#### **GEOM Tutorial**

Poul-Henning Kamp

phk@FreeBSD.org

#### Outline

- Background and analysis.
- The local architectural scenery
- GEOM fundamentals.
- (tea break)
- Slicers (not a word about libdisk!)
- Tales of the unexpected.
- Q/A etc.

#### UNIX Disk I/O

- A disk is a one dimensional array of sectors.
  - 512 bytes/sector typical, but not required.
- Two I/O operations: read+write
  - Sectorrange: First sector + count.
  - RAM must be mapped into kernel.
- I/O request contained in struct buf/bio
- Schedule I/O by calling strategy()
- Completion signaled by biodone() callback.

#### GEOM does what?

- Sits between DEVFS and device-drivers
- Provides framework for:
  - Arbitrary transformations of I/O requests.
  - Collection of statistics.
  - Disksort like optimizations.
  - Automatic configuration
  - Directed configuration.

#### "You are here"



# The GEOM design envelope.

- Modular.
- Freely stackable.
- Auto discovery.
- Directed Configuration.
- POLA
- DWIM
- No unwarranted politics.

#### "Modular"

- You cannot define a new transformation and insert it into Veritas volume manager, AIX LVM, Vinum or RaidFrame.
- They are all monolithic and closed.
  - "A quaint feature from the seventies".

### Freely stackable.

- Put your transformations in the order you like.
  - Mirror ad0 + ad1, partition the result.
  - Partition ad0 and ad1, mirror ad0a+ad1a, ad0b+ad1b, ad0c+ad1c, ad0d+ad1d ...
- Strictly defined interfaces between classes.

#### Auto discovery.

- Classes allowed to "automagically" respond to detectable clues.
  - Typically reacts to on-disk meta-data.
    - MBR, disklabel etc
  - Could also be other types of stimuli.

# Directed configuration

- "root is always right"
  - -- the kernel.
- Root should always be able to say "You may think it sounds stupid, but I want it!"
- ...as long as it does not compromise kernel integrity.

#### **POLA**

- Principle of Least Astonishment.
- Pola is <u>not</u> the same as "retain 1.0 compatibility at any cost!"
- Very hard to describe or codify, but intuitively obvious when violated.

#### **DWIM**

- <u>Do What I Mean.</u>
- Have sensible defaults.
- Make interfaces versatile but precise.
- Make sure interfaces have the right granularity.
- Be liberal to input, conservative in output.
- And be a total bastard to the programmers.

# Say again?

- I detest people who take short-cuts rather than do things right, because they leave shit for the rest of us to clean up.
- GEOM is fascist to prevent certain "obvious" hacks.
  - Try to sleep in the I/O path -> panic.
  - Lots of KASSERTS.
  - Etc.

#### No unwarranted Policies.

- "FreeBSD: tools, not policies".
- We are not in the business of telling people how they should do their work.
- We are in the business of giving them the best tools for their job.
- "UNIX is a tool-chest"

#### No unwarranted Policies.

- Leave maximal flexibility to the admin.
- Don't restrict use based on your:
  - High moral ground posturing
    - "Telnet is insecure, REMOVE IT!"
  - Unfounded theories
    - More or less anything Terry ever said.
  - Weak assumptions
    - "Heck nobody would ever do that!"

# GEOM, the big view.



- "A transformation"
  - The concept of a particular way to modify I/O requests.
    - Partitioning (BSD, MBR, GPT, PC98...).
    - Mirroring
    - Striping
    - RAID-5
    - Integrity checking
    - Redundant path selection.

- "A class"
  - An implementation of a particular transformation.
    - MBR (partitioning)
    - BSD (ditto)
    - Mirroring
    - RAID-5
    - ...

- "A geom" (NB: lower case)
  - An instance of a class.
    - "the MBR which partitions the ad0 device"
    - "the BSD which partitions the ad0s1 device"
    - "the MIRROR which mirrors the ad2 and ad3 devices"

•

- "A Provider"
  - A service point offered by a geom.
  - Corresponds loosely to "/dev entry"
    - ad0
    - ad0s1
    - ad0s1a
    - ad0.ad1.mirror

- "A consumer"
  - The hook which a geom attach to a provider.
  - name-less, but not anonymous.

# GEOM topology.



#### Topology limits:

- A geom can have 0..N consumers
- A geom can have 0..N providers.
- A consumer can be attached to a single provider.
- A provider can have many consumers attached.
- Topology must be a strictly directed graph.
  - No loops allowed.

