GEOM Tutorial

Poul-Henning Kamp

phk@FreeBSD.org

Outline

* Background and analysis.

* The local architectural scenery

* GEOM fundamentals.

* (tea break)

* Slicers (not a word about libdisk!)

e Tales of the unexpected.
e Q/A etc.

UNIX Disk I/0

* A diskis a one dimensional array of sectors.
- 512 bytes/sector typical, but not required.
* Two I/0O operations: read+write

- Sectorrange: First sector + count.

- RAM must be mapped into kernel.
* I/O request contained in struct buf/bio

* Schedule I/0 by calling strategy|()
 Completion signaled by biodone() callback.

GEOM does what ?

e Sits between DEVFS and device-drivers

e Provides framework for:

- Arbitrary transtormations ot I/O requests.
- Collection of statistics.

— Disksort like optimizations.

- Automatic configuration

- Directed configuration.

“You are here”

Userland application

N

Physio() Filesystem
Y
Buffer cache
To DEVES GEOM VM system
looks like a regular /
device dr1ve\DEyFS Disk device drivers use the

disk *() API to interface to
GEOV GEOM

i

Device driver

The GEOM design envelope.

* Modular.

* Freely stackable.

e Auto discovery.

e Directed Configuration.
e POLA

« DWIM

 No unwarranted politics.

“Modular”

* You cannot define a new transformation
and insert it into Veritas volume manager,
AIX LVM, Vinum or RaidFrame.

* They are all monolithic and closed.

- “A quaint feature from the seventies”.

Freely stackable.

* Put your transtormations in the order you
like.

— Mirror adO + adl, partition the result.

- Partition ad0 and ad1, mirror adOa+ad]1a,
adOb+ad1lb, adOc+adlc, adO0d+adld ...

* Strictly defined interfaces between classes.

Auto discovery.

* Classes allowed to “automagically” respond
to detectable clues.

- Typically reacts to on-disk meta-data.
e MBR, disklabel etc
- Could also be other types of stimuli.

Directed configuration

* “root is always right”
-- the kernel.

* Root should always be able to say “You may
think it sounds stupid, but I want it!”

e ...aslong as it does not compromise kernel
integrity.

POLA

* Principle of Least Astonishment.

e Polais not the same as
“retain 1.0 compatibility at any cost!”

* Very hard to describe or codity, but
intuitively obvious when violated.

DWIM

e Do What I Mean.
e Have sensible defaults.
* Make interfaces versatile but precise.

 Make sure interfaces have the right
granularity.

* Be liberal to input, conservative in output.

* And be a total bastard to the programmers.

Say again ?

* [detest people who take short-cuts rather
than do things right, because they leave shit
for the rest of us to clean up.

* GEOM is fascist to prevent certain
“obvious” hacks.

- Try to sleep in the I/O path -> panic.
- Lots of KASSERTS.

— Etc.

No unwarranted Policies.

* “FreeBSD: tools, not policies”.

* We are not in the business of telling people
how they should do their work.

 We are in the business of giving them the
best tools for their job.

e “UNIX is a tool-chest”

No unwarranted Policies.

* Leave maximal flexibility to the admin.

 Don't restrict use based on your:

- High moral ground posturing

* “Telnet is insecure, REMOVE IT!”
- Unfounded theories

* More or less anything Terry ever said.
- Weak assumptions

* “Heck nobody would ever do that!”

GEOM, the big view.

“alien interface”

Open / Close/Ioctl “down” pak ! “up” path
Statistics
Weppelogy i Collection
management

Code.

v !

Topology changes “alien interface”

GEOM terminology.

e “A transformation”

- The concept of a particular way to modify I/0
requests.
* Partitioning (BSD, MBR, GPT, PC98...).
* Mirroring
* Striping
* RAID-5
* Integrity checking
* Redundant path selection.

GEOM terminology.

e “A class”

- An implementation of a particular
transformation.
* MBR (partitioning)
e BSD (ditto)
* Mirroring
e RAID-5

GEOM terminology.

* “Ageom” (NB: lower case)

-~ An instance of a class.

* “the MBR which partitions the ad0 device”
* “the BSD which partitions the ad0Os1 device”

e “the MIRROR which mirrors the ad2 and ad3
devices”

GEOM terminology.

e “A Provider”

- A service point offered by a geom.

