
1

The FreeBSD Project: A Replication Case Study of
Open Source Development

Trung T. Dinh-Trong and James M. Bieman, Senior Member, IEEE
Software Assurance Laboratory
Computer Science Department

Colorado State University
Fort Collins, CO 80523 USA�

trungdt,bieman � @cs.colostate.edu

Abstract— Case studies can help to validate claims that open
source software development produces higher quality software
at lower cost than traditional commercial development. One
problem inherent in case studies is external validity — we do
not know whether or not results from one case study apply to
another development project. We gain or lose confidence in case
study results when similar case studies are conducted on other
projects. This case study of the FreeBSD project, a long-lived
open source project, provides further understanding of open
source development. The paper details a method for mining
repositories and querying project participants to retrieve key
process information. The FreeBSD development process is fairly
well-defined with proscribed methods for determining developer
responsibilities, dealing with enhancements and defects, and for
managing releases. Compared to the Apache project, FreeBSD
uses (1) a smaller set of core developers — developers who control
the code base — that implement a smaller percentage of the
system, (2) a larger set of top developers to implement 80% of
the system, and (3) a more well-defined testing process. FreeBSD
and Apache have a similar ratio of core developers to people
involved in adapting and debugging the system, and people who
report problems. Both systems have similar defect densities, and
the developers are also users in both systems.

I. INTRODUCTION

Both the trade press and researchers have examined open
source software (OSS) development [3, 4, 12, 13]. The key
attribute of OSS development is unique in that these systems
are developed by a large number of volunteers. However, some
OSS projects are supported by companies with paid partici-
pants, in addition to many volunteers. Unlike most commercial
development, project participants have the freedom to work
on any part of the project. There are no assignments and
deadlines. In general, developers do not create a system-level
design, a project plan, or lists of deliverables.

Proponents of OSS development claim that the quality of
OSS development is equivalent or even superior to traditional
commercial development and “many companies are drawn by
the low cost and high quality of open source software” [21].
Claimed advantages of OSS development tend to revolve
around the notion of “freedom” — anybody can have a copy of
the program and can contribute to the improvement of the sys-
tem [9,14,25,26], so that OSS development “directly leads to
more robust software and more diverse business models” [29].
Since everybody can access and review anybody else’s work,
developers can learn from each other and improve their overall

software development skill [14]. Also, OSS developers can
work without interference and in their own time, resulting
in great creativity [21]. We find many claims that OSS is
developed faster, cheaper, and the resulting systems are more
reliable [6, 9, 14, 17, 19,24, 26,29].

Others challenge the value of OSS, and question its long
term success. Possible weaknesses of OSS development in-
clude a lack of a formal process [27], poor design and archi-
tecture [1, 21], and development tools (such as CVS) that are
not comparable to those used in commercial development [27].
Messerchmitt [15] argues that OSS development will not be
effective for software systems with a majority of the users that
are not programmers. He explains that, since the developers of
such systems are not users, the developers will not understand
the users’ needs, and OSS development mechanisms lose their
advantages.

Although OSS development has been investigated, only a
few studies are accompanied by empirical evidence. In one
empirical study, Schach et al. examine 365 versions of the
Linux kernel and report that the kernel size, in lines of code,
has increased linearly with the version number, while the num-
ber of common couplings has increased exponentially [25].
These results suggest that Linux will become difficult to
maintain, unless it is restructured.

Godfrey and Tu also studied the evolution of Linux by
examining 96 versions of the kernel [9]. They found that
although Linux is very large (over two millions lines of code),
it has continued to grow at a “super-linear” rate for several
years. Given that the growth of large commercial systems tends
to slow down when systems become larger, Godfrey and Tu’s
results suggest that OSS systems have a growth rate that is
much greater than that of traditional systems.

Mockus et al. propose that key requirements for the success
of an OSS project can be expressed in seven hypotheses [17].
These hypotheses were first developed through an empirical
study of the Apache project, which is describe by Mockus et al.
as a pure OSS project — a project without major commercial
support. After conducting the second study on a larger project,
Mozilla, which is supported by a company, Netscape, the
authors refined the hypotheses.