#### I/O path.

- Requests are contained in "struct bio".
- A request is **not** transitive.
  - Clone it
  - Modify the clone
  - ... and pass the clone down.
- "start" entry point in geom used to schedule requests.
- bio->bio\_done() used to signal completion.

#### I/O path

- Sleeping in I/O path is <u>NOT</u> allowed.
  - Queue the request and use a kthread or taskqueue.
  - ENOMEM handling is automatic
    - Returning a request with ENOMEM triggers retry with automatic backoff.
- Dedicated non-sleepable threads for pushing bios around.

# I/O efficiency.

- Cannot sleep in up/down path
  - Enforced with hidden mutex.
- Don't do CPU heavy tasks in the up/down paths, use separate kthreads or task queue.
- Only one thread for each direction
  - Simplifies locking for classes.
  - Typically use .1% of cpu power.

### I/O locking.

- Mutex on individual bio queues.
- Bio request scheduled on consumer.
  - Fails if not attached <u>and</u> open(ed enough).
- Bio records "from + to".
- Bio reply follows recorded "to->from" path
  - Possible to answer after path has been removed.

# Locking hierarchy

- To initiate I/O request:
  - Must have non-zero access count on consumer.
- To set access count on consumer:
  - Must hold "topology lock"
  - Consumer must be attached to provider.
  - Provider must accept.

# Topology rules

- To attach consumer to provider:
  - Must not create a loop.
- To detach consumer
  - Must have zero access counts.
  - No outstanding I/O requests.

# Topology rules

- To destroy consumer
  - Must not be attached.
- To destroy provider
  - Must not be attached.

# Topology locking.

- The "topology lock"
  - Must be held to change the topology.
  - Must be held during open/close processing.
  - Not needed for I/O processing.
  - Doesn't stop I/O processing.
- Single "giantissimo" lock warranted by low frequency of use.

### Class primitives.

- Create Class
  - Adds class to list of classes.
- Destroy Class
  - Fails if class in use.
- Normally handled by standard GEOM/KLD macros.

#### Geom primitives

- Create geom of specified class.
- Destroy geom
  - Fails if geom has consumers
  - Fails if geom has providers.

# Provider primitives.

- Create provider on specified geom.
- Set provider error code.
  - Specify error code to start/stop all I/O.
- Orphan provider.
  - Tell consumers to bugger off.
- Destroy provider
  - Fails if attached.

### Provider properties

- Name
- Mediasize
  - Total bytes on device
- Sectorsize
  - Size of addressable unit
- Stripesize and Stripoffset
  - Defines optimal request boundaries.

#### Other optional properties

- Can be queried with GET\_ATTR() request.
  - Namespace is string
    - "class::attribute"
    - "GEOM::attribute"
- Examples:
  - GEOM::fwsectors
  - MBR::type
  - BSD::labelsum

## Consumer primitives.

- Create consumer on specified geom.
- Attach consumer to specified provider
- Change access counts of consumer.
  - Fails if not permitted or not attached.
- Detach
  - Fails if non-zero access or I/O counts.
- Destroy
  - Fails if attached

#### Access counts.

- Access is tracked as three reference counts:
  - Read gives read access.
  - Write gives write access.
  - Exclusive prevents others write access.
- Consumer and providers have associated counts.
- Providers count is the sum of all attached consumers counts.

#### How access counts work (1)



### How access counts work (2)



### How access counts work (3)



#### How access counts work (4)



### How access counts work (5)



### How access counts work (6)



### How access counts work (7)



### How access counts work (8)



### How access counts work (9)



#### GEOM ahead of the kernel.

- Kernel didn't used to provide strong access checks at the disk-IO level.
- Primitives insufficient to express R/W/E policy fully.
- File systems sloppy with handling even what is supported.
  - mount r/o => open r/o
  - remount r/w => no reopen to r/w mode.

#### Events and all that.

- GEOM has an internal job-queue for executing auto discovery and other housekeeping.
- Events posted on a queue.
  - Orphan events on dedicated queue.
  - Event queue protected by event mutex.
- Dedicated event thread grabs topology lock, executes event and releases lock.

## Event queue

- Strictly FIFO processing.
  - Orphans before general events.
- Events tagged by identifiers
  - (void \*)
- Events can be cancelled by identifier.
- Once Giant is removed, the event kqueue can become a normal taskqueue function.