- Corresponds loosely to “/dev entry”

e ad0

e adOsl

e adOsla

e ad0.ad1.mirror

GEOM terminology.

e “A consumer”

- The hook which a geom attach to a provider.

- name-less, but not anonymous.

GEOM topology.

’ - G
ﬁ —C

\P/ NO LOOPS!

Topology limits:

* A geom can have 0..N consumers
* A geom can have 0..N providers.

* A consumer can be attached to a single
provider.

* A provider can have many consumers
attached.

* Topology must be a strictly directed graph.

- No loops allowed.

[/0 path.

* Requests are contained in “struct bio”.

* Arequest is not transitive.

- Clone it
- Modity the clone
- ... and pass the clone down.

e “start” entry point in geom used to
schedule requests.

* bio->bio_done() used to signal completion.

[/0 path

* Sleeping in I/0O path is NOT allowed.

- Queue the request and use a kthread or
taskqueue.

- ENOMEM handling is automatic

* Returning a request with ENOMEM triggers retry
with automatic backoft.

* Dedicated non-sleepable threads for
pushing bios around.

[/0 efficiency.

* Cannot sleep in up/down path
— Enforced with hidden mutex.

* Don't do CPU heavy tasks in the up/down
paths, use separate kthreads or task queue.

* Only one thread for each direction

- Simplifies locking for classes.
- Typically use .1% of cpu power.

[/0 locking.

* Mutex on individual bio queues.

* Bio request scheduled on consumer.
- Fails if not attached and open(ed enough).
* Bio records “from + to”.

* Bio reply follows recorded “to->from” path

- Possible to answer after path has been removed.

Locking hierarchy

* To initiate I/O request:
— Must have non-zero access count on consumer.
* To set access count on consumer:

- Must hold “topology lock”
- Consumer must be attached to provider.
- Provider must accept.

Topology rules

* To attach consumer to provider:
- Must not create a loop.
* To detach consumer

- Must have zero access counts.
- No outstanding I/O requests.

Topology rules

* To destroy consumer
- Must not be attached.

* To destroy provider
- Must not be attached.

Topology locking.

* The “topology lock”

- Must be held to change the topology.
- Must be held during open/close processing.

- Not needed for I/O processing.
- Doesn't stop I/0 processing.

* Single “giantissimo” lock warranted by low
frequency of use.

Class primitives.

e Create Class
- Adds class to list of classes.
* Destroy Class

— Fails if class in use.

* Normally handled by standard GEOM/KLD
mMacros.

Geom primitives

* Create geom of specified class.

* Destroy geom

— Fails if geom has consumers

- Fails if geom has providers.

Provider primitives.

* Create provider on specified geom.

e Set provider error code.

- Specity error code to start/stop all I/0.
* Orphan provider.

- Tell consumers to bugger off.
e Destroy provider

- Fails if attached.

Provider properties

e Name

* Mediasize
- Total bytes on device
* Sectorsize
— Size of addressable unit
e Stripesize and Stripoiiset

- Defines optimal request boundaries.

Other optional properties

* Can be queried with GET_ATTR() request.

- Namespace is string

e “class::attribute”
e “GEOM::attribute”

 Examples:

- GEOM::twsectors
- MBR::type
- BSD::labelsum

Consumer primitives.

* Create consumer on specified geom.
e Attach consumer to specitied provider

* Change access counts of consumer.
- Fails if not permitted or not attached.
* Detach
- Falils if non-zero access or I/O counts.
* Destroy
- Fails if attached

Access counts.

e Access is tracked as three reference counts:
- Read gives read access.

— Write gives write access.

- Exclusive prevents others write access.

 Consumer and providers have associated
counts.

e Providers count is the sum of all attached
consumers counts.

