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Abstract 

Traditionally, UNIX operating systems have been equipped with monolithic network stack implementations, 
meaning all user processes have to cooperatively share a single networking subsystem. The introduction of the 
network stack cloning model enables the kernel to simultaneously maintain multiple independent and isolated 
network stack instances. Combined with forcible binding of user processes to individual network stacks, this concept 
can bring us a step closer to an efficient pseudo virtual machine functionality which opens new possibilities 
particularly in virtual hosting applications, as well as in other less obvious areas such as network simulation and 
advanced VPN provisioning. This article is focused on design, implementation and performance aspects of 
experimental clonable network stack support in the FreeBSD kernel. 

 

1 Introduction 

Implementing various models and levels of resource 
partitioning and protection has been in focus of 
operating systems research ever since the introduction 
of the multi-programming paradigm in early days of 
computing. 

In the 1960s, IBM introduced the concept of virtual 
machines (VM). Each VM instance presented a close 
yet independent replica of the underlying physical 
machine which gave users the illusion of running their 
programs directly on the real hardware. VM also 
provided benefits like mutual isolation, protection and 
resource sharing, as well as the ability to run multiple 
independent flavors and configurations of operating 
systems (OS) simultaneously on the same physical 
machine. 

On UNIX systems, user programs run in a simplified 
VM model. The OS kernel manages the allocation of 
protected virtual memory and schedules CPU cycles to 
user processes; however, the processes are not allowed 
to access any other hardware resources directly. Instead, 
the kernel provides an abstraction layer for accessing 
vital system resources, such as I/O devices, filesystems 
and network communication facilities. Traditionally, 
networking facilities in particular have been 
implemented monolithically within the kernel, meaning 
all the user processes have to cooperatively share the 
networking facilities and addressing space. Over the 
years this concept was completely sufficient for most of 

the common environments; however it presents some 
limits to certain emerging applications, most notably to 
more sophisticated scenarios for virtual hosting. 

The model of clonable network stacks, presented in 
this article, allows multiple independent network stack 
instances to coexist within the OS kernel 
simultaneously. From the perspective of network 
communications, by associating groups of user 
processes to an individual network stack instance it is 
possible to achieve highly efficient light or pseudo 
virtual machine functionality. Each unique collection of 
network stack instance and group of associated user 
processes will further be referenced as a virtual image. 

The fundamental difference between the traditional 
VM implementation and pseudo-VM or virtual image 
model is illustrated in Figure 1. In both cases each VM 
appears as an independent entity from the perspective of 
the outside network. However, in the traditional VM 
system each VM hosts an entire OS instance with 
dedicated partitions of hardware resources such as 
physical RAM, raw disks and I/O devices. All I/O 
operations, including those dealing with network 
interfaces, have to be either controlled or emulated by 
the VM monitor. Contrary to this approach, in a 
pseudo-VM system, a single OS running on physical 
hardware controls multiple independent network stack 
instances and associated user processes without the 
need to dedicate hardware resources to each pseudo-
VM instance. This allows for significantly less overhead 
on the data path from applications to the physical 
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network interfaces, as well as better utilization of other 
system resources, particularly CPU and RAM. On the 
other hand, the pseudo-VM system cannot run different 
OS flavors simultaneously and does not offer the level 
of mutual independence and protection available in the 
traditional VM model. 

Although the described concept of virtual images and 
clonable network stacks is generic, this article is 
focused on its implementation in the FreeBSD kernel. 
With reasonable efforts and enough time, it should be 
possible to modify and extend other network stack 
implementations to offer such functionality, provided 
that the entire OS kernel source tree is available.  

The rest of the article is organized as follows. Section 
2 describes some previous work and models in 
partitioning system resources, with focus on network 
communication. Section 3 presents the basic design 
ideas behind the concept of network stack cloning. The 
implementation details are discussed in Section 4, 
followed by an overview of various performance 
implications presented in Section 5. Section 6 gives an 
example of how the management interface of clonable 
network stacks looks to the system administrator. 
Finally, Section 7 summarizes the properties of the 
clonable network stack infrastructure and outlines the 
directions for possible future development and research. 

 

2 Previous work 

The goal of running multiple instances of network 
protocol suite on a single physical machine can be 
accomplished in different ways. As mentioned in the 
previous section, one option is virtualization of the 
entire machine hardware and running multiple 
independent instances of fully self-contained OS images 
within the VM. Such an approach requires hardware 
virtualization support for efficient operation, which can 
usually be found only on large-scale and expensive 

system architectures, such as IBM’s S/390 mainframe 
family. Software-based virtualization of hardware 
architectures lacking the inherent virtualization circuitry 
is also achievable. Such virtualization products are 
available both as OSS and commercial products, such as 
VMware [1]. However, this model introduces a 
significant bottleneck at emulating I/O operations in 
software, which results in performance degradation 
during data transfers to and from the network interfaces. 
Therefore, often this approach may not be suitable for 
heavy-duty network centric applications. Furthermore, 
the traditional VM model can lead to suboptimal use of 
other hardware resources; for instance, the VM monitor 
is typically unaware if an OS instance running within a 
VM no longer needs a particular memory page. 

An alternative model, the jail [2] facility implemented 
in FreeBSD, provides the ability to partition the OS into 
multiple separated process groups with limited network 
addressing space. The kernel prevents user processes 
running in jailed environments from managing the 
processes and certain system resources outside their 
own jailed protection domain. All the jailed 
environments share the same network stack; however 
each jail is restricted to use a unique IP address, and 
cannot interfere with other network traffic. Creating 
jailed pseudo virtual machines in this manner has many 
potential uses; thus far the most popular one has been 
for providing highly efficient virtual machine services 
in Internet Service Provider environments. It should be 
noted that the standard jail architecture still uses a 
monolithic network stack. Therefore the jails do not 
maintain private instances of subsystems such as routing 
tables, traffic counters, packet filters and traffic shapers 
etc., so they must rely on the master OS environment to 
manage those facilities. 

