) attacks, a global queue with
limited length would start to indiscriminately discard all
incoming packets, potentially resulting in all the
network stack instances becoming crippled by excessive
inbound traffic aimed to only one network stack. On the
other hand, the approach with a huge or unlimited
global inbound queue would not work properly in such
situations either; as such a queue could consume too
much mbuf resources possibly leading to even more
catastrophic consequences. A solution was found in
form of a hybrid global queue implementation, with
multilevel queue length limiting - both at per network
stack and global level at the same time. Such a method
in effect emulates multiple independent per network
stack inbound queues using a single global queue, while
reducing the netisr() processing complexity from
O(N) to O(1). The hybrid global inbound queue model
scales well with the number of concurrent network
stacks, as shown in Figure 4. The measurements were
performed on an AMD Athlon uniprocessor system with
a CPU clock of 1200 MHz, a bus clock of 100 MHz,
256 Mbytes of SDRAM, and two Intel 82558B fast
Ethernet cards connected to a 32-bit 33 MHz PCI bus.

Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 7

The same machine also served as a referent platform in
all other measurements presented further in text.

User requests are treated differently depending
whether they perform socket operations or other tasks.
At the time of creation, each socket is associated with a
network stack instance that the owner process is
currently bound to, using the newly introduced so_vip
pointer in struct socket descriptor. For the whole
duration of its lifetime, the socket remains tied to this
network stack instance, even if the owning process
changes the network stack association. The functions
operating on sockets will therefore determine the
network stack instance (or more precisely the virtual
image) to work with similarly to the following example:
static int
tcp_usr_send(struct socket *so, ...)
{
 struct vimage *vip = so->so_vip;
 ...
}

Non-socket operations use the p_vimage tag in
struct proc of the calling process to determine the
stack instance on which to operate:
static int
rip_pcblist(SYSCTL_HANDLER_ARGS)
{
 struct proc *p = req->p;
 struct vimage *vip = vi[p->p_vimage];
 ...
}

In the current implementation the p_vimage tag is a
16-bit index to an auxiliary array of pointers struct
vimage *vi[]. Preserving ABI compatibility with
userland was the only reason for such a design, as no
spare room for holding a direct pointer to struct

vimage in struct proc was available. Retaining both
the same size and structure of struct proc in the
modified kernel was a prerequisite for userland utilities
such as ps or top to operate correctly without
recompiling. In the future, the vi[] auxiliary array is
expected to become obsolete.

Timeout operations, which are typically associated
with subsystems such as TCP and ARP processing or
dummynet [12] delay queues, have to be performed
periodically. Those tasks are implemented as linear
traversing through all network stack instances and
calling the {slowtimo|fasttimo} handlers in each
supported protocol suite, with pointer to the appropriate
struct vimage as the argument. Since such events
occur synchronously and with significantly smaller
frequency than the reception of incoming traffic (only a
couple of times per second typically), polling all
network stack instances on each invocation of timeout
processing subroutines generally cannot have noticeable
influence on the overall system performance.

Besides those "core" network stack components
described above, some other standard userland-to-
kernel interfaces had to be adjusted and extended to
support clonable network stacks.

The sysctl interface was originally designed to
allow system administrators to conveniently monitor
and adjust tunable parameters controlling different
portions of OS behavior, including the network stack.
As the standard SYSCTL primitives operate with
symbols defined globally within the kernel, they were
not directly suitable for accessing the symbols "hidden"
inside a struct vimage. Therefore a collection of
new primitives was introduced. For example the
SYSCTL_V_INT() macro was implemented for
allowing the access to integer variables within a
struct vimage, replacing the original macro
SYSCTL_INT() aimed for accessing global integer
symbols. The SYSCTL_V family of macros determines
the virtual image they operate on based on the
p_vimage tag of the calling process.