How access counts work (1)

- DEV | - DEV | grab topology lock

rOw0e0 rOw0e0
A% s
adOslarOw0e0 adOslarOw0e0

r0w0e0 r0w0e0 rOw0e0
T — v
ad0s1 rOw0e0 ad0s2 rOw0e0
- DEV .~ MBR
rOw0e0 rOw0e0
ad0 rOw0e0

How access counts work (2)

riw0e0 rOw0e0

A% s
adOslarlwOe0 adOslarOw0e0

r0w0e0 r0w0e0 rOw0e0
T — v
ad0s1 rOw0e0 ad0s2 rOw0e0
- DEV .~ MBR
rOw0e0 rOw0e0
ad0 rOw0e0

How access counts work (3)

riw0e0 rOw0e0

a e
adOslarlwOe0 adOsla rOwOe0

r2w0el rOw0e0 rOw0e0
T — v
adOs1 r2w0el ad0s2 rOw0e0
- DEV .~ MBR
rOw0e0 1rOw0e(
ad0 rOw0e0

How access counts work (4)

_DEV | ~ DEV | SUCCESS!
rlw0e0 }PWOGO release topology lock.

adOslarlw0e0 adOslarOwOe0

r2wlel r0w0e0 rOw0e0
T — v
adOs1 r2wo0el ad0s2 rOw0e0
- DEV . MBR
rOw0e0 r3w0e2
ad0 r3w0e2

How access counts work (5)

- DEV | DEV grab topology lock.

riw0e0 rOw0e0

a e
adOslarlw0e0 adOslarOwOe0

r2w0el rOw0e0 rOw0e0
T — v
adOs1 r2w0el ad0s2 rOw0e0
_DEV .~ MBR
rOw0e0 r3w0e?2
adO r3w0e2

How access counts work (6)

- m MBR checks for overlap
riw0e0 ;W © with other open slices.

a
adOslarlwOe0 adOsla rOw0e0

r2zw0el rOw0e0 riwle0
T — v
adOs1 r2w0el ad0s2 rlwle0
_DEV .~ MBR
rOw0e0 r3w0e2
adO r3w0e2

How access counts work (7)

riw0e0 'r/()wOeO release topology lock

a
adOslarlw0Oe0 adOslarOw0e0

r2w0el rOw0e0 riwle0O
T — v
adOs1 r2w0el ad0s2 rlwle0
_DEV .~ MBR
rOw0e0 r4dwle2
adO rdwle2

How access counts work (8)

DEV. - DEV grab topology lock

riw0e0 rOw0e0

a e
adOslarlwOe0 adOsla rOw0e0

r2w0el rOw0e0 riwle0O
T — v
adOs1 r2w0el ad0s2 rlwle0
_DEV .~ MBR
rOw0e0 rdwle2
adO rdwle2

How access counts work (9)

- DEV | - DEV |
riw0e0 rOw0e0
o s

adOslarlw0e0 adOslarOw0e0

r2w0el riwle0 riwle0

ad0s1 r2woel ad0s2 riwle0
- DEV | . MBR |

rOw0e0 rdwle2

¢

adO rdwle2

GEOM ahead of the kernel.

* Kernel didn't used to provide strong access
checks at the disk-10 level.

* Primitives insufficient to express R/W/E
policy tully.

* File systems sloppy with handling even
what is supported.

- mountr/o =>openr/o

- remount r/w => no reopen to r/w mode.

Events and all that.

* GEOM has an internal job-queue for
executing auto discovery and other
housekeeping.

* Events posted on a queue.
- Orphan events on dedicated queue.

- Event queue protected by event mutex.

* Dedicated event thread grabs topology lock,
executes event and releases lock.

Event queue

 Strictly FIFO processing.
- Orphans before general events.
* Events tagged by identifiers
- (void)
* Events can be cancelled by identifier.

* Once Giant is removed, the event kqueue
can become a normal taskqueue function.

User land and events.

e All user land operations which need
topology lock must wait for empty event
queue.

- open/close/ioctl

» Explicit “process all events” calls may be
needed in class code.

 Event queue usetul to isolate Giant infected
code from Giant free code.

“New Class” event.

e Posted when a class is added.

* Results in the class being offered a chance
to “taste” all current providers in the
system.

“New Provider” event.

* Posted when provider is created.
- All classes gets the offer.

* Posted when a provider write access count
goes to zero.

- Meta data for a class may have been created.

- Only classes not already attached are offered a
chance to taste the provider.

“Orphan” event..

* Devices disappear without notice.
 That's hardware for you...
* Not nice from a UNIX philosophy.

 But we have to cope...

“Orphan” event..

* A provider can be “orphaned” by its geom.
— All future I/0 requests fail.

- All In-transit I/0 requests can still complete

* They shall complete!
- Consumers get notified.