One or two case studies cannot conclusively determine
the nature of OSS development. There are just too many
differences between application domains, project participants,



project support, and project lifespan. Understanding the nature
of a software process such as OSS development will require
many case studies. Our objective is to obtain further evidence
to help determine whether or not the hypotheses represent
general rules by examining other open source systems.

Our goal is to identify (1) the common characteristics in
the development processes of successful OSS projects and
(2) the quality of software that was produced using these
processes. Thus, we repeated the Mockus et al. study on a
different OSS development project [2], the FreeBSD project,
an open-source version of the Unix operating system. We
selected the Mockus et al. study for replication because it
addresses both the requirements of success in an OSS project
and the quality of an OSS software product. Furthermore,
Mockus et al. measure product defect density, an external
software quality attribute. In contrast, other empirical studies
of OSS development measure the rates of code growth [9]
and the degree of common coupling [25], which are internal
quality attributes. Ultimately, external quality attributes are
most important as these are what users actually observe.

FreeBSD was selected for this study because it is a “suc-
cessful” OSS project. FreeBSD is well-known — in July
2003 FreeBSD was used in almost 2 millions web sites with
nearly 4 million host names [18]. The project website shows
a list of about 100 software vendors who offer commercial
products and/or services for FreeBSD. The FreeBSD devel-
opment process is well defined, well documented and easy
to access. Information concerning the FreeBSD development
process is readily available through an email archive, a bug
database, and a CVS repository. Moreover, FreeBSD is similar
to Apache and Mozilla in technical complexity, size of user
community, and continuing success. Thus, one would expect
the hypotheses developed in the Mockus et al. study to apply
to the FreeBSD project as well, if they are, in fact, accurate.

FreeBSD is mature and has been active since 1993. It has
a longer history than either Apache or Mozilla. The long
history allowed us to examine project activities over a nine
year period, compared to the three year period of the Apache
project studied by Mockus et al.

We were able to assess five of the seven hypotheses posed
by Mockus et al. Our results support three of the hypotheses
and suggest revisions to the others. Our data also supports
stronger conclusions about the reliability of OSS. Mockus et
al. suggest that the defect densities in OSS releases are lower
than that of feature-tested commercial code. However, they did
not find such an improvement in post-release defect densities.
Our study finds that both feature-tested and post-release defect
densities of FreeBSD are equivalent to that of the commercial
software systems.

In this paper, we extend the results of our prior case
study [2]. An analysis of top developers who contribute more
than 80% of the code base reveals differences between the
FreeBSD project and Apache. In particular, we compare each
three year period of the FreeBSD project to the three years of
Apache project data reported by Mockus et al. and find notable
differences. A reexamination of the FreeBSD data allowed
us to recompute data on defects to improve accuracy; we
now include only confirmed code defects in the analysis. The

updated analysis allowed us to proposed additional revisions
to the hypotheses. We also provide a detailed description of
the research tools that we used to extract data from the open
source archives.

II. THE HYPOTHESES

The objective of the Mockus et al. case studies of the
Mozilla and Apache projects was to understand the processes
that are used to develop successful OSS and to compare
their effectiveness with that of commercial development [17].
Mockus et al. found that the Apache project was managed
by an informal organization consisted entirely of volunteers.
Every Apache developer had at least one other job, so that they
could not work full-time on the project. On the other hand,
the Mozilla project was managed by a commercial company,
Netscape, and some of the developers worked on the project
full-time and for pay. Nevertheless, the processes used in these
two projects had many traits in common. The identification of
these common traits led to seven hypotheses about successful
OSS development:
H1: “Open source developments will have a core of de-

velopers who control the code base, and will create
approximately 80% or more of the new functionality.
If this core group uses only informal ad hoc means of
coordinating their work, the group will be no larger than
10 to 15 people.”

H2: “If a project is so large that more than 10 to 15 people
are required to complete 80% of the code in the desired
time frame, then other mechanisms, rather than just
informal ad hoc arrangements, will be required in order
to coordinate the work. These mechanisms may include
one or more of the following: explicit development pro-
cesses, individual or group code ownership, and required
inspections.”

H3: “In successful open source developments, a group larger
by an order of magnitude than the core will repair defects,
and a yet larger group (by another order of magnitude)
will report problems.”