The kernel symbol lookup interface (kldsym /
kvm_nlist) is used by userland utilities such as
netstat to locate symbols in the kernel address space.
As many of the commonly accessed symbols including
routing tables, protocol control blocks etc. have been
replaced by their virtualized counterparts residing in
struct vimage, the kldsym / kvm_nlist
programming interfaces were not able to automatically
find the addresses of such symbols. Therefore,
extensions to those functions were implemented in a
similar manner as in the case of the sysctl interface,
so that the virtualized symbols could be located using

0

200

400

600

800

1000

1200

0 16 32 48 64 80 96 112 128

T
C

P
 th

ro
ug

hp
ut

 (
10

^6
 b

its
/s

ec
on

d)

number of network stack instances

multiple private queues
hybrid global queue

Figure 4: loopback TCP throughput in one network
stack instance – comparisson between linear

traversing through independent per network stack
queues vs. single hybrid global queue. MTU size is

1500 bytes.

Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 8

the kldsym interface. Again, the virtual image instance
to be searched in is determined based on p_vimage tag
of the calling process.

In dynamically loadable kernel modules that
implement functions closely related to network
processing, such as bridging or ipfw packet filtering, the
load / unload interfaces had to be updated. As multiple
network stack instances might be active at the time of
module loading, the module has to attach and initialize
its private set of data in all of the network stack
instances. During deactivation the reverse operation has
to be performed, as all data structures in each network
stack instance used by the module have to be freed.

4.3 Management interface
A basic API to implement management functions,

such as creating, monitoring and modifying the
properties of virtual images had to be introduced. The
API uses a specialized vi_req structure to pass
requests and return results to / from the kernel. As a
minimum security precaution, regardless in which
virtual image the process accessing the API is running,
it has to have super-user (root) privileges to be allowed
to perform any, even read-only operations.

Creation and initialization of new virtual images is
the most basic function the API has to support, provided
the current virtual image is allowed to create offspring.
Similar to the standard UNIX processes, virtual images
are logically organized in a hierarchical manner; despite
being represented as only one linked list in the kernel. A
master virtual image is always present, as it is created
automatically upon system boot. A system running only
with the master virtual image is practically
indistinguishable from the standard FreeBSD OS. The
master has the ultimate authority to manage the whole
hierarchy of virtual images, and can empower its
children to create more offspring, if desired.

To create a new virtual image, the kernel must
accomplish several tasks. First it reserves memory to
hold the new struct vimage, and inserts the new
struct into the linked list of all virtual images. The
kernel then creates a new loopback network instance
and attaches it to the virtual image. Further, it calls
initialization routines for all registered network
protocols with a pointer to the new virtual image as
argument, in a similar manner as during system startup
in the original 4.4BSD networking code. Finally,
special facilities such as ipfw firewalling are initialized
for use in the new virtual image. During the whole
sequence all interrupts are disabled, which is a
sufficient locking method on a single-threaded kernel
such as FreeBSD 4.8, however in the future a different

locking scheme has to be implemented in the process of
migration to more recent OS versions with SMP support
in the kernel.

At the time of creation, a chroot directory in which all
the processes in the virtual image will run can be
specified, together with a limit on the average
percentage of CPU time the virtual image is allowed to
consume. Although these parameters are optional, it is
very likely they will be used in any serious virtual
hosting scenario. The CPU percentage limit can be
adjusted at any time; however changing the chroot
directory requires no processes to exist within the
virtual image. The chrooted directory tree has to be set
up in the same manner as for the "classic" jailed
environments.

Deletion of virtual images requires the protocol
initialization sequences performed during the virtual
image creation to be followed backwards during
detachment of each network protocol instance. A virtual
image can be deleted only when no user processes and
sockets are attached to it. The deletion routine has to
walk through all the configured protocol instances and
gracefully free private memory structures used by each
specific protocol suite, such as interface addresses,
routing and hash tables, protocol control blocks etc.
Furthermore, all the pending timers associated with
protocols such as ARP or TCP have to be canceled,
before the virtual image is unlinked from the global list
of all virtual images, and the corresponding struct
vimage can be freed.