- Consumers expected to zero access counts and
detach.

- Only then can the provider be destroyed.

How orphaning work (1)

grab event lock
- DEV | - DEV | orphan provider.
r1w0e0 'r/()wOeO release event lock.

a
adOslarlwO0e0 adOsla rOw0e0

r2w0el rOw0e0 riwle0O
T — v
adOs1 r2w0el ad0s2 rlwle0
_DEV .~ MBR
rOw0e0 rdwle2
adO rdwle2

How orphaning work (2)

- - Consumers gets notified.

riw0e0 rOw0e0

a e
adOslarlwO0e0 adOsla rOw0e0

r2w0el rOw0e0 riwle0O
T — v
adOs1 r2w0el ad0s2 rlwle0
_DEV .~ MBR
rOow0e0 rdwle2
adO rdwle2

How orphaning work (3)

- - Idle consumer decides

rlw0e0 'r/()wOeO to selfdestruct.

a
adOslarlwO0e0 adOsla rOw0e0

r2w0el rOw0e0 riwle0O
T — v
adOs1 r2w0el ad0s2 rlwle0
_DEV .~ MBR
rOow0e0 rdwle2
adO rdwle2

How orphaning work (4)

riw0e0 rOw0e0

a e
adOslarlwO0e0 adOsla rOw0e0

r2wlel rOw0e0 rlwle0
T — v
adOs1 r2w0el ad0s2 rlwle0
r4“i1 e2
adO rdwle2

How orphaning work (5)

Consumers gets notified.
OwO0e0 : :
rlwQel ;W © MBR Orphans it's providers.

a
adOslarlwO0e0 adOsla rOw0e0

r2wlel rOw0e0 rlwle0
T — v
adOs1 r2w0el ad0s2 rlwle0
r4vxi1 e2
adO rdwle2

How orphaning work (6)

—m—— r——— Idle DEV self destructs.
a e
adOslarlwO0e0 adOsla rOw0e0
I‘ZWo{A riwle0
v
adOs1 r2w0el ad0s2 rlwle0
r4vxi1 e2
adO rdwle2

How orphaning work (7)

—m—— r——— Busy DEV closes
a e
adOsla rlw0e0 adOsla rOw0e0
~____BSD | _DEV
rZWo{A row0e0
v
adOs1 r2w0el ad0s2 rOw0e0
.~ MBR
]??)V\i()ez
adO r3w0e2

How orphaning work (8)

—m—— r——— Busy DEV detaches
a e
adOsla rlw0e0 adOsla rOw0e0
.~ BSD _DEV
I‘ZWo{A row0e0
adOs1 r2w0el ad0s2 rOw0e0
. MBR
]??)V\i()ez
adO r3w0e2

How orphaning work (9)

- DEV | m and destroys consumer.
erQfO L Provider destroyed.
ad0sla rlw0e0 adOsla rOw0e0
.~ BSD - DEV |
rZWO{A
adOs1 r2w0el
.~ MBR
]??)V\i()ez
ado r3w0e2

How orphaning work (10)

r1w0e0 rOW0e0 More about the DEV late
a »
ad0sla rlw0e0 adOsla rOw0e0
.~ BSD
rZWO&A
adOs1 r2w0el
.~ MBR
]??)V\i()ez
ado r3w0e2

How orphaning work (11)

- DEV | m BSD geom decides to
erQSO o orphan its providers.
adOsla rlw0e0 adOsla rOw0e0
r2w0{A
adOs1 r2w0el
r4“i1 e2
adO0 rdwle2

How orphaning work (12)

" DEV | Idle consumer explodes
rlw0e0 and empty provider can
< be destroyed.
adOsla rlw0e0
rZWO{A
adOs1 r2w0el
r4“i1 e2
adO rdwle?2

How orphaning work (13)

- DEV | Busy “DEV” gets notified
riw0e0
4

adOslarlw0e0

r2w0el

T

adOs1 r2w0el

rqwle2

¢

adO rdwle2

How orphaning work (14)

- /.eros access count

rOw0e0
a
adOsla rOw0e0

rOw0e0

T

ad0s1 rOw0e0

rOw0e0

¢

ad0 rOw0e0

How orphaning work (15)

- Detaches consumer
and destroys it.

adOsla rOw0e0

rOw0e0

T

ad0s1 rOw0e0

rOw0e0

¢

ad0 rOw0e0

How orphaning work (16)

~ DEV | And things unravel.
~__BSD
rOWO&A
ad0s1 rOw0e0
. MBR
rOV\iOeO
ad0 rOw0e0

How orphaning work (17)

~ DEV | And things unravel.

ad0s1 rOw0e0

rOw0e0

¢

ad0 rOw0e0

How orphaning work (18)

- DEV | Finally, the provider
can be destroyed.

ad0 row0e0

How orphaning work (19)

DEV

The DEV class calls destroy_dev/()

and properly selfdestructs.