H4: “Open source developments that have a strong core of de-
velopers but never achieve large numbers of contributors
beyond that core will be able to create new functionality
but will fail because of a lack of resources devoted to
finding and repairing defects.”

H5 “Defect density in open source releases will generally be
lower than commercial code that has only been feature-
tested, that is, received a comparable level of testing.”

H6: “In successful open source developments, the developers
will also be users of the software.”

H7: “OSS developments exhibit very rapid responses to cus-
tomer problems.”

III. STUDY METHOD

A. Research Questions

Mockus et al. [17] answered the following questions about
the Mozilla and Apache and their development processes:

1) “What were the processes used to develop Apache and
Mozilla?”

2



2) “How many people wrote code for new functionality?
How many people reported problems? How many people
repaired defects?”

3) “Were these functions carried out by distinct groups of
people, that is, did people primarily assume a single
role? Did large numbers of people participate somewhat
equally in these activities, or did a small number of
people do most of the work?”

4) “Where did the code contributors work in the code?
Was strict code ownership enforced on a file or module
level?”

5) “What is the defect density of Apache and Mozilla
code?”

6) “How long did it take to resolve problems? Were high
priority problems resolved faster than low priority prob-
lems? Has resolution interval decreased over time?”

We sought answers to the same questions concerning the
FreeBSD project. Out of these six questions, we obtained
data to answer the first five. To answer the questions about
the development process, we studied the documents provided
in the FreeBSD project website [23]. To help answer our
questions, one member of the Core Team (this term is used in
FreeBSD to refer to the group of developers that control the
code base) provided us a hidden Web address of the “FreeBSD
internal pages” (it is hidden in the sense that we cannot find
any way to navigate to this page from the FreeBSD home
page). The FreeBSD internal pages provided guidelines and
requirements for the FreeBSD committers. In the FreeBSD
project, committers play a role that is similar to developers
in the Mozilla and Apache projects. In addition, committers
may be elected to the Core Team. We also sent each member
of the current (at the time) nine Core Team members a set of
questions, which are displayed in Figure 1. Four Core Team
members responded with their answers.

After developing a draft description of the FreeBSD de-
velopment process, we sent the description to the Core Team
members and GNATS Administrator to verify the accuracy
of our account. We received suggestions for minor revisions,
which we used to improve the accuracy of the description.

B. Data Sources

In order to answer the quantitative research questions at the
beginning of Section III-A (questions one through four), we
obtained the necessary data from the project CVS repository,
the bug report database, and the email archive. The CVS repos-
itory contains all of the code and related documentation that is
committed to the project from 1993 until the present. The bug
report database contains information describing all reported
problems, as well as the status (such as fixed, under test, or
open) of each problem. Each bug report is called a PR, and
assigned a reference number. The email archive contains every
email message exchanged between the developers since 1994.
Due to the nature of open source software, the locations of the
developers are distributed world wide, and they rarely meet
with each other. Developers generally exchange information
about the project via email. According to Mockus et al. [17],
email archives record all information about an OSS project.

1) How many roles are involved in coding (for example,
changing .c and .h files)? (I know of three roles:
“developers” (AKA “committers”), “core develop-
ers” and “Release Engineer team”.)

2) How does one become a “developer” or “commit-
ter”?

3) How does one become a “core developer”? When
and how do you vote for new developers?

4) How does a normal person contribute code? Does
he/she need to submit his/her code to a committer?

5) How does the Release Engineering Team check the
code?

6) How does a “committer” decide to commit a new
piece of code to the Current code base? How does
he decide that this code is stable enough to put into
Stable code base?

7) What is the difference between the role of a “devel-
oper” and a “core developer”? What privileges does
a “core developer” have that a “developer” does not
have?

8) How does one decide what to do next when fixing a
bug and when adding new functionality?

Fig. 1. Questions sent to each of the FreeBSD Core Team members.

However, the main disadvantage of using email archives as a
primary source for information is that the format is usually
informal.

1) CVS Repository.: FreeBSD, like many OSS projects,
uses a Concurrent Version Control Archive (CVS) as the
version control tool. Whenever a developer needs to change
the code base, he or she can check out the corresponding file,
make the change and check the file back into the CVS. CVS
not only stores the latest version of the code base, but also
stores the history of the code that is changed [7].