The network interfaces can be moved from one
virtual image to another. For example, this makes it
possible for 802.1q VLAN interfaces bound to a "base"
physical interface in one virtual image to be reassigned
to other virtual images. Another use of this concept
might be on machines with multiple physical interfaces
to allow each interface to be assigned to an independent
virtual image. As the interface moves from one virtual
image to another it is automatically assigned a new
index; for example if Ethernet interface fxp1 is moved
to another virtual image where no fxp interface
instances exist, it will be renamed to fxp0.

User processes can use the API to switch to one of
the children of their virtual image; however as a security
precaution they cannot switch back to their parents or
siblings. This in effect results for such switching to be
used solely for spawning new processes in desired
virtual images. As the only application to use this API,
the vimage management utility has an option to
prevent the new process from becoming chrooted before
being spawned in the new virtual image, which can be
useful for monitoring purposes and as a rescue option in

Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 9

cases when the private directory tree in the target virtual
image becomes damaged or unusable.

Although under normal circumstances it can be
expected that management operations on virtual images
will be executed relatively infrequently, the current
implementation requires the whole kernel to be locked
for the entire duration of all virtual image management
system calls. Fortunately, the typical execution time of
management functions is generally short enough not to
introduce unacceptable delays, even on busy servers.
Table 1 shows the typical execution duration of
management operations, measured from the userland
perspective on an otherwise idle system.

Function Duration
Create a new vimage 212 µs
Delete a vimage 72 µs
Move network interface to a vimage 47 µs
Switch a process to another vimage 20 µs
Modify vimage parameters 21 µs
Fetch statistics for one vimage 25 µs

Table 1: Average execution time of virtual image
management operations on an idle system

4.4 Other pseudo-VM functions
Implementing a clonable network stack was the

original and primary focus of the experimental code,
without presumption whether the application will be
virtual hosting, VPN provisioning, network simulation
or something completely different. However, extending
the experimental framework to provide some basic
pseudo-VM functions, like hiding user processes
running in one virtualized environment, turned out to be
a fairly trivial task. This part of the implementation was
easy because the basic framework offering such
functionality was already there – the popular jail [2]
facility in FreeBSD. The original jail implementation
uses the PRISON_CHECK(p1,p2) macro at various
points in the kernel to determine whether two processes
are supposed to "see" and interact with each other by
checking if they both belong to the same jail. It was
sufficient to extend this macro by checking if the
processes belong to the same network stack instance to
achieve the same separation functionality originally
present in jails. This basic facility was further extended
with new functions related to management of CPU
resources.

CPU load and usage accounting has been
reorganized from system-wide to per virtual image, by
migrating the cp_time and averunnable variables to

struct vimage. This allowed the CPU time spent in
user and system contexts to be charged to the
appropriate virtual image, which can help providing the
administrators with better control and overview over the
system behavior, and further restricting the global view
on the system from within the virtual images.

The problem of accurately defining and finding the
actual consumer of CPU time spent in the interrupt
context is still an open area in OS research.
Traditionally, UNIX systems pragmatically (and
unfairly) charge the unlucky current process with the
time spent in servicing interrupts. We found out that on
the level of virtual images it is more practical to charge
all virtual images for the time slice spent in the
interrupt context, instead of only charging the current
one. Such an approach simplified the implementation of
individual per virtual image overall system load
estimation. However, further experiments have shown
that although it might be difficult or impossible to
determine the actual consumer for a broad range of
interrupt triggered events, for example for disk I/O
DMA notifications, charging the appropriate virtual
image for network traffic related interrupt context
events can be implemented fairly simply and efficiently.
Since the standard UNIX accounting is performed on
statistical basis by periodically probing the state of CPU
execution context (user, system, interrupt or idle), it was
necessary to provide the accounting routine with more
detailed information on which virtual image is currently
active in the interrupt context. This was accomplished
by introduction of a new global variable vintr which
points to the current virtual image on which network
processing is performed in the interrupt context.