Leaving the users to their own devices
(Sorry, couldn't resist pun)

Spoiling

* A new disk arrives: /dev/da0

* ANEW_PROVIDER event gets posted.

» All classes gets to taste the disk.

 BSD finds a disklabel and attaches.

* User does: dd if=/dev/zero of=/dev/da0

* The disklabel which configured the BSD is
gone, and the BSD geom needs to know.

“Spoiled” event.

* Posted when a provider gets a non-zero
write access count.

- Can change or destroy a class' metadata.

e All attached consumers, except the guilty
party, notified.

Spoiling (1)

e A class which relies on on-disk meta data
will set exclusive bit if it is open in any way.

* This prevents opens which could overwrite
the meta-data while it is being used.

* Does not solve the problem when the meta
data is not actively being used

- le: no partitions on BSD geom open.

Spoiling (2)

* When a provider is opened for writing first
time (write access count goes non-zero):

- Post spoil event on all attached consumers
except the guilty party.

- Consumers which rely on meta data, are
obviously closed (otherwise you couldn't open
for writing) and they typically self destruct.

Spoiling (3)

* When the provider is closed (ie: write access
count goes to zero)

- NEW_PROVIDER event posted on provider.
— All classes gets chance to (re)taste and reattach.

Spoiling Cartoons

Disk device driver calls disk_create()
and the DISK class creates a new geom.

ad0 rOw0e0

Spoiling Cartoons

NEW_PROVIDER event triggers
a round of tasting. DEV always grabs.
BSD discovers label on disk and grabs.

Some stuff up here

/

rOw0e0 rOw0e0

N

ad0 rOw0e0

Spoiling Cartoons

We open /dev/ad0 tor writing

Some stuff up here

/

rlwle(rOw0e0

N

adOrlwle0

Spoiling Cartoons

write access count goes non-zero
and we spoil the BSD geom.

Some stuff up here

/

rlwle(rOw0e0

N

adOrlwle0

Spoiling Cartoons

BSD geom decides to
self destruct.

riwle0

N

adOrlwle0

Spoiling Cartoons

We write something to the
device and the DEV is closed again.

rOw0e0

N

ad0 rOw0e0

Spoiling Cartoons

A new round of tasting starts
And now MBR finds a label.

Some stuff up here

/

rOw0e0 rOwQ0e0

N

ad0 rOw0e0

This is why...

* You cannot open /dev/adO0 for writing if any
slices or labels are open.

e This is policy in the slicer classes, not in
GEOM.

 Each geom/class must decide for itselt how
to react to spoiling,.

Special GEOM classes.

* There are no special GEOM classes.

“different” GEOM classes.

e All GEOM classes are treated the same.

e ..But not all GEOM classes have the same
kind of job.

- “DISK” class talks to disk device drivers.

* disk_create(), disk_destroy() etc.
- “DEV” class talks to dev_t/SPECFS/DEVES.

* make_dev(), destroy_dev() etc.

The DISK geom class.

 Upper side interface: GEOM

* Lower side interface: “disk minilayer”

- disk_create().
* Do magic necessary for disk device-driver.
* Create a provider.

- disk_destroy().
* Orphan provider.

* Do various magic for the disk device-driver.
* Self-destruct when possible.

The DEV geom class.

* Lower side interface: geom consumer.
- Attaches to anything taste presents to it.
 Upper side: disk device-driver.
— Calls make_dev() with suitable args.
* When Orphaned:

— Calls destroy_dev()
- Selfdestructs.

Would it be possible...

* To write a GEOM class to sit on top of the
network ?

* To give disk device drivers a native GEOM
interface instead of using the DISK class ?

e To...?

