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in FreeBSD 5.2
To help get a better handle on

thread scheduling, we take a look 
at how FreeBSD 5.2 handles it.

A busy system makes thousands of scheduling deci-
sions per second, so the speed with which scheduling 
decisions are made is critical to the performance of 
the system as a whole. This article—excerpted from 
the forthcoming book, The Design and Implementation 
of the FreeBSD Operating System—uses the example of 
the open source FreeBSD system to help us understand 
thread scheduling. The original FreeBSD scheduler was 
designed in the 1980s for large uniprocessor systems. 
Although it continues to work well in that environ-
ment today, the new ULE scheduler was designed spe-
cifically to optimize multiprocessor and multithread 
environments.1 This article first studies the original 
FreeBSD scheduler, then describes the new ULE sched-
uler. The article does not describe the realtime sched-
uler that is also available in FreeBSD.

MARSHALL KIRK McKUSICK, CONSULTANT
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Other Unix systems have added a dynamic sched-
uler switch that must be traversed for every scheduling 
decision. To avoid this overhead, FreeBSD requires that 
the scheduler be selected at the time the kernel is built. 
Thus, all calls into the scheduling code are resolved at 
compile time rather than going through the overhead of 
an indirect function call for every scheduling decision. By 
default, kernels up through FreeBSD 5.1 use the scheduler. 
Beginning with FreeBSD 5.2, the ULE scheduler is used by 
default. 

THE ORIGINAL FREEBSD SCHEDULER
All threads that are runnable are assigned a schedul-
ing priority that determines in which run queue they 
are placed. In selecting a new thread to run, the system 
scans the run queues from highest to lowest priority and 
chooses the first thread on the first nonempty queue. If 
multiple threads reside on a queue, the system runs them 
round robin—that is, it runs them in the order that they 
are found on the queue, with equal amounts of time 
allowed. If a thread blocks, it is not put back onto any run 
queue. If a thread uses up the time quantum (or time slice) 
it is allowed, it is placed at the end of the queue from 
which it came, and the thread at the front of the queue is 
selected to run. 

The shorter the time quantum, the better the inter-
active response. However, longer time quanta provide 
higher system throughput because the system will have 
less overhead from doing context switches, and proces-
sor caches will be flushed less often. The time quantum 
FreeBSD uses is 0.1 second. This value was empirically 
found to be the longest quantum that could be used with-
out loss of the desired response for interactive jobs such 
as editors. Perhaps surprisingly, the time quantum has 
remained unchanged over the past 20 years. Although 
the time quantum was originally selected on centralized 
timesharing systems with many users, it is still correct for 
decentralized workstations today. While workstation users 
expect a response time faster than that anticipated by the 
timesharing users of 20 years ago, the shorter run queues 
on the typical workstation make a shorter quantum 
unnecessary.

TIME-SHARE THREAD SCHEDULING
The FreeBSD time-share-scheduling algorithm is based on 
multilevel feedback queues. The system adjusts the priority 
of a thread dynamically to reflect resource requirements 
(e.g., being blocked awaiting an event) and the amount 
of resources consumed by the thread (e.g., CPU time). 
Threads are moved between run queues based on changes 
in their scheduling priority (hence the word feedback in 
the name multilevel feedback queue). When a thread other 
than the currently running thread attains a higher prior-
ity (by having that priority either assigned or given when 
it is awakened), the system switches to that thread imme-
diately if the current thread is in user mode. Otherwise, 
the system switches to the higher-priority thread as soon 
as the current thread exits the kernel. The system tailors 
this short-term scheduling algorithm to favor interactive 
jobs by raising the scheduling priority of threads that are 
blocked waiting for I/O for one or more seconds and by 
lowering the priority of threads that accumulate signifi-
cant amounts of CPU time. 

Short-term thread scheduling is broken into two 
parts. The next section describes when and how a 
thread’s scheduling priority is altered; the section after 
that describes the management of the run queues and 
the interaction between thread scheduling and context 
switching.

CALCULATIONS OF THREAD PRIORITY
A thread’s scheduling priority is determined directly by 
two values associated with the thread structure: kg_estcpu 
and kg_nice. The value of kg_estcpu provides an estimate 
of the recent CPU utilization of the thread. The value 
of kg_nice is a user-settable weighting factor that ranges 
numerically between -20 and 20. The normal value for 
kg_nice is zero. Negative values increase a thread’s prior-
ity, whereas positive values decrease its priority. 

