GEOM

Disk handling in FreeBSD 5.x

Poul-Henning Kamp

<phk@FreeBSD.org>
What is “a disk”?

- In UNIX “a disk” is an array of fixed size sectors.
- Sector size is typically 512 bytes.
- Device driver implements two simple operations:
 - read(void *buffer, unsigned sector, unsigned count)
 - write(void *buffer, unsigned sector, unsigned count)
Complications...

- Multiple operating systems on a disk.
- Multiple filesystems on a disk.
- Solution: “Disk partitioning”
 - “lets just hack it into the disk driver”
 - Disk driver pretends to be multiple disks
 - No change in the rest of the kernel.
More complications...

- Striping, Mirror & RAID
- “I guess we'll make it a pseudo device driver...”
 - Pseudo device driver implements a disk device.
 - Requests are “fixed up” and sent to the “real” disk.
Code structure

Physio

Buf-cache

Cdevsw[]

Partitioning

Device driver

Disk

CCD driver
Erhmm...

- Multiple disklabel formats
 - BSD, MBR, GPT, SUN, PC98, MAC (...)
- Reading “alien disks”
 - MAC format on a PC ?
 - PC98 format on a Sun ?
- Increasingly complex for each new architecture we add.
eehhhhhh...

- Disk encryption
- Volume managers
 - RaidFrame, vinum etc.
- Volume labels
- ... and a lot of other really neat ideas.
The final straw...

- Disks which come and go.
 - It used to be that the disk you had at boot would stick around, and no new disks would appear.
- FibreChannel, SAN, RAID devices
 - “disks” are really software abstractions.
- USB, Firewire
 - Cameras, iPods, dongles, flash keys &c &c
GEOM

• GEOM is a framework for classes which perform transformations on disk I/O.

• Extensible:
 – New classes can be loaded on the fly

• Apolitical:
 – Classes can stack in whatever order they want

• General:
 – Any sort of transformation is legal.
Geom is also...

• Backwards compatible.
 – To the extent possible & sensible.

• Intuitively obvious to the casual user
 – He doesn't have to do or know anything.

• Confusing the heck out of the old guard
 – It lacks old quirks and desupports hacks.
Plug and play...

Entries in /dev

- Crypt
 - Apple
 - Mirror
 - Da0
 - Da1
 - BSD
 - MBR
 - Ad0
 - Ad2
 - Stripe
In a picture...
Data structures in GEOM

- A “CLASS” implements a transformation
 - BSD labels, Mirroring, Encryption, RAID-5
- A “GEOM” is an instance of a class
 - “the BSD label on disk da0”
- A “PROVIDER” is a “disk” offered by a GEOM
- A “CONSUMER” attaches geom to a provider.
GEOM on my laptop

box: geom
oval: consumer
hexagonal: provider

Note that “DEV” attaches to all providers so that all “disks” are available from /dev/mumble.
How is GEOM configured?

- Autoconfiguration through “taste” mechanism
 - When a provider is created, all classes are polled.
 - The class can probe the provider for magic bits.

- Configuration from userland
 - “Stripe these two providers”
 - “Start encryption on this provider”
 - Generic API ("OaM") for issuing requests.
Reporting state from GEOM

- Configuration/status exported in XML
 - Standard
 - General
 - Lots of tools
 - Extensible

 - Important that new classes can be implemented without requiring recompilation of existing code.
Statistics from GEOM

- Exported in shared memory
 - Fast, Low overhead

- Uses improved devstat API:
 - Transactions per action (Read/Write/Delete)
 - Bytes per action (Read/Write/Delete)
 - Queue length, busy time, service time
 - Collected for all providers and consumers
Gstat(8) utility

<table>
<thead>
<tr>
<th>L(q)</th>
<th>ops/s</th>
<th>r/s</th>
<th>kBps</th>
<th>ms/r</th>
<th>w/s</th>
<th>kBps</th>
<th>ms/w</th>
<th>%busy</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>ad0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>ad0s1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>ad0s1a</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>ad0s1b</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>ad0s1c</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>ad0s1d</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>ad0s1e</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>ad0s1f</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>ad0s1g</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>ad0s1h</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>ad0s1f.bde</td>
</tr>
</tbody>
</table>
Old tricks

• Geom can:
 – Interpret MBR partitioning,
 – Interpret BSD partitioning.
 – CCD striping/mirroring
 – MD ram/swap disks.

• What's missing:
 – Vinum
 – A few strange ways to shoot your own feet.
New tricks

• Interpret new architectures disk-slicing:
 – GPT format for Itanic/IA64
 – Apple format for Macintosh
 – Solaris labels for sparc64
 – PC98 labels now actually works.

• These works on all architectures.
 – Plug your Solaris disk into your sparc64
 – Filesystems needs to learn about LE/BE.
Vol_FFS

- Put a label on your filesystem:
 - `tunefs -L home /dev/ad0s1e`
- Mount it by name:
 - `mount /dev/vol/home /home`
- Also works when you move your disk.
- FAT labels and ISO9660 labels underway.
GeomGate

• Allows you to implement a disk device in userland.

• Sample application implements network disk.
 – Serious alternative to NFS

• Many other cool uses.
 – iSCSI prototype anyone?

• Owner: pawel@
Geom/Vinum

- Lukas is working on this.
- I believe he is currently reimplementing rather than porting.
- Not sure what current status is.
RAID3

- Faster than RAID5
- Larger sectorsize.
- Restricted to 2^n data disks (1, 2, 4, 8 ...)
- Unrestricted number of ECC disks.
- 8+3 gives 4K sectorsize.
Other stuff

- geom_stripe
- geom_concat
- Demo classes:
 - AES
 - MIRROR
 - FOX (multipath)
People & Politics

- Mailing list:
 - Geom@

- I defend the infrastructure from hacks.
 - You will have to show that you cannot possibly do what you want before you get a change past me.

- You can do anything you want in the classes you write.