
58 September 2004 QUEUE rants: feedback@acmqueue.com QUEUE September 2004 59 more queue: www.acmqueue.com

in FreeBSD 5.2

Thread
Scheduling

58 September 2004 QUEUE rants: feedback@acmqueue.com QUEUE September 2004 59 more queue: www.acmqueue.com

in FreeBSD 5.2
To help get a better handle on

thread scheduling, we take a look
at how FreeBSD 5.2 handles it.

A busy system makes thousands of scheduling deci-
sions per second, so the speed with which scheduling
decisions are made is critical to the performance of
the system as a whole. This article—excerpted from
the forthcoming book, The Design and Implementation
of the FreeBSD Operating System—uses the example of
the open source FreeBSD system to help us understand
thread scheduling. The original FreeBSD scheduler was
designed in the 1980s for large uniprocessor systems.
Although it continues to work well in that environ-
ment today, the new ULE scheduler was designed spe-
cifically to optimize multiprocessor and multithread
environments.1 This article first studies the original
FreeBSD scheduler, then describes the new ULE sched-
uler. The article does not describe the realtime sched-
uler that is also available in FreeBSD.

MARSHALL KIRK McKUSICK, CONSULTANT
GEORGE V. NEVILLE-NEIL, CONSULTANT

60 September 2004 QUEUE rants: feedback@acmqueue.com QUEUE September 2004 61 more queue: www.acmqueue.com

Other Unix systems have added a dynamic sched-
uler switch that must be traversed for every scheduling
decision. To avoid this overhead, FreeBSD requires that
the scheduler be selected at the time the kernel is built.
Thus, all calls into the scheduling code are resolved at
compile time rather than going through the overhead of
an indirect function call for every scheduling decision. By
default, kernels up through FreeBSD 5.1 use the scheduler.
Beginning with FreeBSD 5.2, the ULE scheduler is used by
default.

THE ORIGINAL FREEBSD SCHEDULER
All threads that are runnable are assigned a schedul-
ing priority that determines in which run queue they
are placed. In selecting a new thread to run, the system
scans the run queues from highest to lowest priority and
chooses the first thread on the first nonempty queue. If
multiple threads reside on a queue, the system runs them
round robin—that is, it runs them in the order that they
are found on the queue, with equal amounts of time
allowed. If a thread blocks, it is not put back onto any run
queue. If a thread uses up the time quantum (or time slice)
it is allowed, it is placed at the end of the queue from
which it came, and the thread at the front of the queue is
selected to run.

The shorter the time quantum, the better the inter-
active response. However, longer time quanta provide
higher system throughput because the system will have
less overhead from doing context switches, and proces-
sor caches will be flushed less often. The time quantum
FreeBSD uses is 0.1 second. This value was empirically
found to be the longest quantum that could be used with-
out loss of the desired response for interactive jobs such
as editors. Perhaps surprisingly, the time quantum has
remained unchanged over the past 20 years. Although
the time quantum was originally selected on centralized
timesharing systems with many users, it is still correct for
decentralized workstations today. While workstation users
expect a response time faster than that anticipated by the
timesharing users of 20 years ago, the shorter run queues
on the typical workstation make a shorter quantum
unnecessary.

TIME-SHARE THREAD SCHEDULING
The FreeBSD time-share-scheduling algorithm is based on
multilevel feedback queues. The system adjusts the priority
of a thread dynamically to reflect resource requirements
(e.g., being blocked awaiting an event) and the amount
of resources consumed by the thread (e.g., CPU time).
Threads are moved between run queues based on changes
in their scheduling priority (hence the word feedback in
the name multilevel feedback queue). When a thread other
than the currently running thread attains a higher prior-
ity (by having that priority either assigned or given when
it is awakened), the system switches to that thread imme-
diately if the current thread is in user mode. Otherwise,
the system switches to the higher-priority thread as soon
as the current thread exits the kernel. The system tailors
this short-term scheduling algorithm to favor interactive
jobs by raising the scheduling priority of threads that are
blocked waiting for I/O for one or more seconds and by
lowering the priority of threads that accumulate signifi-
cant amounts of CPU time.