A thread’s user-mode scheduling priority is calculated 
after every four clock ticks (typically 40 milliseconds) that 
it has been found running by this equation:

 

kg_user_pri = PRI_MIN_TIMESHARE + + 2 x kg_nice[ kg_estcpu4
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Values less than PRI_MIN_TIMESHARE (160) are set to 
PRI_MIN_TIMESHARE (see table 1); values greater than 
PRI_MAX_TIMESHARE (223) are set to PRI_MAX_TIME-
SHARE. This calculation causes the priority to decrease 
linearly based on recent CPU utilization. The user-con-
trollable kg_nice parameter acts as a limited weighting 
factor. Negative values retard the effect of heavy CPU 
utilization by offsetting the additive term containing kg_
estcpu. Otherwise, if we ignore the second term, kg_nice 
simply shifts the priority by a constant factor.

The CPU utilization, kg_estcpu, is incremented each 
time that the system clock ticks and the thread is found 
to be executing. In addition, kg_estcpu is adjusted once 
per second via a digital decay filter. The decay causes 
about 90 percent of the CPU usage accumulated in a 
one-second interval to be forgotten over a period of time 
that is dependent on the system load average. To be exact, 
kg_estcpu is adjusted according to

kg_user_pri = PRI_MIN_TIMESHARE + + 2 x kg_nice[

]

kg_estcpu
4

kg_estcpu = kg_estcpu + kg_nice,(2 x load)
(2 x load + 1)

equation 2--editable

equation 1--editable

equation 2--outline

equation 3--editable

equation 4--editable

equation 5 --editable

[ ]kg_estcpu = x kg_estcpu,(2 x load)
(2 x load + 1)

kg_slptime

interactivity score = scaling factor

run
sleep

interactivity score = + scaling factorscaling factor

run
sleep

where the load is a sampled average of the sum of the 
lengths of the run queue and of the short-term sleep 
queue over the previous one-minute interval of system 
operation. 

To understand the effect of the decay filter, con-
sider the case where a single compute-bound thread 
monopolizes the CPU. The thread’s CPU utilization will 
accumulate clock ticks at a rate dependent on the clock 
frequency. The load average will be effectively 1, resulting 
in a decay of 

kg_estcpu = 0.66 × kg_estcpu + kg_nice. 
If we assume that the thread accumulates Ti clock ticks 
over time interval i and that kg_nice is zero, then the CPU 
utilization for each time interval will count into the cur-
rent value of kg_estcpu according to

kg_estcpu = 0.66 × T0 
kg_estcpu = 0.66 × (T1 + 0.66 × T0) = 0.66 × T1 + 0.44 ×  T0

kg_estcpu = 0.66 × T2 + 0.44 ×  T1 + + 0.30 × T0 
kg_estcpu = 0.66 × T3 + . . . + 0.20 ×  T0 
kg_estcpu = 0.66 × T4 + . . . + 0.13 × T0.
Thus, after five decay calculations, only 13 percent of T0 
remains present in the current CPU utilization value for 
the thread. Since the decay filter is applied once per sec-
ond, about 90 percent of the CPU utilization is forgotten 
after five seconds.

Threads that are runnable have their priority adjusted 
periodically as just described. However, the system 
ignores threads that are blocked awaiting an event: these 
threads cannot accumulate CPU usage, so an estimate 
of their filtered CPU usage can be calculated in one step. 
This optimization can significantly reduce a system’s 
scheduling overhead when many blocked threads are 
present. The system recomputes a thread’s priority when 
that thread is awakened and has been sleeping for longer 
than one second. The system maintains a value, kg_slp-
time, that is an estimate of the time a thread has spent 
blocked waiting for an event. The value of kg_slptime is 
set to zero when a thread calls sleep() and is incremented 
once per second while the thread remains in a SLEEPING 
or STOPPED state. When the thread is awakened, the 
system computes the value of kg_estcpu according to

kg_user_pri = PRI_MIN_TIMESHARE + + 2 x kg_nice[

]

kg_estcpu
4

kg_estcpu = kg_estcpu + kg_nice,(2 x load)
(2 x load + 1)

equation 2--editable

equation 1--editable

equation 2--outline

equation 3--editable

equation 4--editable

equation 5 --editable

[ ]kg_estcpu = x kg_estcpu,(2 x load)
(2 x load + 1)

kg_slptime

interactivity score = scaling factor

run
sleep

interactivity score = + scaling factorscaling factor

run
sleep

and then recalculates the scheduling priority using this 
equation. This analysis ignores the influence of kg_nice; 
also, the load used is the current load average rather than 
the load average at the time that the thread blocked. 