As the interrupt context network processing in
4.4BSD kernels is split into two stages, the global
vintr variable has to be set both on each entry to NICs
device driver interrupt service routine and later during
netisr processing. At exit the interrupt service
routines are responsible to set the vintr back to NULL.
When the statclock() accounting routine preempts a
thread of execution running in the interrupt context, it
checks whether vintr is set, in which case it can
increment the corresponding counters only for the
current virtual image. Otherwise, if vintr equals to
NULL, all virtual images are charged for the consumed
timeslice in interrupt context.

The described model of interrupt context time
accounting is far from being accurate for two main
reasons. First, it cannot properly classify the context
switching and interrupt dispatching periods before the
device driver can set the vintr variable, as well as
after the vintr variable is cleared. Secondly, in the
case when the traffic has to be bridged to virtual image

Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 10

different from the one the physical NIC resides in, it is
highly probable that over a longer period of time both
virtual images will accrue interrupt context timeslots.
Such an accounting is logically invalid, since only the
virtual image that is the final destination of the
incoming traffic should be charged. Nevertheless,
despite not being entirely accurate, the per virtual image
interrupt context accounting model can be a valuable
indicator to system administrators in which virtual
image to look for inbound traffic triggered CPU
congestions.

CPU usage limiting was another function
implemented as a straight follow up on the individual
CPU usage accounting. Based on CPU usage limits set
by the system administrator, the original 4.4BSD
algorithm for scheduling the user processes on the CPU
was extended to simply skip the processes in the active
run queue belonging to virtual images that have recently
consumed more CPU time than they were allowed to.
As soon as it can be determined that the CPU usage
limit has been exceeded, a process belonging to another
virtual image is rescheduled, or the system enters the
idle loop. A digital decay filter periodically lowers the
accumulated per virtual image CPU usage averages,
thus allowing the processes running in administratively
constrained virtual images to be rescheduled later.

Receive livelock [14] is a situation when more
incoming packets arrive than the system is capable to
handle, resulting in the CPU being permanently locked
into servicing interrupt requests. This presents a serious
threat to stability of systems based on interrupt driven
kernels, such as FreeBSD. In an OS split in multiple
virtual machine environments the problem becomes
even more emphasized since the entire system could
become crippled under livelock resulting from only one
network stack instance being flooded by excessive
inbound traffic patterns (typical for today's frequent
DoS attacks).

After successfully implementing per virtual image
interrupt context CPU usage accounting, it was almost
trivial to implement a simple feedback-based control
algorithm for mitigating receive livelock. The interrupt
context load is dampened by controllable discarding of
received packets from the inbound protocol queues
during netisr() processing. The interrupt context
load threshold, based on which the decision is made
whether to drop or pass the packets to further protocol
processing, can be independently tuned for each virtual
image. The described method is based on an assumption
that in average more CPU cycles are consumed in
protocol level processing than in device drivers, which
only have to demultiplex received packets to the
appropriate protocol inbound queue. Therefore

dropping the packets in the netisr() loop can
significantly lower the CPU time spent in interrupt
context processing only for traffic flows that require
complex protocol-level processing (such as TCP or
IPSEC), or in scenarios where complex packet filtering
rules have to be traversed for each received packet.
However, it should be noted that the above method for
dampening interrupt context load does not provide an
ultimate solution in mitigating receive livelocks.
Interrupt coalescing and especially polling [15] can
provide more adequate protection against livelocks
under extreme overloads.

4.5 Memory resources
The kernel memory footprint is affected by the

introduced modifications when running multiple
network stacks. Compiled for the IA-32 platform, the
modified kernel image file is 1663393 bytes big, which
is an increase of only 5977 bytes compared to an
equally configured unmodified kernel. However, the
real issues with memory allocation arise when multiple
virtual images are active in the system. Those issues can
be classified in two groups.