* YES, Geom classes are very very general.

“Slicers” as a concept

e “Slicers” are GEOM classes which partition
a device into some number of sub devices.
e Commonality includes:

- Transformation consists of offset + limit.
- Refuse overlapping slices from opening.
- On-the-1ly change of slice configuration.

Trying to raise the bar...

* Use explicit byte-stream decode for on-disk
meta data.

- This gives the geom modules wordsize and
endianess agility.

* Puti386 disk in sparc64 and access the
partitions.

* Not really that useful until file systems are
agile as well.

So what does a slicer take ?

e Three (or Four) “hard” routines:
- “modity”

» Take label image, validate, configure.
- “taste”

* Read label image from disk
- “config”

* Receive label image from userland.
- “hotwrite”

* Intercept label image overwrites.

Management interface(s).

* GEOM needs to be able to report contig to
userland.

* Since we don't know what the classes are
and what they can do, we cannot know
what they would like to report.

e —> use extensible format.

XML in the KERNEL ???

e No, “XML out of the kernel”.

* There is no point in inventing my own
hierarchal extensible modular format when
there is one with a lot of tools and growing
recognition already.

* Generating XML in the kernel is simple:

- sbufs - string butfers with memory management.

- sprintt.

Sample XML output

critter phk> sysctl -b kern.geomconfxm | head -20
<nmesh>
<cl ass i1 d="0xc03b1200" >
<nane>MBREXT</ nane>
</ cl ass>
<cl ass 1d="0xc03bll1la0">
<nane>MBR</ nane>
<geom i d="0xc4042f 40" >
<cl ass ref="0xc03b11a0"/ >
<nanme>adO0</ nane>
<rank>2</rank>
<confi g>
</ confi g>
<consuner id="0xc406b000" >
<geom r ef =" 0xc4042f 40"/ >
<provi der ref="0xc4148980"/ >
<node>r 8w8e3</ node>
<confi g>
</ config>
</ consuner >
<provider id="0xc4148800">

Generating XML from a class

* Class implementes “dumpcont” method
* Appends text into provided sbut.

* Gets called per instance of a class:
- Once with geom argument only.
- For every provider with geom & provider arg.
- For every consumer with geom & consumer arg.

Sample dumpcont method

voi d
g_slice_dunpconf(struct sbuf *sb, const char *indent,

struct g_geom *gp, struct g _consuner *cp, struct g _provider *pp)
{

struct g_slicer *gsp;
gsp = gp->softc;

I f (pp !'= NULL) {
sbuf _printf(sb, "%<index>%u</index>\n", indent, pp->index);
sbuf _printf(sb, "%<length>% u</I|ength>\n",

i ndent, (uintmax_t)gsp->slices|[pp->index].Iength);
sbuf _printf(sb, "%<secl engt h>% u</secl ength>\n", indent,
(ui ntmax_t) gsp->slices[pp->index].length / 512);

sbuf _printf(sb, "%s<offset>% u</offset>\n", indent,
(ui nt max_t) gsp->slices[pp->i ndex].offset);

sbuf _printf(sb, "%<secoffset>% u</secoffset>\n", indent,
(ui ntmax_t) gsp->slices[pp->index].offset / 512);

Sample class output

<provi der id="0xc4148800">
<geom r ef =" 0xc4042f 40"/ >
<node>r 8wB8e2</ node>
<nane>ad0s1</ nane>
<nedi asi ze>40007729664</ nedi asi ze>
<sectorsi ze>512</ sectorsi ze>
<config>
<I ndex>0</1 ndex>
<| engt h>40007729664</ | engt h>
<secl engt h>78140097</ secl engt h>
<of f set >32256</ of f set >
<secof f set >63</ secof f set >
<t ype>165</type>
</ config>
</ provi der >

Reading XML from userland

e /usr/src/lib/libexpat
- Snapshot version of Expat XML library.
e /usr/src/lib/libgeom

- Contains handy “xml2tree” function which
builds c-struct representation.

User instruction channel.

e /dev/geom.ctl

- Prefer device over sysctl because it offers access
control mechanisms people can understand.

-~ Unified command interface.

GEOMs OAM api

e “gctl” api in libgeom used to send requests
to GEOM classes.