Several reports describe efforts to implement network 
stacks as specialized userland processes, with the focus 
in network simulation applications. Frameworks such as 
ENTRAPID [7] or Alpine [8] successfully accomplish 
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their primary goals in network simulation, however at 
the cost of poor overall performance compared to the 
in-the-kernel network stack implementation on the same 
hardware. The Harvard network simulator [9] takes a 
different approach as it creates the illusion of having 
multiple independent kernel routing tables by providing 
transparent IP address remapping between user and 
kernel space. While the kernel still maintains a single 
routing table with unique (non-overlapping) entries, for 
each virtual node a translation map is maintained which 
has to be consulted on each userland-to-kernel network 
transaction. Despite such an approach offering notably 
better performance than the ENTRAPID and Alpine 
architectures, it is still significantly constrained by 
numerous translation lookups that have to be performed 
on each kernel-to-userland packet transition, and vice 
versa. However, a major advantage of the Harvard 
architecture over the other two mentioned simulator 
frameworks is the ability to use the existing UNIX 
network applications in a virtualized environment 
without any modifications. 

Although none of the above network simulation 
frameworks have been designed for use in general-
purpose or virtual hosting applications, some of their 
concepts and objectives were partially adopted in the 
implementation of the clonable network stacks model. 
This is particularly true for the idea of preserving full 
compatibility with the existing userland binaries running 
on a modified kernel, which was one of the important 
design goals in the experimental clonable network stack 
implementation. 

 

3 Design concepts 

By setting the goal to implement a system that would 
perform equally well in generic and virtual hosting, 
VPN packet routing/switching or network simulation 
applications, the idea was born to reuse an existing 
reliable but monolithic network stack implementation 
and extend it to support cloning in multiple independent 
and isolated instances. 

To virtualize the entire network stack of the base 
OS, and not just the selected portions needed for certain 
applications, was the most important design decision. 
Further, it was decided to implement all the 
modifications entirely within the OS kernel. Such an 
implementation not only allows the new code to be 
highly efficient, but also provides a significant level of 
security and isolation between the virtualized 
environments needed in any virtual hosting application. 
If the virtualization extensions would be even partially 
implemented in userland, for example by replacing the 

standard system dynamic libraries, it would be left up to 
the userland programs whether or not they would 
comply with their designation in a virtualized network 
stack. Another problem that would arise by choosing 
such an approach is that it could only work 
transparently for dynamically linked programs. 
Statically linked programs would have to be 
recompiled, which would clearly violate the 
requirement for transparent API/ABI compatibility with 
the user programs. 

Preserving the complete functionality of the base 
OS serving as a development platform, while making 
the network stack extensions as universal as possible, 
was another important design goal. It became apparent 
that it would be highly desirable to preserve complete 
application programming and binary interface 
(API/ABI) compatibility with the existing application 
and utility programs running on the base OS. Such an 
approach would ensure simplicity and speed in both 
code development and testing, as well as in later real-
world applications. If the API were not preserved, the 
end result would probably be a highly specialized 
system tuned for a particular application, not a general-
purpose one as desired. Another important objective 
was the preservation of the performance of the existing 
base system. Obviously, if the modified system 
noticeably underperforms the original it could probably 
still be useful for certain specific applications; however, 
in such case the general-purpose criteria could not be 
met. 

The introduction of virtual images was a key 
concept on which the clonable network stack framework 
is based. Each virtual image is an isolated kernel entity 
with its own independent network stack instance. All 
network interfaces and all user processes in a 
virtualized system are supposed to be associated with a 
unique virtual image, as shown in Figure 2. 

Upon system startup only one (default) virtual image 
exists in the system, which contains all the network 
interfaces and user processes. System administrators 
can later dynamically create new virtual images and 
associate real or pseudo network interfaces with them 
and run user processes in those environments. User 
processes running in one virtual image will be able to 
interact only with their own network stack instance, 
therefore only with the network traffic and interfaces 
that are associated with its own virtual image. The 
default virtual image is no exception to this rule. As the 
virtual images are logically organized in a hierarchical 
manner, the parent virtual image is allowed to spawn a 
new process in its child for management purposes. 
Obviously, the child is prohibited from managing its 
siblings and the parent virtual image. 
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Although the high-level goal was to make virtual 
images as isolated and independent from each other as 
possible, they should be able to be interconnected if 
desired. This can be accomplished either via bridged 
virtual or physical Ethernet interfaces, or through virtual 
point-to-point channels constructed using the netgraph 
[10] framework. The former bridging method allows 
virtual images to become accessible from the outer 
world in a transparent manner, with almost neglectable 
overhead introduced by bridging code logic and 
processing. 

 

4 Implementation 

The experimental framework allowing multiple 
network stacks to be simultaneously active on a system 
was implemented as an extension to the FreeBSD 4.8 
kernel. Each network stack instance was made fully 
independent of all others, so that each instance 
maintained its own private routing table, set of 
communication sockets and associated protocol control 
blocks etc. Later, the network stack virtualization 
experiment was extended to include optional 
networking facilities, such as packet filters, traffic 
shapers, bridging code and various sysctl [3] tunable 
variables controlling different aspects of network stack 
behavior. 

4.1 Overview 
As UNIX systems traditionally maintain only a single 

network stack within the kernel, an important design 
step has been selecting the optimal method for user 
processes to manage multiple network stacks. One 
option was modification of the standard Berkeley socket 
interface [4] by extending the argument lists with the 
network stack identifier. A variation of such approach 
was proposed in [11]. However, this concept has a 
significant drawback since it requires the existing user 
programs to be modified and recompiled in order to be 
able to run on the new / extended OS kernel. Therefore, 
an alternative approach was chosen. Each process 
control block (struct proc) in the kernel was 
transparently extended with a tag which associates it 
with a network stack instance. This tag is inherited by 
subsequent processes from its parents without any need 
for intervention from the programmer. Additionally, a 
new programming interface was introduced allowing a 
process to change its network stack association. This 
approach allowed for complete application 
programming and binary interface (API / ABI) 
compatibility to be preserved between the original and 
modified OS kernel, thus mitigating any need for 
modifications in the existing userland applications or 
utilities. 