Short-term thread scheduling is broken into two
parts. The next section describes when and how a
thread’s scheduling priority is altered; the section after
that describes the management of the run queues and
the interaction between thread scheduling and context
switching.

CALCULATIONS OF THREAD PRIORITY
A thread’s scheduling priority is determined directly by
two values associated with the thread structure: kg_estcpu
and kg_nice. The value of kg_estcpu provides an estimate
of the recent CPU utilization of the thread. The value
of kg_nice is a user-settable weighting factor that ranges
numerically between -20 and 20. The normal value for
kg_nice is zero. Negative values increase a thread’s prior-
ity, whereas positive values decrease its priority.

A thread’s user-mode scheduling priority is calculated
after every four clock ticks (typically 40 milliseconds) that
it has been found running by this equation:

kg_user_pri = PRI_MIN_TIMESHARE + + 2 x kg_nice[kg_estcpu4

in FreeBSD 5.2
Thread Scheduling

60 September 2004 QUEUE rants: feedback@acmqueue.com QUEUE September 2004 61 more queue: www.acmqueue.com

Values less than PRI_MIN_TIMESHARE (160) are set to
PRI_MIN_TIMESHARE (see table 1); values greater than
PRI_MAX_TIMESHARE (223) are set to PRI_MAX_TIME-
SHARE. This calculation causes the priority to decrease
linearly based on recent CPU utilization. The user-con-
trollable kg_nice parameter acts as a limited weighting
factor. Negative values retard the effect of heavy CPU
utilization by offsetting the additive term containing kg_
estcpu. Otherwise, if we ignore the second term, kg_nice
simply shifts the priority by a constant factor.

The CPU utilization, kg_estcpu, is incremented each
time that the system clock ticks and the thread is found
to be executing. In addition, kg_estcpu is adjusted once
per second via a digital decay filter. The decay causes
about 90 percent of the CPU usage accumulated in a
one-second interval to be forgotten over a period of time
that is dependent on the system load average. To be exact,
kg_estcpu is adjusted according to

kg_user_pri = PRI_MIN_TIMESHARE + + 2 x kg_nice[

]

kg_estcpu
4

kg_estcpu = kg_estcpu + kg_nice,(2 x load)
(2 x load + 1)

equation 2--editable

equation 1--editable

equation 2--outline

equation 3--editable

equation 4--editable

equation 5 --editable

[]kg_estcpu = x kg_estcpu,(2 x load)
(2 x load + 1)

kg_slptime

interactivity score = scaling factor

run
sleep

interactivity score = + scaling factorscaling factor

run
sleep

where the load is a sampled average of the sum of the
lengths of the run queue and of the short-term sleep
queue over the previous one-minute interval of system
operation.

To understand the effect of the decay filter, con-
sider the case where a single compute-bound thread
monopolizes the CPU. The thread’s CPU utilization will
accumulate clock ticks at a rate dependent on the clock
frequency. The load average will be effectively 1, resulting
in a decay of

kg_estcpu = 0.66 × kg_estcpu + kg_nice.
If we assume that the thread accumulates Ti clock ticks
over time interval i and that kg_nice is zero, then the CPU
utilization for each time interval will count into the cur-
rent value of kg_estcpu according to

kg_estcpu = 0.66 × T0
kg_estcpu = 0.66 × (T1 + 0.66 × T0) = 0.66 × T1 + 0.44 × T0

kg_estcpu = 0.66 × T2 + 0.44 × T1 + + 0.30 × T0
kg_estcpu = 0.66 × T3 + . . . + 0.20 × T0
kg_estcpu = 0.66 × T4 + . . . + 0.13 × T0.
Thus, after five decay calculations, only 13 percent of T0
remains present in the current CPU utilization value for
the thread. Since the decay filter is applied once per sec-
ond, about 90 percent of the CPU utilization is forgotten
after five seconds.