Various private memory pools such as protocol
control blocks (PCB), hash tables etc. which are created
for each virtual image independently introduce specific
implications. Although the size of struct vimage
itself is relatively small (8012 bytes), during virtual
image creation additional space for private memory
pools has to be reserved. Thus vmstat -m reports that
each virtual image consumes a total of approximately
23 Kbytes of kernel memory upon initialization.
Unfortunately, this figure is not relevant, as it does not
account for reserved but unused memory pages
allocated by the zone allocator for private PCBs and the
TCP syncache. Using the standard limits for maximum
number of sockets and TCP syncache size, each virtual
image could consume a total of 1161 pages or 4664
Kbytes of kernel memory. It is obvious that this
mechanism presents a serious obstacle in scaling to
large number of simultaneous virtual images. Optimal
use of kernel memory could be accomplished by
implementing common zone pools for all network stack
instances; however, such an approach would violate the
design requirement of making network stacks as
independent as possible. An alternative model is
therefore employed, which retains private memory
pools, but enforces lower limits on number of sockets
per virtual image, thus significantly reducing the per
virtual image memory footprint. Such an approach
offers additional tuning possibilities on resource
limiting, since it allows system administrators to specify
a per virtual image limit on the number of sockets.

Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 11

The mbuf packet buffers present a different issue,
as they are shared among all network stack instances.
For example, a heavily utilized traffic shaper or delay
queue in one network stack could bind and effectively
exhaust all the mbuf buffers in the system, rendering
other network stack instances unusable. Mitigation of
these issues is not a trivial task to solve, as it would
require implementing new limit checking mechanisms
to the mbuf allocator, accompanied by additional
checking done at all places in the kernel where mbuf
buffers are either created or handed over from one
network stack instance to another. As such an approach
would require significant programming efforts it has not
been implemented in the experimental network stack
cloning framework. Therefore the system's stability
depends on network stack instances to cooperatively
share the global mbuf pools.

5 Performance

Extending any piece of software with a new
functionality always rises the question what impact it
will make on system performance. In the case of
extending the network stack to support cloning, this
question becomes highly emphasized since all
references to symbols and variables used throughout the
network stack have one additional level of indirection.
To compare the performance between the standard and
modified kernels, a series of simple tests have been run.

Microbenchmarking tests were performed in order
to determine the execution duration of some typical
kernel functions involved in packet processing. In each
observed function, both in the standard and modified
kernel, counter start and stop hooks were embedded for
capturing the elapsed time. The CPU-embedded TSC
clock cycle counter was used as the time reference.
Execution of each observed section was provoked by
appropriate external traffic on an otherwise completely
idle test system.

Table 2 shows the comparative results of a series of

such tests. The first two columns mark the observed
function and the test traffic used, followed by average
execution duration and its standard deviation from the
5000 subsequent iterations, for the modified and
standard kernel. Throughout the tests the modified
kernel was running with only a single virtual image /
network stack instance, resembling the functionality of
the standard kernel.

From the broader series of tests, only those results are
included that were both repeatable and with reasonably
small standard deviation. Examining the results it
becomes apparent that accurate measurement of
execution time becomes more difficult as the observed
code section becomes longer and more complex, which
can be partially explained by the influence of
phenomena such as system bus contentions, CPU cache
coherence etc. Nevertheless, the test results are valuable
in that they show no dramatic difference in execution
time between code sections running on the modified and
standard kernel. In fact, in the modified kernel some
functions seem to execute slightly faster than in the
standard one; however, as the functions shown in Table
2 present only a portion of tasks that the kernel
performs in providing network communication, these
small deviations can be considered insignificant.

The effective throughput for different types of
traffic was measured during the second series of tests,
again comparing the performance between standard and
modified kernels. The test machine was powerful
enough to easily drive the physical network interfaces at
full media speed using most of the interesting traffic
patterns, so it became apparent that testing with external
traffic would not yield particularly usable results.
Therefore it was decided to perform all the testing
inside the referent machine, using it at the same time as
source and drain of the test traffic. The traffic was
looped back between traffic source and destination,
eliminating the contentions that physical media such as
Ethernet could introduce.