The described tagging of user processes was 
combined with the already available jail resource 
protection framework in FreeBSD, which resulted in 
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user processes associated with one network stack being 
effectively invisible to the other processes running on 
the system, and vice versa. The newly developed 
framework, which combined different areas of resource 
protection mechanisms into one entity, successfully 
achieved the main properties of pseudo virtual machine 
functionality. The virtual image concept was further 
extended by including modifications to the CPU 
scheduler in such a way that each virtual image could be 
limited in average CPU usage so that runaway or 
maliciously constructed processes or groups of 
processes might be prevented from monopolizing and 
starving all the real CPU resources. This also allowed 
system load monitoring to be performed on a per virtual 
image basis, which provided more fine-grained control 
rather than accounting resource usage solely on physical 
machine level. Finally, a basic API for managing the 
virtual images was implemented, accompanied by a 
simple userland management utility. 

The fundamental approach taken in implementation of 
the described modifications to the FreeBSD kernel was 
the introduction of a new vimage kernel structure, 
which serves as a container for all virtualized variables 
and symbols. Gradually, most of the global and static 
symbols used by network stack code were replaced by 
their equivalent counterparts residing in independent 

vimage structures. Network interface descriptors, 
which have traditionally been maintained in a single 
linked list, are now associated with vimage structures 
so that each network stack instance has its own list of 
network interfaces. Each network interface contains a 
pointer back to its vimage structure so that incoming 
traffic can be easily demultiplexed to the appropriate 
network stack depending on the interface the traffic is 
received on. A basic schematic diagram outlining the 
relationships between most important kernel structures 
in the clonable network stack implementation is shown 
in Figure 3. 

4.2 Operation 
As the symbols and data structures used for network 

processing, previously declared as global, are now 
placed inside the vimage structure, each function 
dealing with network traffic necessarily needs to know 
on which network stack it must operate. Typically, all 
the references to old symbols such as: 
ip_ttl = ip_defttl;  

had to be replaced with constructions such as: 
struct vimage *vip = {current_vimage}; 
ip_ttl = vip->ip_defttl; 

Figure 3 : Major kernel data structures separated and linked throughout virtual images 
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Replacing all occurrences of the relevant global 
variables by their virtualized counterparts throughout 
the kernel source tree was a textbook example of a time 
consuming job. After some unsuccessful attempts at 
automation this task was performed almost entirely 
manually. The initial patch against 4.7-RELEASE 
kernel source tree contained 5053 either modified or 
new lines of code in total. 

Basic operations on network traffic are triggered by 
three types of events: arrival of packets from network 
interfaces, requests from user programs, and expiration 
of various timers. 

The incoming traffic has to be demultiplexed to the 
appropriate network stack instance. The network stack 
instance is determined based on the interface the packet 
is received on, which can be easily accomplished since 
network interface descriptors have been extended to 
hold a pointer back to its vimage structure. In the 
4.4BSD networking code, each packet is stored in 
specialized memory structures called mbuf [4]. A field 
in an mbuf header is dedicated for holding a pointer to 
the ingress interface for received traffic. Therefore, the 
functions that process inbound traffic can extract the 
information on network stack association for each 
received frame using the following or similar code 
(example): 
void 
icmp_input(m, off, proto) 
   register struct mbuf *m; 
   int off, proto; 
{ 
   struct vimage *vip = 

m->m_pkthdr.rcvif->if_vip; 
   ... 
} 
 

There are certain cases where packets passed to 
functions in the receiving data path are not tagged with 
rcvif field (it gets set to NULL instead). Some typical 
cases include dummynet [12] header processing at the 
beginning of ip_input(), or other subroutines that are 
used both for inbound and outbound traffic processing, 
such as portions of the tcp_syncache [13] facility. In 
such cases additional logic was implemented to ensure 
proper packet demultiplexing. 

It is important to note that although clonable network 
stacks are designed to be isolated, "global" facilities 
such as bridging and netgraph are used to explicitly 
allow network communication between virtual images 
and the outside world. In such scenarios it is common 
that the packet received on one physical interface is 
bridged to a different (typically virtual) interface 
residing in another network stack. Therefore the 
bridging code and similar multiplexers must provide 

proper retagging of the rcvif field in the mbuf header 
when passing the packets in the upstream direction. 

The standard 4.4BSD model for processing incoming 
network traffic is split into two stages [4], resembling 
the concept of network protocol layering. During the 
first stage, which deals with data link layer, the received 
frames are demultiplexed to specific network protocol 
queues (IP, IPX...) and a software interrupt is scheduled 
by calling schednetisr() for the appropriate 
protocol handler. After all received packets are 
enqueued, the protocol-level processing is performed in 
a netisr() loop, until all protocol-specific receive 
queues are completely flushed. While this model works 
more or less seamlessly in the original monolithic 
network stack implementation, in the clonable stack 
framework it does not scale well with large numbers of 
network stack instances. The problem is that during 
netisr() processing the independent inbound queues 
of all network stacks would have to be checked for 
pending packets, which is a task with complexity of 
O(N), where N denotes the number of network stack 
instances present in the system. It is apparent that most 
of the checking would be completely unnecessary, since 
it can be expected that only a small number of network 
stacks are active at the same time. 