Threads that are runnable have their priority adjusted
periodically as just described. However, the system
ignores threads that are blocked awaiting an event: these
threads cannot accumulate CPU usage, so an estimate
of their filtered CPU usage can be calculated in one step.
This optimization can significantly reduce a system’s
scheduling overhead when many blocked threads are
present. The system recomputes a thread’s priority when
that thread is awakened and has been sleeping for longer
than one second. The system maintains a value, kg_slp-
time, that is an estimate of the time a thread has spent
blocked waiting for an event. The value of kg_slptime is
set to zero when a thread calls sleep() and is incremented
once per second while the thread remains in a SLEEPING
or STOPPED state. When the thread is awakened, the
system computes the value of kg_estcpu according to

kg_user_pri = PRI_MIN_TIMESHARE + + 2 x kg_nice[

]

kg_estcpu
4

kg_estcpu = kg_estcpu + kg_nice,(2 x load)
(2 x load + 1)

equation 2--editable

equation 1--editable

equation 2--outline

equation 3--editable

equation 4--editable

equation 5 --editable

[]kg_estcpu = x kg_estcpu,(2 x load)
(2 x load + 1)

kg_slptime

interactivity score = scaling factor

run
sleep

interactivity score = + scaling factorscaling factor

run
sleep

and then recalculates the scheduling priority using this
equation. This analysis ignores the influence of kg_nice;
also, the load used is the current load average rather than
the load average at the time that the thread blocked.

THE ULE SCHEDULER
The ULE scheduler was developed as part of the overhaul
of FreeBSD to support SMP (symmetric multiprocessing).
A new scheduler was undertaken for several reasons:
• To address the need for processor affinity in SMP

systems

Range Class Thread type

0-63 ITHD bottom-half kernel (interrupt)

64-127 kern top-half kernel

128-159 realtime realtime user

160-223 timeshare time-sharing user

224-255 idle idle user

TABLE 1 Thread-
scheduling
Classes

Perhaps surprisingly, the
time quantum has remained
unchanged over the past 20 years.

62 September 2004 QUEUE rants: feedback@acmqueue.com QUEUE September 2004 63 more queue: www.acmqueue.com

• To provide better support for SMT (symmetric multi-
threading)—processors with multiple, on-chip CPU cores

• To improve the performance of the scheduling algo-
rithm so that it is no longer dependent on the number
of threads in the system

The goal of a multiprocessor system is to apply the
power of multiple CPUs to a problem, or set of problems,
to achieve a result in less time than it would run on a
single-processor system. If a system has the same number
of runnable threads as it does CPUs, then achieving
this goal is easy. Each runnable thread gets a CPU to
itself and runs to completion. Typically, many runnable
threads are competing
for a few processors. One
job of the scheduler is to
ensure that the CPUs are
always busy and not wast-
ing their cycles. When a
thread completes its work,
or is blocked waiting for
resources, it is removed
from the processor on
which it was running.
While a thread is run-
ning on a processor, it
brings its working set—the
instructions it is execut-
ing and the data on which
it is operating—into the
memory cache of the CPU.

Migrating a thread has
a cost. When a thread is
moved from one proces-
sor to another, its in-cache
working set is lost and
must be removed from
the processor on which
it was running and then
loaded into the new CPU
to which it has been
migrated. The performance
of an SMP system with a

naive scheduler that does not take this cost into account
can fall beneath that of a single-processor system. The
term processor affinity describes a scheduler that migrates
threads only when necessary to give an idle processor
something to do.