The TCP throughput was measured using the
netperf [5] utility. Figure 5 shows the measured relation

Table 2: Execution duration (in clock cycles) of certain packet processing functions in modified and standard kernel

function traffic average stdev average stdev +/- cycles +/- %
ip_input() ICMP echo 224 9,5 144 12,6 80 56%
ip_output() ICMP echo reply 502 29,3 492 17,3 10 2%
icmp_input() ICMP echo 504 204,9 660 213,1 -156 -24%
icmp_reflect() ICMP echo / reply 181 4,8 153 4,8 28 18%
tcp_input() TCP data 4978 953,4 5263 1002,1 -285 -5%
tcp_input() TCP ack 2280 479,1 2471 491,9 -191 -8%
total 8669 9183 -514 -6%

clonable stack standard stack

Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 12

between maximum TCP throughput and the MTU size
configured on the loopback network interface. It can be
observed that the throughput obtained on the modified
kernel running with a single network stack instance is
marginally lower than on the unmodified kernel. For the
MTU size of 1500 octets the achieved throughput using
the modified kernel was around 93% of the value
observed on the standard system. However, it should be
noted that during this test the traffic passed through the
network stack twice: once when data was transmitted by
the server process (netserver), and once when the
same data was received by the netperf client. The
one-way throughput degradation is even less significant,
and can be estimated as a square root of the obtained
throughput ratio between standard and modified stack
for both sending and receiving side processing.
Therefore, for MTU=1500 we can estimate one-way
maximum TCP throughput of the clonable network
stack to be around 96.5% of the unmodified system.

Measuring the maximum packet rate for ICMP
traffic, generated by the "flooding" ping -qf
command and reflected by the kernel, yielded some
interesting results. As shown in Figure 6, the maximum
packet rate obtainable on the modified kernel was up to
5.7% higher than using the standard kernel. It is
difficult to explain such a phenomenon, but it can be
speculated that this might be due to better CPU cache
coherency, since in the modified kernel most of the
symbols involved in network processing are located
close to each other in the vimage structure, while in the
standard kernel they are interleaved with symbols used
in other kernel functions not related to the network
stack.

To summarize, all the presented measurements clearly
indicate that the implemented network stack cloning
code generally does not significantly degrade the system
and network performance.

6 Application examples

The concept of network stack cloning was conceived
with the goal of supporting a broad class of
applications. Most system administrators will however
be curious how the new framework fits in virtual
hosting scenarios. In Figure 7 a simple virtual hosting
configuration is shown where the system is split into
three virtual images: "master", which is the default;
and two subordinated virtual images called "client1"
and "client2". The client virtual images are each
assigned its private virtual Ethernet "ve" network
interface, which are all bridged to the physical LAN
through the real Ethernet interface (fxp0) residing in
the "master" virtual image. The client virtual images
reside in chrooted directory trees, which can be created
using the standard methods for setting up the jailed
environments, described in jail(8) online manual.

The following command sequence can be used to
initially configure the described virtual hosting
environment. The vimage command is used for

0

500

1000

1500

2000

2500

0 2048 4096 6144 8192 10240 12288 14336 16384

T
C

P
 th

ro
ug

hp
ut

 (
10

^6
 b

its
/s

ec
on

d)

lo0 MTU size (bytes)

standard stack
clonable stack (128 instances, 1 active)

Figure 5: loopback TCP throughput Figure 6: loopback packet rate

"master"
virtual image

fxp0

"client1"
virtual image

ve0

"client2"
virtual image

 ve0

bridging code

NIC
hw

LAN

192.168.201.0 / 24

192.168.201.21 192.168.201.31 192.168.201.32

router192.168.201.1

Internet

0

5000

10000

15000

20000

25000

30000

35000

40000

0 2048 4096 6144 8192 10240 12288 14336 16384

pa
ck

et
 r

at
e

(p
ac

ke
ts

/s
ec

on
d)

packet size (bytes)

standard stack
clonable stack (128 instances, 1 active)

Figure 7: A simple virtual hosting scenario

Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 13

managing the virtual images and network interfaces,
with modifier determining the action to be performed. It
is assumed the private directory tree for each client
virtual image have been set up previously.