THE ULE SCHEDULER
The ULE scheduler was developed as part of the overhaul 
of FreeBSD to support SMP (symmetric multiprocessing). 
A new scheduler was undertaken for several reasons:
•  To address the need for processor affinity in SMP 

systems

Range Class Thread type 

0-63 ITHD bottom-half kernel (interrupt) 

64-127 kern top-half kernel 

128-159 realtime realtime user 

160-223 timeshare time-sharing user 

224-255 idle idle user 

TABLE 1 Thread-
scheduling 
Classes

Perhaps surprisingly, the 
time quantum has remained
unchanged over the past 20 years.
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•  To provide better support for SMT (symmetric multi-
threading)—processors with multiple, on-chip CPU cores

•  To improve the performance of the scheduling algo-
rithm so that it is no longer dependent on the number 
of threads in the system 

The goal of a multiprocessor system is to apply the 
power of multiple CPUs to a problem, or set of problems, 
to achieve a result in less time than it would run on a 
single-processor system. If a system has the same number 
of runnable threads as it does CPUs, then achieving 
this goal is easy. Each runnable thread gets a CPU to 
itself and runs to completion. Typically, many runnable 
threads are competing 
for a few processors. One 
job of the scheduler is to 
ensure that the CPUs are 
always busy and not wast-
ing their cycles. When a 
thread completes its work, 
or is blocked waiting for 
resources, it is removed 
from the processor on 
which it was running. 
While a thread is run-
ning on a processor, it 
brings its working set—the 
instructions it is execut-
ing and the data on which 
it is operating—into the 
memory cache of the CPU. 

Migrating a thread has 
a cost. When a thread is 
moved from one proces-
sor to another, its in-cache 
working set is lost and 
must be removed from 
the processor on which 
it was running and then 
loaded into the new CPU 
to which it has been 
migrated. The performance 
of an SMP system with a 

naive scheduler that does not take this cost into account 
can fall beneath that of a single-processor system. The 
term processor affinity describes a scheduler that migrates 
threads only when necessary to give an idle processor 
something to do. 

Many microprocessors now provide support for sym-
metric multithreading where the processor is built out of 
multiple CPU cores, each of which can execute a thread. 
The CPU cores in an SMT processor share all the proces-
sor’s resources, such as memory caches and access to main 
memory, so they are more tightly synchronized than the 
processors in an SMP system. From a thread’s perspective, 

Processor with Two Cores
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it does not know that other threads are running on the 
same processor because the processor is handling them 
independently. The one piece of code in the system that 
needs to be aware of the multiple cores is the scheduling 
algorithm. The SMT case is a slightly different version 
of the processor affinity problem presented by an SMP 
system. Each CPU core can be seen as a processor with its 
own set of threads. In an SMP system composed of CPUs 
that support SMT, the scheduler treats each core on a 
processor as a less powerful resource but one to which it is 
cheaper to migrate threads.

The original FreeBSD scheduler maintains a global list 
of threads that it traverses once per second to recalcu-
late their priorities. The use of a single list for all threads 
means that the performance of the scheduler is depen-
dent on the number of tasks in the system, and as the 
number of tasks grows, more CPU time must be spent 
in the scheduler maintaining the list. A design goal of 
the ULE scheduler was to avoid the need to consider all 
the runnable threads in the system to make a scheduling 
decision.

The ULE scheduler creates a set of three queues for 
each CPU in the system. Having per-processor queues 
makes it possible to implement processor affinity in an 
SMP system.