Many microprocessors now provide support for sym-
metric multithreading where the processor is built out of
multiple CPU cores, each of which can execute a thread.
The CPU cores in an SMT processor share all the proces-
sor’s resources, such as memory caches and access to main
memory, so they are more tightly synchronized than the
processors in an SMP system. From a thread’s perspective,

Processor with Two Cores

��������

�����������

������������

��������

��������

����������������

�����������

�����������������

��������

����������������

����������������

��������

��������

������������

���������

�����������

��������

����������������

����������������

��������

��������

������������

���������

�����������

FIG 1

in FreeBSD 5.2
Thread Scheduling

62 September 2004 QUEUE rants: feedback@acmqueue.com QUEUE September 2004 63 more queue: www.acmqueue.com

it does not know that other threads are running on the
same processor because the processor is handling them
independently. The one piece of code in the system that
needs to be aware of the multiple cores is the scheduling
algorithm. The SMT case is a slightly different version
of the processor affinity problem presented by an SMP
system. Each CPU core can be seen as a processor with its
own set of threads. In an SMP system composed of CPUs
that support SMT, the scheduler treats each core on a
processor as a less powerful resource but one to which it is
cheaper to migrate threads.

The original FreeBSD scheduler maintains a global list
of threads that it traverses once per second to recalcu-
late their priorities. The use of a single list for all threads
means that the performance of the scheduler is depen-
dent on the number of tasks in the system, and as the
number of tasks grows, more CPU time must be spent
in the scheduler maintaining the list. A design goal of
the ULE scheduler was to avoid the need to consider all
the runnable threads in the system to make a scheduling
decision.

The ULE scheduler creates a set of three queues for
each CPU in the system. Having per-processor queues
makes it possible to implement processor affinity in an
SMP system.

One queue is the idle queue, where all idle threads are
stored. The other two queues are designated current and
next. Threads are picked to run, in priority order, from
the current queue until it is empty, at which point the
current and next queues are swapped and scheduling is
started again. Threads in the idle queue are run only when
the other two queues are empty. Realtime and interrupt
threads are always inserted into the current queue so
that they will have the least possible scheduling latency.
Interactive threads are also inserted into the current queue
to keep the interactive response of the system acceptable.
A thread is considered to be interactive if the ratio of its
voluntary sleep time versus its runtime is below a certain
threshold. The interactivity threshold is defined in the
ULE code and is not configurable. ULE uses two equations
to compute the interactivity score of a thread. For threads
whose sleep time exceeds their runtime, the following
equation is used:

interactivity score = scaling factor

run
sleep

When a thread’s runtime exceeds its sleep time, the fol-
lowing equation is used instead:

interactivity score = + scaling factorscaling factor

run
sleep

The scaling factor is the maximum interactivity score
divided by two. Threads that score below the interactiv-
ity threshold are considered to be interactive; all others
are noninteractive. The sched_interact_update() routine
is called at several points in a thread’s existence—for
example, when the thread is awakened by a wakeup()
call—to update the thread’s runtime and sleep time.
The sleep-time and runtime values are allowed to grow
only to a certain limit. When the sum of the runtime

and sleep time passes the limit, the values are reduced
to bring them back into range. An interactive thread
whose sleep history was not remembered at all would not
remain interactive, resulting in a poor user experience.
Remembering an interactive thread’s sleep time for too
long would allow the thread to have more than its fair
share of the CPU. The amount of history that is kept and
the interactivity threshold are the two values that most
strongly influence a user’s interactive experience on the
system.

Noninteractive threads are put into the next queue
and are scheduled to run when the queues are switched.
Switching the queues guarantees that a thread gets to run
at least once every two queue switches regardless of prior-
ity, which ensures fair sharing of the processor.

Two mechanisms are used to migrate threads among
multiple processors. When a CPU has no work to do in
any of its queues, it marks a bit in a bitmask shared by all
processors that says it is idle. Whenever an active CPU
is about to add work to its own run queue, it first checks
to see if it has excess work and if another processor in
the system is idle. If an idle processor is found, then
the thread is migrated to the idle processor using an IPI
(interprocessor interrupt). Making a migration decision by
inspecting a shared bitmask is much faster than scan-
ning the run queues of all the other processors. Seeking

Making a migration
decision by inspecting
a shared bitmask is much faster than
scanning the run queues of all
the other processors.