create virtual ethernet interfaces
ifconfig ve0 create link 40:0:0:0:0:1
ifconfig ve1 create link 40:0:0:0:0:2

create new virtual images
vimage -c client1 chroot /v/client1
vimage -c client2 chroot /v/client2

move interfaces to new virtual images
vimage -i client1 ve0
vimage -i client2 ve1

configure the bridge
sysctl \
 net.link.ether.bridge_cfg= \
 client1.ve0,client2.ve0,fxp0
sysctl net.link.ether.bridge=1

At this point no user processes exist in the "client"
virtual images. Provided the virtual images are properly
configured using the standard rc.conf file residing in
their private directory tree, they could be started using
the /etc/rc script, in similar manner as used for
starting the standard jails. This could be accomplished
using the following commands:
start new virtual images
vimage client1 /bin/sh /etc/rc
vimage client2 /bin/sh /etc/rc

Unlike in jails, the parent virtual image can spawn a
new process in its child at any time. The following
example shows how IP configuration of virtual images
can be performed manually:

vmbsd# vimage
master
vmbsd# vimage client1
Switched to vimage client1
ifconfig
ve0: flags=8903
<UP,BROADCAST,PROMISC,SIMPLEX,MULTICAST>
mtu 1500 ether 40:00:00:00:00:01
lo0: flags=8008
<LOOPBACK,MULTICAST> mtu 16384
ifconfig lo0 localhost
ifconfig ve0 192.168.201.31
route add default 192.168.201.1
inetd
ps -ax
 PID TT STAT TIME COMMAND
 248 ?? Ss 0:00.02 inetd
 242 p1 S 0:00.06 vimage (csh)
 249 p1 R+ 0:00.01 ps -ax
hostname freenix
exit

It is now possible to verify if the new virtual image
can be accessed over the network:

vmbsd# telnet -K 192.168.201.31
Trying 192.168.201.31...
Connected to 192.168.201.31.
Escape character is '^]'.

FreeBSD/i386 (freenix) (ttyp4)
...

The above example illustrates only the initial
sequences in the management of virtual images. As at
the first glance the achieved functionality might seem
very similar to what can be done with the traditional
FreeBSD jails, it should be noted that the real
differences can be observed in the areas which are not
supported in jails. Maintaining multiple IP addresses,
independent packet filters and routing tables, access to
the routing and raw sockets as well as bpf traffic
capturing are among the key new functions the network
stack cloning model introduces to the jail-styled virtual
hosting scenarios.

The other applications that can benefit from the
clonable network stack infrastructure range from fast
and efficient real-time network simulations to advanced
overlayed VPNs with independent and potentially
overlapping addressing schemes. Unfortunately, the
scope of this article limits further discussion on possible
applications in these areas.

7 Conclusions and future work

The main contribution of this work is demonstrating
the concept of network stack cloning can be efficiently
implemented as an extension to the existing FreeBSD
networking code. The experimental implementation has
successfully preserved both the same overall
performance level and full API/ABI compatibility with
the original kernel, which were the two key
requirements for adopting the network stack cloning
model in a broad range of applications. When running
with only a single network stack instance, looking from
the userland perspective it is practically impossible to
distinguish between a modified kernel and the original
one, both regarding the general appearance,
functionality, application interface, overall performance
and memory footprint. However, by creating new
network stack instances associated with virtual images,
system administrators now can conveniently and
efficiently partition the OS into highly independent
pseudo or light virtual machine entities.

Appeared in Proceedings of the 2003 USENIX Annual Technical Conference http://www.usenix.org/events/usenix03/

Implementing a Clonable Network Stack in the FreeBSD Kernel 14

A substantial amount of work has yet to be completed
before the network stack cloning model could be even
considered for inclusion in an official FreeBSD source
tree. As the experimental implementation covers only
virtualization of basic IPv4 networking code, obviously
the cloning support should be extended to other
protocols, starting with IPv6 and IPSEC. Further, the
framework should be ported and kept in sync with a
development (-current) source tree, since the original
experimental implementation is based on the -stable 4.x
FreeBSD branch. And even if and when a highly
polished patch against a development tree would
become available, it is imminent that the question would
arise whether the potential benefits of network stack
cloning could overweight the compatibility issues
associated to maintaining different private or parallel
source trees, which would become obsolete once the
cloning patch would get integrated in the official kernel
source tree.