#### User land and events.

- All user land operations which need topology lock must wait for empty event queue.
  - open/close/ioctl
- Explicit "process all events" calls may be needed in class code.
- Event queue useful to isolate Giant infected code from Giant free code.

#### "New Class" event.

- Posted when a class is added.
- Results in the class being offered a chance to "taste" all current providers in the system.

#### "New Provider" event.

- Posted when provider is created.
  - All classes gets the offer.
- Posted when a provider write access count goes to zero.
  - Meta data for a class may have been created.
  - Only classes not already attached are offered a chance to taste the provider.

## "Orphan" event..

- Devices disappear without notice.
- That's hardware for you...
- Not nice from a UNIX philosophy.
- But we have to cope...

## "Orphan" event...

- A provider can be "orphaned" by its geom.
  - All future I/O requests fail.
  - All In-transit I/O requests can still complete
    - They shall complete!
  - Consumers get notified.
  - Consumers expected to zero access counts and detach.
  - Only then can the provider be destroyed.

## How orphaning work (1)



# How orphaning work (2)



## How orphaning work (3)



# How orphaning work (4)



# How orphaning work (5)



# How orphaning work (6)



# How orphaning work (7)



## How orphaning work (8)



# How orphaning work (9)



# How orphaning work (10)



# How orphaning work (11)



# How orphaning work (12)



# How orphaning work (13)



# How orphaning work (14)



## How orphaning work (15)

DEV

Detaches consumer and destroys it.

ad0s1a r0w0e0



# How orphaning work (16)

DEV

And things unravel.



# How orphaning work (17)

DEV

And things unravel.



# How orphaning work (18)

DEV

Finally, the provider can be destroyed.

ad0 r0w0e0

**DISK** 

# How orphaning work (19)

DEV

The DEV class calls destroy\_dev() and properly selfdestructs.
Leaving the users to their own devices (Sorry, couldn't resist pun)

# Spoiling

- A new disk arrives: /dev/da0
- A NEW\_PROVIDER event gets posted.
- All classes gets to taste the disk.
- BSD finds a disklabel and attaches.
- User does: dd if=/dev/zero of=/dev/da0
- The disklabel which configured the BSD is gone, and the BSD geom needs to know.

## "Spoiled" event.

- Posted when a provider gets a non-zero write access count.
  - Can change or destroy a class' metadata.
- All attached consumers, except the guilty party, notified.

# Spoiling (1)

- A class which relies on on-disk meta data will set exclusive bit if it is open in any way.
- This prevents opens which could overwrite the meta-data while it is being used.
- Does not solve the problem when the meta data is not actively being used
  - Ie: no partitions on BSD geom open.

# Spoiling (2)

- When a provider is opened for writing first time (write access count goes non-zero):
  - Post spoil event on all attached consumers except the guilty party.
  - Consumers which rely on meta data, are obviously closed (otherwise you couldn't open for writing) and they typically self destruct.

# Spoiling (3)

- When the provider is closed (ie: write access count goes to zero)
  - NEW\_PROVIDER event posted on provider.
  - All classes gets chance to (re)taste and reattach.

Disk device driver calls disk\_create() and the DISK class creates a new geom.



NEW\_PROVIDER event triggers a round of tasting. DEV always grabs. BSD discovers label on disk and grabs.



We open /dev/ad0 for writing



write access count goes non-zero and we spoil the BSD geom.



BSD geom decides to self destruct.



We write something to the device and the DEV is closed again.



A new round of tasting starts And now MBR finds a label.



#### This is why...

- You cannot open /dev/ad0 for writing if any slices or labels are open.
- This is policy in the slicer classes, <u>not</u> in GEOM.
- Each geom/class must decide for itself how to react to spoiling.

## Special GEOM classes.

• There are no special GEOM classes.

#### "different" GEOM classes.

- All GEOM classes are treated the same.
- ... But not all GEOM classes have the same kind of job.
  - "DISK" class talks to disk device drivers.
    - disk\_create(), disk\_destroy() etc.
  - "DEV" class talks to dev\_t/SPECFS/DEVFS.
    - make\_dev(), destroy\_dev() etc.

# The DISK geom class.

- Upper side interface: GEOM
- Lower side interface: "disk minilayer"
  - disk\_create().
    - Do magic necessary for disk device-driver.
    - Create a provider.
  - disk\_destroy().
    - Orphan provider.
    - Do various magic for the disk device-driver.
    - Self-destruct when possible.