Therefore the described model of linear traversing 
through all network stacks during netisr() processing 
has been replaced with a more scalable solution, which 
introduced a single global receive queue for all network 
stack instances. However, when flooded with excessive 
amounts of inbound traffic such as during the typical 
denial of service (DoS) attacks, a global queue with 
limited length would start to indiscriminately discard all 
incoming packets, potentially resulting in all the 
network stack instances becoming crippled by excessive 
inbound traffic aimed to only one network stack. On the 
other hand, the approach with a huge or unlimited 
global inbound queue would not work properly in such 
situations either; as such a queue could consume too 
much mbuf resources possibly leading to even more 
catastrophic consequences. A solution was found in 
form of a hybrid global queue implementation, with 
multilevel queue length limiting - both at per network 
stack and global level at the same time. Such a method 
in effect emulates multiple independent per network 
stack inbound queues using a single global queue, while 
reducing the netisr() processing complexity from 
O(N) to O(1). The hybrid global inbound queue model 
scales well with the number of concurrent network 
stacks, as shown in Figure 4. The measurements were 
performed on an AMD Athlon uniprocessor system with 
a CPU clock of 1200 MHz, a bus clock of 100 MHz, 
256 Mbytes of SDRAM, and two Intel 82558B fast 
Ethernet cards connected to a 32-bit 33 MHz PCI bus. 
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The same machine also served as a referent platform in 
all other measurements presented further in text. 

User requests are treated differently depending 
whether they perform socket operations or other tasks. 
At the time of creation, each socket is associated with a 
network stack instance that the owner process is 
currently bound to, using the newly introduced so_vip 
pointer in struct socket descriptor. For the whole 
duration of its lifetime, the socket remains tied to this 
network stack instance, even if the owning process 
changes the network stack association. The functions 
operating on sockets will therefore determine the 
network stack instance (or more precisely the virtual 
image) to work with similarly to the following example: 
static int   
tcp_usr_send(struct socket *so, ...) 
{ 
   struct vimage *vip = so->so_vip; 
   ... 
} 
 

Non-socket operations use the p_vimage tag in 
struct proc of the calling process to determine the 
stack instance on which to operate: 
static int 
rip_pcblist(SYSCTL_HANDLER_ARGS) 
{ 
   struct proc *p = req->p;      
   struct vimage *vip = vi[p->p_vimage]; 
   ... 
} 
 

In the current implementation the p_vimage tag is a 
16-bit index to an auxiliary array of pointers struct 
vimage *vi[]. Preserving ABI compatibility with 
userland was the only reason for such a design, as no 
spare room for holding a direct pointer to struct 

vimage in struct proc was available. Retaining both 
the same size and structure of struct proc in the 
modified kernel was a prerequisite for userland utilities 
such as ps or top to operate correctly without 
recompiling. In the future, the vi[] auxiliary array is 
expected to become obsolete. 

Timeout operations, which are typically associated 
with subsystems such as TCP and ARP processing or 
dummynet [12] delay queues, have to be performed 
periodically. Those tasks are implemented as linear 
traversing through all network stack instances and 
calling the {slowtimo|fasttimo} handlers in each 
supported protocol suite, with pointer to the appropriate 
struct vimage as the argument. Since such events 
occur synchronously and with significantly smaller 
frequency than the reception of incoming traffic (only a 
couple of times per second typically), polling all 
network stack instances on each invocation of timeout 
processing subroutines generally cannot have noticeable 
influence on the overall system performance.  

Besides those "core" network stack components 
described above, some other standard userland-to-
kernel interfaces had to be adjusted and extended to 
support clonable network stacks. 

The sysctl interface was originally designed to 
allow system administrators to conveniently monitor 
and adjust tunable parameters controlling different 
portions of OS behavior, including the network stack. 
As the standard SYSCTL primitives operate with 
symbols defined globally within the kernel, they were 
not directly suitable for accessing the symbols "hidden" 
inside a struct vimage. Therefore a collection of 
new primitives was introduced. For example the 
SYSCTL_V_INT() macro was implemented for 
allowing the access to integer variables within a 
struct vimage, replacing the original macro 
SYSCTL_INT() aimed for accessing global integer 
symbols. The SYSCTL_V family of macros determines 
the virtual image they operate on based on the 
p_vimage tag of the calling process. 

The kernel symbol lookup interface (kldsym / 
kvm_nlist) is used by userland utilities such as 
netstat to locate symbols in the kernel address space. 
As many of the commonly accessed symbols including 
routing tables, protocol control blocks etc. have been 
replaced by their virtualized counterparts residing in 
struct vimage, the kldsym / kvm_nlist 
programming interfaces were not able to automatically 
find the addresses of such symbols. Therefore, 
extensions to those functions were implemented in a 
similar manner as in the case of the sysctl interface, 
so that the virtualized symbols could be located using 
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the kldsym interface. Again, the virtual image instance 
to be searched in is determined based on p_vimage tag 
of the calling process. 

In dynamically loadable kernel modules that 
implement functions closely related to network 
processing, such as bridging or ipfw packet filtering, the 
load / unload interfaces had to be updated. As multiple 
network stack instances might be active at the time of 
module loading, the module has to attach and initialize 
its private set of data in all of the network stack 
instances. During deactivation the reverse operation has 
to be performed, as all data structures in each network 
stack instance used by the module have to be freed. 

4.3 Management interface 
A basic API to implement management functions, 

such as creating, monitoring and modifying the 
properties of virtual images had to be introduced. The 
API uses a specialized vi_req structure to pass 
requests and return results to / from the kernel. As a 
minimum security precaution, regardless in which 
virtual image the process accessing the API is running, 
it has to have super-user (root) privileges to be allowed 
to perform any, even read-only operations. 

Creation and initialization of new virtual images is 
the most basic function the API has to support, provided 
the current virtual image is allowed to create offspring. 
Similar to the standard UNIX processes, virtual images 
are logically organized in a hierarchical manner; despite 
being represented as only one linked list in the kernel. A 
master virtual image is always present, as it is created 
automatically upon system boot. A system running only 
with the master virtual image is practically 
indistinguishable from the standard FreeBSD OS. The 
master has the ultimate authority to manage the whole 
hierarchy of virtual images, and can empower its 
children to create more offspring, if desired. 