In parallel with bringing the code in closer sync with
the FreeBSD –current branch, the original concept of
partitioning the OS in virtual images could be further
extended by virtualizing other system resources, such as
real and virtual memory, network and disk bandwidth,
etc. An interesting option for further development could
certainly be the reimplementation of virtual images as a
modular resource container [6] type facility. Each
resource instance (network stack, process group, CPU,
memory etc.) would be represented by its own data
structure, and struct vimage would only contain
pointers to such structures. In such an environment, the
system administrator could freely combine only the
desired virtualized system resources in a virtual image,
depending on the specific environment and application
requirements.

The experimental code for network stack cloning
support, along with additional technical information and
application examples is available for download under a
BSD-style license at http://www.tel.fer.hr/zec/vimage/.
At the time of this writing, the source is maintained as a
set of patches against the FreeBSD 4.8-RELEASE
kernel.

Acknowledgements

The author would like to thank Guido van Rooij, who
was shepherding this work, for thorough and critical
commentaries throughout the development of the paper,
as well for all his previous encouragement and support
in presenting the network stack cloning concept to the
FreeBSD community. Many thanks go to anonymous
reviewers for their valuable comments and suggestions.

Finally, the author would like to thank Julian Elischer
for helping with presenting this work at the conference.

References

[1] Sugerman, J., Venkitachalam, G., and Lim, B.
Virtualizing I/O Devices on VMware Workstation's
Hosted Virtual Machine Monitor, In Proc. of the
USENIX Annual Technical Conference, 2001.

[2] Kamp, P., and Watson, R. Jails: Confining the
Omnipotent root, In Proc. of the 2nd International
SANE Conference, 2000.

[3] McKusick, M., et al. The design and implementation of
the 4.4BSD operating system, Addison-Wesley, 1996.

[4] Wright, G., and Stevens, W. TCP/IP Illustrated,
Volume 2: The Implementation, Addison-Wesley, 1994.

[5] netperf: http://www.netperf.org/
[6] Banga, G., Druschel, P., and Mogul, J. Resource

containers: A new facility for resource management in
server systems, In Proc. of the Symposium on
Operating System Design and Implementation, 1999.

[7] Huang, X., Sharma, R., and Keshaw, S. The
ENTRAPID Protocol Development Environment, In
Proc. of the IEEE INFOCOM, 1999.

[8] Ely, D., Savage, S., and Wetherall, D. Alpine: A User-
Level Infrastructure for Network Protocol
Development, In Proc. of the 3rd USENIX Symposium
on Internet Technologies and Systems, 2001.

[9] Wang, S., and Kung, H. A Simple Methodology for
Constructing Extensible and High-Fidelity TCP/IP
Network Simulators, In Proc. of the IEEE INFOCOM,
1999.

[10] Cobbs. A. All About Netgraph,
http://ezine.daemonnews.org/200003/netgraph.html

[11] Scandariato, R., and Risso, F. Advanced VPN support
on FreeBSD systems, In Proc. of the 2nd European BSD
Conference, 2002.

[12] Rizzo, L. Dummynet: A simple approach to the
evaluation of network protocols, ACM Computer
Communication Review, 1997.

[13] Lemmon, J. Resisting SYN flood DoS attacks with a
SYN cache, In Proc. of the BSDCon 2002.

[14] Mogul, J., and Ramakrishnan, K. Eliminating receive
livelock in an interrupt-driven kernel, ACM
Transactions on Computer Systems, Vol 15, No. 3,
1997.

[15] Rizzo, L. Device Polling support for FreeBSD,
http://info.iet.unipi.it/~luigi/polling/