# The DEV geom class.

- Lower side interface: geom consumer.
  - Attaches to anything taste presents to it.
- Upper side: disk device-driver.
  - Calls make\_dev() with suitable args.
- When Orphaned:
  - Calls destroy\_dev()
  - Selfdestructs.

### Would it be possible...

- To write a GEOM class to sit on top of the network?
- To give disk device drivers a native GEOM interface instead of using the DISK class?
- To ... ?
- YES, Geom classes are very very general.

# "Slicers" as a concept

- "Slicers" are GEOM classes which partition a device into some number of sub devices.
- Commonality includes:
  - Transformation consists of offset + limit.
  - Refuse overlapping slices from opening.
  - On-the-fly change of slice configuration.

### Trying to raise the bar...

- Use explicit byte-stream decode for on-disk meta data.
  - This gives the geom modules wordsize and endianess agility.
- Put i386 disk in sparc64 and access the partitions.
- Not really that useful until file systems are agile as well.

#### So what does a slicer take?

- Three (or Four) "hard" routines:
  - "modify"
    - Take label image, validate, configure.
  - "taste"
    - Read label image from disk
  - "config"
    - Receive label image from userland.
  - "hotwrite"
    - Intercept label image overwrites.

# Management interface(s).

- GEOM needs to be able to report config to userland.
- Since we don't know what the classes are and what they can do, we cannot know what they would like to report.
- => use extensible format.

#### XML in the KERNEL ???

- No, "XML out of the kernel".
- There is no point in inventing my own hierarchal extensible modular format when there is one with a lot of tools and growing recognition already.
- Generating XML in the kernel is simple:
  - sbufs string buffers with memory management.
  - sprintf.

## Sample XML output

```
critter phk> sysctl -b kern.geom.confxml | head -20
<mesh>
  <class id="0xc03b1200">
    <name>MBREXT</name>
  </class>
  <class id="0xc03b11a0">
    <name>MBR</name>
    <geom id="0xc4042f40">
      <class ref="0xc03b11a0"/>
      <name>ad0</name>
      <rank>2</rank>
      <config>
      </config>
        <consumer id="0xc406b000">
          <geom ref="0xc4042f40"/>
          cprovider ref="0xc4148980"/>
          <mode>r8w8e3</mode>
          <config>
          </config>
        </consumer>
        ovider id="0xc4148800">
```

# Generating XML from a class

- Class implementes "dumpconf" method
- Appends text into provided sbuf.
- Gets called per instance of a class:
  - Once with geom argument only.
  - For every provider with geom & provider arg.
  - For every consumer with geom & consumer arg.

# Sample dumpconf method

```
void
g slice dumpconf(struct sbuf *sb, const char *indent,
    struct g geom *gp, struct g consumer *cp, struct g provider *pp)
        struct g slicer *gsp;
        gsp = gp->softc;
        if (pp != NULL) {
                sbuf printf(sb, "%s<index>%u</index>\n", indent, pp->index);
                sbuf printf(sb, "%s<length>%ju</length>\n",
                    indent, (uintmax t)gsp->slices[pp->index].length);
                sbuf printf(sb, "%s<seclength>%ju</seclength>\n", indent,
                    (uintmax t)gsp->slices[pp->index].length / 512);
                sbuf_printf(sb, "%s<offset>%ju</offset>\n", indent,
                    (uintmax t)gsp->slices[pp->index].offset);
                sbuf printf(sb, "%s<secoffset>%ju</secoffset>\n", indent,
                    (uintmax t)gsp->slices[pp->index].offset / 512);
```

#### Sample class output

```
ovider id="0xc4148800">
 <geom ref="0xc4042f40"/>
 <mode>r8w8e2</mode>
 <name>ad0s1</name>
 <mediasize>40007729664</mediasize>
 <sectorsize>512</sectorsize>
 <config>
    <index>0</index>
    <length>40007729664</length>
    <seclength>78140097</seclength>
    <offset>32256</offset>
    <secoffset>63</secoffset>
    <type>165</type>
 </config>
</provider>
```

# Reading XML from userland

- /usr/src/lib/libexpat
  - Snapshot version of Expat XML library.
- /usr/src/lib/libgeom
  - Contains handy "xml2tree" function which builds c-struct representation.

#### User instruction channel.

- /dev/geom.ctl
  - Prefer device over sysctl because it offers access control mechanisms people can understand.
  - Unified command interface.