FreeBSD developers maintain two branches of the code: the
Current branch contains all of the ongoing projects (many are
under test and not ready to be released) related to FreeBSD,
and the Stable branch, which is the official released version
of FreeBSD. In this research, we retrieved information about
FreeBSD code from the Current branch. The FreeBSD CVS
repository is available to the public and anybody can make a
mirror copy of it.

2) Developer Email Archive.: The FreeBSD project main-
tains many different email lists for various purposes.
We studied all of the email messages sent to freebsd-
bugs@FreeBSD.ORG to report problems. Out of 51,156 PRs
recorded in the bug report database, 16,115 were also recorded
in the freebsd-bugs email list. We used this list to extract
names of those who reported problems and the number of
problems reported by each person.

3) Bug Report Database.: The FreeBSD project records
every reported problem using a GNATS database. Further
information about the GNATS database is available from the
GNU website [22]. Each report contains a description of the
problem, the name of the reporter, the reported date and other
information. The FreeBSD official website provides a GNATS

3



web based interface that allows one to query a set of bugs
based on matching PR field values, including priority, state,
severity, and class. The result of the query is a list of PRs
with the following information: the status, the reported date,
the PR tracker identification (ID), the person who takes the
responsibility to fix the problem, and a short description of
the problem. To find more information about a PR (i.e, the
name of the PR submitter), one must follow the PR link to
open a new page with the full description of the PR.

For our research, we used this web-based interface to
search for the total numbers of the code-related PRs in the
Stable branch and in the Current branch. We created queries
concerning code-related PRs in the two branches, and counted
the total number of PRs in the result. To query the code-
related PRs only, we selected the PR class to be sw � bug. The
other PR classes include doc � bug, support, change � request,
mistaken, duplicate, wish, update, and maintainerupdate. A
description of the problem classes, given to us by one of the
FreeBSD GNATS administrators, is shown in Table I. To find
the PRs in Stable branch only, every Stable release has the
keyword “-STABLE” in its release name. Hence, to find the
PRs in the Stable branch, we made a query to search for all
PRs that contain this keyword. Note that every PR includes
information about the name of the release that contains the
problem.

TABLE I
THE DESCRIPTION OF PR CLASSES

PR class Description
sw-bug Problems that require a software (code) correction
doc-bug Problems that require a documentation correction
support Support problems or questions
change-request Suggested changes in functionality
mistaken Bad PR submissions, not a problem
duplicate Duplicate submissions of another existing PR
wish A wish list request
update Non-maintainer requests to update/change software
maintainer-update Maintainer requests to update/change software

C. Data Extraction Tools
Retrieving information manually from the FreeBSD CVS

repository and email archive is not feasible due to the large
size of the data sets. For example, the CVS repository records
about 527,930 changes to the src directory. We developed a
set of Java-based tools to extract useful data from the CVS
and the email archive. The extracted data includes the number
of committers and the number of deltas committed by each
person. The following discussion provides an overview of the
tools that we developed; an appendix contains further details.

1) Retrieving information from the CVS repository: One
approach to retrieving information from the FreeBSD CVS
repository is to use CVS commands through the internet. This
approach can lead to consistency problems, since it requires
repeated access to the repository several times to extract the
desired data. During the process of accessing the repository,
the repository can change as committers continuously modify
source code and other documents.

The approach used in this project is to download the entire
CVS repository and store a copy in our computer system,

which represents a snapshot of the FreeBSD project history.
We retrieved this CVS copy in early April, 2003, and used the
CVS command “log” to retrieve information about all deltas
committed to the code base (the “src” directory) from the start
of the repository until the day we downloaded it.

Each delta includes the time of the delta, the corresponding
file, the number of lines deleted and added, the login name
of the developer who committed the change, and a short
description of the change. We developed a set of tools to
scan the log to record the number of people that contributed
code, the number of changes committed by each committer,
the total number of changes committed by all committers and
the total number of lines of code added to the code base.
We assume that each developer uses just one login name to
commit the code. We distinguish between the code updated to
fix problems, and the code updated or added to implement a
new feature. We assume that descriptions of deltas to fix bugs
contain the keyword “PR”. Deltas without this keyword are
assumed to be deltas that add new features. We also distinguish
between deltas that contribute to code (files with “.h” and “.c”
extension), and deltas to non-code files (such as readme files
and script files).