To create a new virtual image, the kernel must 
accomplish several tasks. First it reserves memory to 
hold the new struct vimage, and inserts the new 
struct into the linked list of all virtual images. The 
kernel then creates a new loopback network instance 
and attaches it to the virtual image. Further, it calls 
initialization routines for all registered network 
protocols with a pointer to the new virtual image as 
argument, in a similar manner as during system startup 
in the original 4.4BSD networking code. Finally, 
special facilities such as ipfw firewalling are initialized 
for use in the new virtual image. During the whole 
sequence all interrupts are disabled, which is a 
sufficient locking method on a single-threaded kernel 
such as FreeBSD 4.8, however in the future a different 

locking scheme has to be implemented in the process of 
migration to more recent OS versions with SMP support 
in the kernel. 

At the time of creation, a chroot directory in which all 
the processes in the virtual image will run can be 
specified, together with a limit on the average 
percentage of CPU time the virtual image is allowed to 
consume. Although these parameters are optional, it is 
very likely they will be used in any serious virtual 
hosting scenario. The CPU percentage limit can be 
adjusted at any time; however changing the chroot 
directory requires no processes to exist within the 
virtual image. The chrooted directory tree has to be set 
up in the same manner as for the "classic" jailed 
environments. 

Deletion of virtual images requires the protocol 
initialization sequences performed during the virtual 
image creation to be followed backwards during 
detachment of each network protocol instance. A virtual 
image can be deleted only when no user processes and 
sockets are attached to it. The deletion routine has to 
walk through all the configured protocol instances and 
gracefully free private memory structures used by each 
specific protocol suite, such as interface addresses, 
routing and hash tables, protocol control blocks etc. 
Furthermore, all the pending timers associated with 
protocols such as ARP or TCP have to be canceled, 
before the virtual image is unlinked from the global list 
of all virtual images, and the corresponding struct 
vimage can be freed. 

The network interfaces can be moved from one 
virtual image to another. For example, this makes it 
possible for 802.1q VLAN interfaces bound to a "base" 
physical interface in one virtual image to be reassigned 
to other virtual images. Another use of this concept 
might be on machines with multiple physical interfaces 
to allow each interface to be assigned to an independent 
virtual image. As the interface moves from one virtual 
image to another it is automatically assigned a new 
index; for example if Ethernet interface fxp1 is moved 
to another virtual image where no fxp interface 
instances exist, it will be renamed to fxp0. 

User processes can use the API to switch to one of 
the children of their virtual image; however as a security 
precaution they cannot switch back to their parents or 
siblings. This in effect results for such switching to be 
used solely for spawning new processes in desired 
virtual images. As the only application to use this API, 
the vimage management utility has an option to 
prevent the new process from becoming chrooted before 
being spawned in the new virtual image, which can be 
useful for monitoring purposes and as a rescue option in 
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cases when the private directory tree in the target virtual 
image becomes damaged or unusable. 

Although under normal circumstances it can be 
expected that management operations on virtual images 
will be executed relatively infrequently, the current 
implementation requires the whole kernel to be locked 
for the entire duration of all virtual image management 
system calls. Fortunately, the typical execution time of 
management functions is generally short enough not to 
introduce unacceptable delays, even on busy servers. 
Table 1 shows the typical execution duration of 
management operations, measured from the userland 
perspective on an otherwise idle system. 

 
Function Duration 
Create a new vimage 212 µs 
Delete a vimage 72 µs 
Move network interface to a vimage 47 µs 
Switch a process to another vimage 20 µs 
Modify vimage parameters 21 µs 
Fetch statistics for one vimage 25 µs 

Table 1: Average execution time of virtual image 
management operations on an idle system 

4.4 Other pseudo-VM functions 
Implementing a clonable network stack was the 

original and primary focus of the experimental code, 
without presumption whether the application will be 
virtual hosting, VPN provisioning, network simulation 
or something completely different. However, extending 
the experimental framework to provide some basic 
pseudo-VM functions, like hiding user processes 
running in one virtualized environment, turned out to be 
a fairly trivial task. This part of the implementation was 
easy because the basic framework offering such 
functionality was already there – the popular jail [2] 
facility in FreeBSD. The original jail implementation 
uses the PRISON_CHECK(p1,p2) macro at various 
points in the kernel to determine whether two processes 
are supposed to "see" and interact with each other by 
checking if they both belong to the same jail. It was 
sufficient to extend this macro by checking if the 
processes belong to the same network stack instance to 
achieve the same separation functionality originally 
present in jails. This basic facility was further extended 
with new functions related to management of CPU 
resources. 

CPU load and usage accounting has been 
reorganized from system-wide to per virtual image, by 
migrating the cp_time and averunnable variables to 

struct vimage. This allowed the CPU time spent in 
user and system contexts to be charged to the 
appropriate virtual image, which can help providing the 
administrators with better control and overview over the 
system behavior, and further restricting the global view 
on the system from within the virtual images. 

The problem of accurately defining and finding the 
actual consumer of CPU time spent in the interrupt 
context is still an open area in OS research. 
Traditionally, UNIX systems pragmatically (and 
unfairly) charge the unlucky current process with the 
time spent in servicing interrupts. We found out that on 
the level of virtual images it is more practical to charge 
all virtual images for the time slice spent in the 
interrupt context, instead of only charging the current 
one. Such an approach simplified the implementation of 
individual per virtual image overall system load 
estimation. However, further experiments have shown 
that although it might be difficult or impossible to 
determine the actual consumer for a broad range of 
interrupt triggered events, for example for disk I/O 
DMA notifications, charging the appropriate virtual 
image for network traffic related interrupt context 
events can be implemented fairly simply and efficiently. 
Since the standard UNIX accounting is performed on 
statistical basis by periodically probing the state of CPU 
execution context (user, system, interrupt or idle), it was 
necessary to provide the accounting routine with more 
detailed information on which virtual image is currently 
active in the interrupt context. This was accomplished 
by introduction of a new global variable vintr which 
points to the current virtual image on which network 
processing is performed in the interrupt context. 