64 September 2004 QUEUE rants: feedback@acmqueue.com

out idle processors when adding a new task works well
because it spreads the load when it is presented to the
system.

The second form of migration, called push migration, is
done by the system on a periodic basis and more aggres-
sively offloads work to other processors in the system.
Twice per second the sched_balance() routine picks the
most-loaded and least-loaded processors in the system
and equalizes their run queues. The balancing is done
between only two processors because it was thought that
two-processor systems would be the most common and to
prevent the balancing algorithm from being too complex
and adversely affecting the performance of the scheduler.
Push migration ensures fairness among the runnable
threads. For example, with three runnable threads on a
two-processor system, it would be unfair for one thread to
get a processor to itself while the other two had to share
the second processor. By pushing a thread from the pro-
cessor with two threads to the processor with one thread,
no single thread would get to run alone indefinitely.

Handling the SMT case is a derivative form of load
balancing among full-fledged CPUs and is handled by pro-
cessor groups. Each CPU core in an SMT processor is given
its own kseq structure, and these structures are grouped
under a kseq group structure. An example of a single
processor with two cores is shown in figure 1. In an SMP
system with multiple SMT-capable processors there would
be one processor group per CPU. When the scheduler is
deciding to which processor or core to migrate a thread, it
will try to pick a core on the same processor before pick-
ing one on another processor because that is the lowest-
cost migration path.

CONCLUSION
The original FreeBSD scheduler continues to work well
in many situations. Its elegant simplicity (it is written in
fewer than 100 lines of C code) is easy to understand and
difficult to cheat. It does not, however, understand the
complexity of multiprocessor environments; thus, it can-
not be adapted to do affinity processing or assign a share
of the processor to a group of threads. The ULE scheduler
was developed to handle these needs more effectively.

ACKNOWLEDGMENTS
This article is a partial excerpt from Chapter 4, Process
Management, from The Design and Implementation of the
FreeBSD Operating System, by Marshall Kirk McKusick and
George Neville-Neil (Table 1 is from an earlier section, Pro-
cess State, in the same chapter). Reprinted with permission
from Pearson Education Inc. (0-201-70245-2). Copyright
2005. To learn more: http://www.awprofessional.com/
title/0201702452. Q

REFERENCE
1. Roberson, J. ULE: A modern scheduler for FreeBSD.
Proceedings of BSDCon 2003 (September 2003).

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

MARSHALL KIRK McKUSICK has a Berkeley, California-
based consultancy, writes books and articles, and teaches
classes on Unix- and BSD-related subjects. His work with
Unix stretches more than 20 years. While at the University
of California at Berkeley, he implemented the 4.2 BSD Fast
File System and was the research computer scientist at the
Berkeley CSRG (Computer Systems Research Group)
overseeing the development and release of 4.3 BSD and
4.4 BSD. His areas of interest are the virtual-memory system
and the file system. He earned his undergraduate degree
in electrical engineering from Cornell University and did his
graduate work at UC Berkeley, where he received master’s
degrees in computer science and business administration
and a doctorate in computer science. He is president of the
Usenix Association and a member of ACM and IEEE.
GEORGE V. NEVILLE-NEIL works on networking and
operating system code for fun and profit. He also teaches
courses on various subjects related to programming. His
areas of interest are code spelunking, operating systems, and
networking. He earned his bachelor’s degree in computer
science at Northeastern University in Boston, Massachusetts.
He is a member of the ACM, the Usenix Association, and the
IEEE. He is an avid bicyclist and traveler who splits his time
between Tokyo and San Francisco.
© 2004 ACM 1542-7730/04/1000 $5.00

in FreeBSD 5.2
Thread Scheduling

http://www.awprofessional.com/title/0201702452
http://www.awprofessional.com/title/0201702452