2) Retrieving information from the email archive: We
downloaded the FreeBSD email archive and stored a copy
in our computer system. The email archive is structured into
several directories, each has messages that are exchanged in
an email list. The directory pr stores all messages that relate
to bug reports. We assume that each PR in the email archive
contains the name of the originator in a line started with the
key word “Originator”. We extracted the number of people
who reported the bugs, and the number of bugs reported by
each person. We retrieved this information using the same
technique used to obtain the number of code contributors and
the number of deltas committed by each contributor.

D. Data For Commercial Projects

For this paper, we reused the data describing commercial
projects that was provided in the Mockus et al. study [17].
These projects are denoted as projects A, C, D and E.
According to Mockus et al., “project A involved software
for a network element in an optical backbone network” and
“projects C, D and E represent Operations Administration and
Maintenance support software for telecommunication prod-
ucts”. Mockus et al. also claim that the processes used to
develop these systems were very well-defined.

IV. RESULTS

First we examine the collected data to answer the research
questions, then we evaluate the hypotheses.

A. Answers to the Research Questions

1) Q1: “What was the process used to develop
FreeBSD?”: FreeBSD is an operating system derived from
BSD UNIX, the version of UNIX developed at the University
of California, Berkeley. According to the FreeBSD develop-
ers [23], FreeBSD can run on x86 compatible, DEC Alpha,

4



IA-64, PC-98 and UltraSPARC architectures. As described
by Godfrey and Tu [9], an OSS project can be forked into
an alternative OSS project when a subset of developers are
unhappy with the “official” or main branch. The BSD Unix
project is an example of this phenomenon, which forked
into FreeBSD, OpenBSD and NetBSD. The FreeBSD project
started in 1993. At the time of this study in 2003, there were
35 released versions (from 1.0 to 5.0).

FreeBSD maintains two branches of its code base. The
Current branch consists of on-going projects, which need to be
tested and are still unstable. The Stable branch is mature and
comparably well-tested; releases are formed from the Stable
branch.

a) Roles and Responsibilities: Contributors to the code
base play one of three main roles: Core Team member, com-
mitter, and contributor. In an OSS project that is not commer-
cially supported, every developer (including Core Team mem-
bers) and contributor is a volunteer and most likely has a paid
job. Thus, most volunteers contribute to the FreeBSD project
part-time, perhaps during nights or weekends. The Core Team
is a small group of senior developers who are responsible for
deciding the overall goals and direction of the project. The
Core Team assigns privileges to other developers and resolves
conflicts between developers. Core Team members are also
developers — they contribute code to the project. Usually,
a Core Team member may also have to manage some other
specific areas such as documentation, release coordination,
source repository and GNATS database.

When the FreeBSD project began, the Core Team consisted
of thirteen members. According to the current by-laws of the
project, the Core Team consists of seven to nine members who
are elected to two year terms by active committers. Any active
committer (active within the latest twelve months) can be a
candidate for membership in the Core Team. An early election
is called if the number of Core Team members drops below
seven.

Committers are developers who have the authority to com-
mit changes to the project CVS repository. According to the
by-laws of the project, a committer must be active within the
past 18 months. Otherwise, the Core Team can revoke the com-
mitter’s privileges. An active contributor can be nominated to
be a committer by an existing committer. The Core Team can
award committer privileges to a candidate. A new committer
is assigned a mentor, who supervises the new committer until
he or she is deemed to be trustable and reliable.

Contributors are people who want to contribute to the
project, but do not have committer privileges. They usually
begin to contribute by registering on the project mailing lists
so that they can be informed about the activities. Contributors
may test the code, report problems, and also suggest solutions.

b) Identification of work to be done: There are two main
tasks that need to be done in any project: developing new
features and fixing defects. Although it is the responsibility of
the Core Team to decide the direction of the project, it rarely
happens in reality. Instead, according to Core Team members,
individual committers usually determine their own project, for
example, adding a feature. Sometimes, committers may form
teams to work on large projects.