### GEOMs OAM api

- "gctl" api in libgeom used to send requests to GEOM classes.
- A request holds any number of parameters, read/only or read/write.
- Error reporting in string form
  - Many error situations are too complex to express with numeric error codes, for some reason I just don't think we can live with ECPARTITIONOVERLAPSOPENPARTITION

#### OAM...

- Accumulative error handling
  - Only need to check error at the very end.
- Please use of text for information
  - Makes it possible to have portable, extensible admin tools learn about a new class.
- Not intended for high frequency use.

#### Gctl\_\*()

```
H = gctl_get_handle();
gctl_ro_param(H, "verb", -1, "destroy geom");
gctl_ro_param(H, "class", -1, "CCD");
sprintf(buf, "ccd%d", ccd);
gctl_ro_param(H, "geom", -1, buf);
errstr = gctl_issue(H);
if (errstr != NULL)
    err(1, "Could not destroy ccd:%s", errstr);
```

### Receiving gctl\_requests

```
static void
g ccd create(struct gctl req *req, struct g class *mp)
        int *unit, *ileave, *nprovider;
        struct provider *pp
        [...]
        g topology assert();
        unit = gctl get paraml(req, "unit", sizeof (*unit));
        ileave = gctl get paraml(req, "ileave", sizeof (*ileave));
        nprovider = gctl get paraml(req, "nprovider", sizeof (*nprovider));
        [ . . . ]
        /* Check all providers are valid */
        for (i = 0; i < *nprovider; i++) {
                sprintf(buf, "provider%d", i);
                pp = gctl get provider(reg, buf);
                if (pp == NULL)
                        return;
```

## Exporting statistics

- Performance statistics are collected on all consumers and all providers.
- Uses updated libdevstat library
  - Export info with shared memory
    - Very fast, <1msec update rates possible.
  - Now also contains info on response time.
- The gstat(8) program presents statistics in curses window.

#### Gstat(8)

```
flag I 500000us sizeof 240
DT: 0.510
L(q)
                           ms/r
      ops/s
               r/s
                     kBps
                                   w/s
                                         kBps
                                                ms/w
                                                       %busy Name
   1
         75
                75
                      149
                            6.8
                                                 0.0
                                                       50.6
                                                            ad0
                      149 6.8
         75
                75
                                                 0.0
                                                       51.0 | ad0s1
                        0.0
                                                 0.0
                                                       0.0
                                                            ad0s1a
                         0.0
                                                 0.0
                                                       0.0 ad0s1b
   0
                            0.0
                                                 0.0
                                                       0.0 | ad0s1c
                            0.0
                                                 0.0
                                                       0.0 ad0s1d
                            0.0
                                                 0.0
                                                       0.0 | ad0s1e
                         0.0
                                                 0.0
                                                       0.0 | ad0s1f
                75
                      149 6.9
                                                 0.0
                                                       51.4 | ad0s1q
                            0.0
                                                 0.0
                                                       0.0
                                                            ad0s1h
                            0.0
                                                 0.0
                                                       0.0
                                                            ad0s1f.bde
  L(q) = length of queue
```

ops/s, r/s, w/s = operations, reads and writes per second kBps = kiloBytes per second ms/r, ms/w = milliseconds per read and write

%busy = % of time with at least one entry in queue

#### Using events

- Says "Please call me from the event queue".
- Use this for doing things which would sleep in the up/down I/O path.
  - Typically if you need the topology lock.
- Or for Giant isolation.

# Debugging GEOM

- Use the XML info
  - Contains everything you may need to know.
- Use the regression tests
  - /usr/src/tools/regression/geom
- Undocumented debugging tools:
  - sysctl -b kern.geom.confdot | dot -Tps > \_.ps
  - gv\_.ps

# Debugging GEOM

- sysctl kern.geom.debugflags=N
  - -N = 1
    - Traces topology related stuff
  - -N=2
    - Traces individual I/O requests (very noisy!)
  - -N=4
    - Traces access count related issues.
  - -N=8
    - Enable sanity checks on topology tree.

#### What then is GEOM?

- GEOM is an entirely new way to think about disk-like storage I/O requests.
- GEOM is very very general compared to what we had before.
  - New possibilities.
  - New problems.
    - What if two providers both want to be "ad0s1"?

#### The End.

- A big thanks to:
  - Robert Watson for finding, taming milking and keeping the paper tiger on its diet.
  - DARPA/SPAWAR for sponsoring this work under contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS research program.
  - All the giants whose shoulders we stand on.
  - FreeBSD developers and users for putting up with me.