One queue is the idle queue, where all idle threads are 
stored. The other two queues are designated current and 
next. Threads are picked to run, in priority order, from 
the current queue until it is empty, at which point the 
current and next queues are swapped and scheduling is 
started again. Threads in the idle queue are run only when 
the other two queues are empty. Realtime and interrupt 
threads are always inserted into the current queue so 
that they will have the least possible scheduling latency. 
Interactive threads are also inserted into the current queue 
to keep the interactive response of the system acceptable. 
A thread is considered to be interactive if the ratio of its 
voluntary sleep time versus its runtime is below a certain 
threshold. The interactivity threshold is defined in the 
ULE code and is not configurable. ULE uses two equations 
to compute the interactivity score of a thread. For threads 
whose sleep time exceeds their runtime, the following 
equation is used:

interactivity score = scaling factor

run
sleep

When a thread’s runtime exceeds its sleep time, the fol-
lowing equation is used instead:

interactivity score = + scaling factorscaling factor

run
sleep

The scaling factor is the maximum interactivity score 
divided by two. Threads that score below the interactiv-
ity threshold are considered to be interactive; all others 
are noninteractive. The sched_interact_update() routine 
is called at several points in a thread’s existence—for 
example, when the thread is awakened by a wakeup() 
call—to update the thread’s runtime and sleep time. 
The sleep-time and runtime values are allowed to grow 
only to a certain limit. When the sum of the runtime 

and sleep time passes the limit, the values are reduced 
to bring them back into range. An interactive thread 
whose sleep history was not remembered at all would not 
remain interactive, resulting in a poor user experience. 
Remembering an interactive thread’s sleep time for too 
long would allow the thread to have more than its fair 
share of the CPU. The amount of history that is kept and 
the interactivity threshold are the two values that most 
strongly influence a user’s interactive experience on the 
system.

Noninteractive threads are put into the next queue 
and are scheduled to run when the queues are switched. 
Switching the queues guarantees that a thread gets to run 
at least once every two queue switches regardless of prior-
ity, which ensures fair sharing of the processor.

Two mechanisms are used to migrate threads among 
multiple processors. When a CPU has no work to do in 
any of its queues, it marks a bit in a bitmask shared by all 
processors that says it is idle. Whenever an active CPU 
is about to add work to its own run queue, it first checks 
to see if it has excess work and if another processor in 
the system is idle. If an idle processor is found, then 
the thread is migrated to the idle processor using an IPI 
(interprocessor interrupt). Making a migration decision by 
inspecting a shared bitmask is much faster than scan-
ning the run queues of all the other processors. Seeking 

Making a migration 
decision by inspecting 
a shared bitmask is much faster than 
scanning the run queues of all 
the other processors. 
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out idle processors when adding a new task works well 
because it spreads the load when it is presented to the 
system. 

The second form of migration, called push migration, is 
done by the system on a periodic basis and more aggres-
sively offloads work to other processors in the system. 
Twice per second the sched_balance() routine picks the 
most-loaded and least-loaded processors in the system 
and equalizes their run queues. The balancing is done 
between only two processors because it was thought that 
two-processor systems would be the most common and to 
prevent the balancing algorithm from being too complex 
and adversely affecting the performance of the scheduler. 
Push migration ensures fairness among the runnable 
threads. For example, with three runnable threads on a 
two-processor system, it would be unfair for one thread to 
get a processor to itself while the other two had to share 
the second processor. By pushing a thread from the pro-
cessor with two threads to the processor with one thread, 
no single thread would get to run alone indefinitely.

Handling the SMT case is a derivative form of load 
balancing among full-fledged CPUs and is handled by pro-
cessor groups. Each CPU core in an SMT processor is given 
its own kseq structure, and these structures are grouped 
under a kseq group structure. An example of a single 
processor with two cores is shown in figure 1. In an SMP 
system with multiple SMT-capable processors there would 
be one processor group per CPU. When the scheduler is 
deciding to which processor or core to migrate a thread, it 
will try to pick a core on the same processor before pick-
ing one on another processor because that is the lowest-
cost migration path.

CONCLUSION
The original FreeBSD scheduler continues to work well 
in many situations. Its elegant simplicity (it is written in 
fewer than 100 lines of C code) is easy to understand and 
difficult to cheat. It does not, however, understand the 
complexity of multiprocessor environments; thus, it can-
not be adapted to do affinity processing or assign a share 
of the processor to a group of threads. The ULE scheduler 
was developed to handle these needs more effectively.
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