As the interrupt context network processing in 
4.4BSD kernels is split into two stages, the global 
vintr variable has to be set both on each entry to NICs 
device driver interrupt service routine and later during 
netisr processing. At exit the interrupt service 
routines are responsible to set the vintr back to NULL. 
When the statclock() accounting routine preempts a 
thread of execution running in the interrupt context, it 
checks whether vintr is set, in which case it can 
increment the corresponding counters only for the 
current virtual image. Otherwise, if vintr equals to 
NULL, all virtual images are charged for the consumed 
timeslice in interrupt context. 

The described model of interrupt context time 
accounting is far from being accurate for two main 
reasons. First, it cannot properly classify the context 
switching and interrupt dispatching periods before the 
device driver can set the vintr variable, as well as 
after the vintr variable is cleared. Secondly, in the 
case when the traffic has to be bridged to virtual image 
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different from the one the physical NIC resides in, it is 
highly probable that over a longer period of time both 
virtual images will accrue interrupt context timeslots. 
Such an accounting is logically invalid, since only the 
virtual image that is the final destination of the 
incoming traffic should be charged. Nevertheless, 
despite not being entirely accurate, the per virtual image 
interrupt context accounting model can be a valuable 
indicator to system administrators in which virtual 
image to look for inbound traffic triggered CPU 
congestions. 

CPU usage limiting was another function 
implemented as a straight follow up on the individual 
CPU usage accounting. Based on CPU usage limits set 
by the system administrator, the original 4.4BSD 
algorithm for scheduling the user processes on the CPU 
was extended to simply skip the processes in the active 
run queue belonging to virtual images that have recently 
consumed more CPU time than they were allowed to. 
As soon as it can be determined that the CPU usage 
limit has been exceeded, a process belonging to another 
virtual image is rescheduled, or the system enters the 
idle loop. A digital decay filter periodically lowers the 
accumulated per virtual image CPU usage averages, 
thus allowing the processes running in administratively 
constrained virtual images to be rescheduled later. 

Receive livelock [14] is a situation when more 
incoming packets arrive than the system is capable to 
handle, resulting in the CPU being permanently locked 
into servicing interrupt requests. This presents a serious 
threat to stability of systems based on interrupt driven 
kernels, such as FreeBSD. In an OS split in multiple 
virtual machine environments the problem becomes 
even more emphasized since the entire system could 
become crippled under livelock resulting from only one 
network stack instance being flooded by excessive 
inbound traffic patterns (typical for today's frequent 
DoS attacks). 

After successfully implementing per virtual image 
interrupt context CPU usage accounting, it was almost 
trivial to implement a simple feedback-based control 
algorithm for mitigating receive livelock. The interrupt 
context load is dampened by controllable discarding of 
received packets from the inbound protocol queues 
during netisr() processing. The interrupt context 
load threshold, based on which the decision is made 
whether to drop or pass the packets to further protocol 
processing, can be independently tuned for each virtual 
image. The described method is based on an assumption 
that in average more CPU cycles are consumed in 
protocol level processing than in device drivers, which 
only have to demultiplex received packets to the 
appropriate protocol inbound queue. Therefore 

dropping the packets in the netisr() loop can 
significantly lower the CPU time spent in interrupt 
context processing only for traffic flows that require 
complex protocol-level processing (such as TCP or 
IPSEC), or in scenarios where complex packet filtering 
rules have to be traversed for each received packet. 
However, it should be noted that the above method for 
dampening interrupt context load does not provide an 
ultimate solution in mitigating receive livelocks. 
Interrupt coalescing and especially polling [15] can 
provide more adequate protection against livelocks 
under extreme overloads. 

4.5 Memory resources 
The kernel memory footprint is affected by the 

introduced modifications when running multiple 
network stacks. Compiled for the IA-32 platform, the 
modified kernel image file is 1663393 bytes big, which 
is an increase of only 5977 bytes compared to an 
equally configured unmodified kernel. However, the 
real issues with memory allocation arise when multiple 
virtual images are active in the system. Those issues can 
be classified in two groups. 

Various private memory pools such as protocol 
control blocks (PCB), hash tables etc. which are created 
for each virtual image independently introduce specific 
implications. Although the size of struct vimage 
itself is relatively small (8012 bytes), during virtual 
image creation additional space for private memory 
pools has to be reserved. Thus vmstat -m reports that 
each virtual image consumes a total of approximately 
23 Kbytes of kernel memory upon initialization. 
Unfortunately, this figure is not relevant, as it does not 
account for reserved but unused memory pages 
allocated by the zone allocator for private PCBs and the 
TCP syncache. Using the standard limits for maximum 
number of sockets and TCP syncache size, each virtual 
image could consume a total of 1161 pages or 4664 
Kbytes of kernel memory. It is obvious that this 
mechanism presents a serious obstacle in scaling to 
large number of simultaneous virtual images. Optimal 
use of kernel memory could be accomplished by 
implementing common zone pools for all network stack 
instances; however, such an approach would violate the 
design requirement of making network stacks as 
independent as possible. An alternative model is 
therefore employed, which retains private memory 
pools, but enforces lower limits on number of sockets 
per virtual image, thus significantly reducing the per 
virtual image memory footprint. Such an approach 
offers additional tuning possibilities on resource 
limiting, since it allows system administrators to specify 
a per virtual image limit on the number of sockets. 
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The mbuf packet buffers present a different issue, 
as they are shared among all network stack instances. 
For example, a heavily utilized traffic shaper or delay 
queue in one network stack could bind and effectively 
exhaust all the mbuf buffers in the system, rendering 
other network stack instances unusable. Mitigation of 
these issues is not a trivial task to solve, as it would 
require implementing new limit checking mechanisms 
to the mbuf allocator, accompanied by additional 
checking done at all places in the kernel where mbuf 
buffers are either created or handed over from one 
network stack instance to another. As such an approach 
would require significant programming efforts it has not 
been implemented in the experimental network stack 
cloning framework. Therefore the system's stability 
depends on network stack instances to cooperatively 
share the global mbuf pools. 