* Arequest holds any number of parameters,
read/only or read/write.

e Error reporting in string form

- Many error situations are too complex to express
with numeric error codes, for some reason I just

don't think we can live with
ECPARTITIONOVERLAPSOPENPARTITION

OAM...

 Accumulative error handling
- Only need to check error at the very end.
* Please use of text for information

- Makes it possible to have portable, extensible
admin tools learn about a new class.

* Not intended for high frequency use.

Gcetl *()

H = gctl _get handl e();
gctl _ro _paran(H, “verb”, -1, “destroy geoni);
gctl _ro param(H “class”, -1, “CCD");
sprintf(buf, “ccd¥%”, ccd);
gctl _ro paran(H “geont, -1, buf);
errstr = gctl _1ssue(H);
I f (errstr !'= NULL)
err(1l, “Could not destroy ccd: %", errstr);

Receivng gctl_ requests

static void
g_ccd create(struct gctl _req *req, struct g _class *np)

{

int *unit, *ileave, *nprovider;
struct provider *pp

[...]

g_t opol ogy_assert();
unit = gctl _get param (req, "unit", sizeof (*unit));
| | eave = gctl _get param (req, "ileave", sizeof (*ileave));

nprovider = gctl _get param (req, "nprovider", sizeof (*nprovider));

[...]

/* Check all providers are valid */
for (i =0; i < *nprovider; i++) {
sprintf(buf, "provider%", i);
pp = gctl _get provider(req, buf);
i f (pp == NULL)
return;

Exporting statistics

e Performance statistics are collected on all
consumers and all providers.

* Uses updated libdevstat library

- Export info with shared memory
* Very fast, <Imsec update rates possible.
- Now also contains info on response time.

* The gstat(8) program presents statistics in
curses window.

Gstat(8)

DT: 0.510 flag_ | 500000us sizeof 240 i -1
L(gq) ops/s r/s kBps ne/ r w's kBps ms/w %Husy
1 75 75 149 6.8 0 0 0.0 50. 6|
1 75 75 149 6.8 0 0 0.0 51. 0|
0 0 0 0 0.0 0 0 0.0 0. 0]
0 0 0 0 0.0 0 0 0.0 0. 0]
0 0 0 0 0.0 0 0 0.0 0. 0|
0 0 0 0 0.0 0 0 0.0 0. 0]
0 0 0 0 0.0 0 0 0.0 0. O]
0 0 0 0 0.0 0 0 0.0 0. 0|
1 75 75 149 6.9 0 0 0.0 51. 4|
0 0 0 0 0.0 0 0 0.0 0. 0|
0 0 0.0 0 0 0.0 0.0
L?q) =length of queue |

Nanme
ado
adOs1
adOsla
adOs1b
adOsl1c
adOs1d
adOsle
adOs 1f
adOslg
adOs1lh
adOs1f . bde

ops/s, r/s, w/s = operations, reads and writes per second

kBps = kiloBytes per second
ms/r, ms/w = milliseconds per read and write
%busy = % of time with at least one entry in queue

Using events

* Says “Please call me from the event queue”.

* Use this for doing things which would sleep
in the up/down I/0 path.

- Typically if you need the topology lock.
* Or for Giant isolation.

Debugging GEOM

e Use the XML info

- Contains everything you may need to know.
* Use the regression tests

— [usr/src/tools/regression/geom
* Undocumented debugging tools:

- sysctl -b kern.geom.confdot | dot -Tps > _.ps

- 8v_-PS

Debugging GEOM

* sysctl kern.geom.debugtlags=N
- N=1
* Traces topology related stuff
- N=2
* Traces individual I/O requests (very noisy!)
- N=4
* Traces access count related issues.
- N=8

* Enable sanity checks on topology tree.

What then is GEOM ?

* GEOM is an entirely new way to think
about disk-like storage I/0 requests.

* GEOM is very very very general compared
to what we had before.

- New possibilities.
- New problems.
 What if two providers both want to be “ad0s1” ?

The End.

* A bigthanks to:

- Robert Watson for finding, taming milking and
keeping the paper tiger on its diet.

- DARPA/SPAWAR for sponsoring this work under
contract N66001-01-C-8035 ("CBOSS"), as part
of the DARPA CHATS research program.

- All the giants whose shoulders we stand on.

- FreeBSD developers and users for putting up
with me.