 

5 Performance 

Extending any piece of software with a new 
functionality always rises the question what impact it 
will make on system performance. In the case of 
extending the network stack to support cloning, this 
question becomes highly emphasized since all 
references to symbols and variables used throughout the 
network stack have one additional level of indirection. 
To compare the performance between the standard and 
modified kernels, a series of simple tests have been run.  

Microbenchmarking tests were performed in order 
to determine the execution duration of some typical 
kernel functions involved in packet processing. In each 
observed function, both in the standard and modified 
kernel, counter start and stop hooks were embedded for 
capturing the elapsed time. The CPU-embedded TSC 
clock cycle counter was used as the time reference. 
Execution of each observed section was provoked by 
appropriate external traffic on an otherwise completely 
idle test system. 

Table 2 shows the comparative results of a series of 

such tests. The first two columns mark the observed 
function and the test traffic used, followed by average 
execution duration and its standard deviation from the 
5000 subsequent iterations, for the modified and 
standard kernel. Throughout the tests the modified 
kernel was running with only a single virtual image / 
network stack instance, resembling the functionality of 
the standard kernel. 

From the broader series of tests, only those results are 
included that were both repeatable and with reasonably 
small standard deviation. Examining the results it 
becomes apparent that accurate measurement of 
execution time becomes more difficult as the observed 
code section becomes longer and more complex, which 
can be partially explained by the influence of 
phenomena such as system bus contentions, CPU cache 
coherence etc. Nevertheless, the test results are valuable 
in that they show no dramatic difference in execution 
time between code sections running on the modified and 
standard kernel. In fact, in the modified kernel some 
functions seem to execute slightly faster than in the 
standard one; however, as the functions shown in Table 
2 present only a portion of tasks that the kernel 
performs in providing network communication, these 
small deviations can be considered insignificant. 

The effective throughput for different types of 
traffic was measured during the second series of tests, 
again comparing the performance between standard and 
modified kernels. The test machine was powerful 
enough to easily drive the physical network interfaces at 
full media speed using most of the interesting traffic 
patterns, so it became apparent that testing with external 
traffic would not yield particularly usable results. 
Therefore it was decided to perform all the testing 
inside the referent machine, using it at the same time as 
source and drain of the test traffic. The traffic was 
looped back between traffic source and destination, 
eliminating the contentions that physical media such as 
Ethernet could introduce. 

The TCP throughput was measured using the 
netperf [5] utility. Figure 5 shows the measured relation 

Table 2: Execution duration (in clock cycles) of certain packet processing functions in modified and standard kernel 

function traffic average stdev average stdev +/- cycles +/- %
ip_input() ICMP echo 224 9,5 144 12,6 80 56%
ip_output() ICMP echo reply 502 29,3 492 17,3 10 2%
icmp_input() ICMP echo 504 204,9 660 213,1 -156 -24%
icmp_reflect() ICMP echo / reply 181 4,8 153 4,8 28 18%
tcp_input() TCP data 4978 953,4 5263 1002,1 -285 -5%
tcp_input() TCP ack 2280 479,1 2471 491,9 -191 -8%
total 8669 9183 -514 -6%

clonable stack standard stack
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between maximum TCP throughput and the MTU size 
configured on the loopback network interface. It can be 
observed that the throughput obtained on the modified 
kernel running with a single network stack instance is 
marginally lower than on the unmodified kernel. For the 
MTU size of 1500 octets the achieved throughput using 
the modified kernel was around 93% of the value 
observed on the standard system. However, it should be 
noted that during this test the traffic passed through the 
network stack twice: once when data was transmitted by 
the server process (netserver), and once when the 
same data was received by the netperf client. The 
one-way throughput degradation is even less significant, 
and can be estimated as a square root of the obtained 
throughput ratio between standard and modified stack 
for both sending and receiving side processing. 
Therefore, for MTU=1500 we can estimate one-way 
maximum TCP throughput of the clonable network 
stack to be around 96.5% of the unmodified system. 

Measuring the maximum packet rate for ICMP 
traffic, generated by the "flooding" ping -qf 
command and reflected by the kernel, yielded some 
interesting results. As shown in Figure 6, the maximum 
packet rate obtainable on the modified kernel was up to 
5.7% higher than using the standard kernel. It is 
difficult to explain such a phenomenon, but it can be 
speculated that this might be due to better CPU cache 
coherency, since in the modified kernel most of the 
symbols involved in network processing are located 
close to each other in the vimage structure, while in the 
standard kernel they are interleaved with symbols used 
in other kernel functions not related to the network 
stack. 

To summarize, all the presented measurements clearly 
indicate that the implemented network stack cloning 
code generally does not significantly degrade the system 
and network performance. 

6 Application examples 

The concept of network stack cloning was conceived 
with the goal of supporting a broad class of 
applications. Most system administrators will however 
be curious how the new framework fits in virtual 
hosting scenarios. In Figure 7 a simple virtual hosting 
configuration is shown where the system is split into 
three virtual images: "master", which is the default; 
and two subordinated virtual images called "client1" 
and "client2". The client virtual images are each 
assigned its private virtual Ethernet "ve" network 
interface, which are all bridged to the physical LAN 
through the real Ethernet interface (fxp0) residing in 
the "master" virtual image. The client virtual images 
reside in chrooted directory trees, which can be created 
using the standard methods for setting up the jailed 
environments, described in jail(8) online manual. 

The following command sequence can be used to 
initially configure the described virtual hosting 
environment. The vimage command is used for 
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managing the virtual images and network interfaces, 
with modifier determining the action to be performed. It 
is assumed the private directory tree for each client 
virtual image have been set up previously. 
 
# create virtual ethernet interfaces 
ifconfig ve0 create link 40:0:0:0:0:1 
ifconfig ve1 create link 40:0:0:0:0:2 
 
# create new virtual images 
vimage -c client1 chroot /v/client1 
vimage -c client2 chroot /v/client2 
 
# move interfaces to new virtual images 
vimage -i client1 ve0 
vimage -i client2 ve1 
 
# configure the bridge 
sysctl \ 
  net.link.ether.bridge_cfg= \ 
  client1.ve0,client2.ve0,fxp0 
sysctl net.link.ether.bridge=1 
 

At this point no user processes exist in the "client" 
virtual images. Provided the virtual images are properly 
configured using the standard rc.conf file residing in 
their private directory tree, they could be started using 
the /etc/rc script, in similar manner as used for 
starting the standard jails. This could be accomplished 
using the following commands: 
# start new virtual images 
vimage client1 /bin/sh /etc/rc 
vimage client2 /bin/sh /etc/rc 
 

Unlike in jails, the parent virtual image can spawn a 
new process in its child at any time. The following 
example shows how IP configuration of virtual images 
can be performed manually: 
 
vmbsd# vimage 
master 
vmbsd# vimage client1 
Switched to vimage client1 
# ifconfig 
ve0:   flags=8903 
<UP,BROADCAST,PROMISC,SIMPLEX,MULTICAST> 
mtu 1500 ether 40:00:00:00:00:01 
lo0: flags=8008 
<LOOPBACK,MULTICAST> mtu 16384 
# ifconfig lo0 localhost 
# ifconfig ve0 192.168.201.31 
# route add default 192.168.201.1 
# inetd 
# ps -ax 
  PID  TT  STAT      TIME COMMAND 
  248  ??  Ss     0:00.02 inetd 
  242  p1  S      0:00.06 vimage (csh) 
  249  p1  R+     0:00.01 ps -ax 
# hostname freenix 
# exit 
 

It is now possible to verify if the new virtual image 
can be accessed over the network: 
 
vmbsd# telnet -K 192.168.201.31 
Trying 192.168.201.31... 
Connected to 192.168.201.31. 
Escape character is '^]'. 
 
FreeBSD/i386 (freenix) (ttyp4) 
... 
 

The above example illustrates only the initial 
sequences in the management of virtual images. As at 
the first glance the achieved functionality might seem 
very similar to what can be done with the traditional 
FreeBSD jails, it should be noted that the real 
differences can be observed in the areas which are not 
supported in jails. Maintaining multiple IP addresses, 
independent packet filters and routing tables, access to 
the routing and raw sockets as well as bpf traffic 
capturing are among the key new functions the network 
stack cloning model introduces to the jail-styled virtual 
hosting scenarios. 

The other applications that can benefit from the 
clonable network stack infrastructure range from fast 
and efficient real-time network simulations to advanced 
overlayed VPNs with independent and potentially 
overlapping addressing schemes. Unfortunately, the 
scope of this article limits further discussion on possible 
applications in these areas. 

 

7 Conclusions and future work 

The main contribution of this work is demonstrating 
the concept of network stack cloning can be efficiently 
implemented as an extension to the existing FreeBSD 
networking code. The experimental implementation has 
successfully preserved both the same overall 
performance level and full API/ABI compatibility with 
the original kernel, which were the two key 
requirements for adopting the network stack cloning 
model in a broad range of applications. When running 
with only a single network stack instance, looking from 
the userland perspective it is practically impossible to 
distinguish between a modified kernel and the original 
one, both regarding the general appearance, 
functionality, application interface, overall performance 
and memory footprint. However, by creating new 
network stack instances associated with virtual images, 
system administrators now can conveniently and 
efficiently partition the OS into highly independent 
pseudo or light virtual machine entities. 
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A substantial amount of work has yet to be completed 
before the network stack cloning model could be even 
considered for inclusion in an official FreeBSD source 
tree. As the experimental implementation covers only 
virtualization of basic IPv4 networking code, obviously 
the cloning support should be extended to other 
protocols, starting with IPv6 and IPSEC. Further, the 
framework should be ported and kept in sync with a 
development (-current) source tree, since the original 
experimental implementation is based on the -stable 4.x 
FreeBSD branch. And even if and when a highly 
polished patch against a development tree would 
become available, it is imminent that the question would 
arise whether the potential benefits of network stack 
cloning could overweight the compatibility issues 
associated to maintaining different private or parallel 
source trees, which would become obsolete once the 
cloning patch would get integrated in the official kernel 
source tree. 

In parallel with bringing the code in closer sync with 
the FreeBSD –current branch, the original concept of 
partitioning the OS in virtual images could be further 
extended by virtualizing other system resources, such as 
real and virtual memory, network and disk bandwidth, 
etc. An interesting option for further development could 
certainly be the reimplementation of virtual images as a 
modular resource container [6] type facility. Each 
resource instance (network stack, process group, CPU, 
memory etc.) would be represented by its own data 
structure, and struct vimage would only contain 
pointers to such structures. In such an environment, the 
system administrator could freely combine only the 
desired virtualized system resources in a virtual image, 
depending on the specific environment and application 
requirements. 

The experimental code for network stack cloning 
support, along with additional technical information and 
application examples is available for download under a 
BSD-style license at http://www.tel.fer.hr/zec/vimage/. 
At the time of this writing, the source is maintained as a 
set of patches against the FreeBSD 4.8-RELEASE 
kernel. 
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