Project defects reported by contributors are tracked using the
GNATS database. There are three ways to report a problem:
(1) use the send-pr command of FreeBSD, (2) use a web-based
submission form provided in the FreeBSD web page [23], or
(3) send an email to Freebsd-bugs@FreeBSD.org. If one of the
first two methods are used, the PR will be automatically added
to the GNATS database. The third method (sending email) is
less desirable, because a committer must personally process
the email — he or she must manually read the message and
add a PR to the database. Also, emailed problem reports may
be ignored because of the huge volume of messages received
each day.

A PR has the following fields: reference number, responsible
committer, submitted date, severity, reporter name, state, and
description. A PR may be in one of several states: open (just
submitted, no effort to fix it yet), analyzed, feedback, patched,
suspended or closed (the bug is fixed or cannot be fixed).
The FreeBSD webpage also provides a guideline for problem
reporters, to help them to make the description as informative
as possible.

c) Assigning and performing development work: A com-
mitter can search through the open PRs in the bug report
database and assign a PR to himself, or to another committer
that should be able to solve the problem. Many PRs have
solutions suggested by the person reporting the defect. Con-
tributors can scan the PR database and propose solutions to
open PRs. Although contributors do not have access to change
the code base, they can test solutions in their own copy of
the code, and send the solution to the corresponding assigned
committer. A contributor may also send a solution to the email
list as a follow-up message. The committer responsible for the
PR can communicate with the bug reporter and all interested
contributors to discuss the problem and possible solutions. A
committer may solve the problem directly or use a solution
proposed by a contributor. After testing a proposed solution,
the committer can insert the solution into the Current code
base. Sometimes a committer will insert a solution into the
Stable code base directly, if the problem does not exist in the
Current code base. If, over time, no new defects related to the
fix are reported, the committer can close the problem.

To implement new features, a committer (or a team of
committers) writes code, tests it and then adds the code to
the Current code base. Before the release date of a new Stable
release, a committer can decide to merge their new code with
the Stable version.

d) Testing: Committers must test their own code (with
the help of interested contributors) before they can commit
their code to the Current branch. The thoroughness of testing
depends on the judgment and the expertise of a committer.
Also, before merging code to the Stable branch, a committer
can perform a process called merge from current (MFC). After
developing new code, committers set a countdown period
and ask other developers and contributors to test the code.
If no new defects are found at the end of the countdown, a
committer may assume that the code is acceptable.

Another form of testing may be considered a form of system
test. Before releasing a new version, a release candidate is
introduced to the committers and contributors. The release

5



candidate is tested and fixed until a Release Engineer Team
decides that the system is ready. However, no committer is
assigned to be a tester; volunteers test the release candidates.

e) Code inspection: A committer may want to commit
a piece of code to a file or portion of the system that is the
responsibility of another committer, the active maintainer. The
active maintainer must review and approve new code before
it is added to the code base.

A developer can determine the active maintainers of a code
location by using the CVS command log, which will indicate
who is currently changing the code. Committers may assigned
themselves to be active maintainers of a location by putting
their name in a README file or a makefile.

A committer that plans to make a significant change to
code is expected to ask some other committers to review
the changed code. Committers in the Release Engineer Team
review code 30 days before a release date.

f) Managing releases: The Release Engineer Team man-
ages FreeBSD releases. A Core Team member volunteer is
the chief of the team. The other members of the team are
volunteers selected from the committers. A new version of
FreeBSD is released every four months using the following
timetable:�

45 days before the release date: the Release Engineer
Team announces to every developer that they have a 15
day period to integrate their changes to the STABLE
branch.�
During the 15-day period: committers will perform the
MFC for their code.�
30 days left: the Release Engineer Team announces a 15-
day code slush period, during which the team will review
the added code to the previous release. During the code
slush period only limited changes are allowed such as
bug fixes, documentation updates, security-related fixes,
minor changes to device drivers, and other changes that
are approved by the Release Engineer Team.�
15-days left: the code base enters a code freeze period.
During code freeze, a release candidate is built every
week and distributed for widespread testing, until the
final release is ready. The only changes allowed during
the code freeze period are serious bug fixes and security
repairs.
g) Comparing the FreeBSD process to that of Apache

and Mozilla: It is more appropriate to compare FreeBSD with
Apache rather than Mozilla, since both Apache and FreeBSD
are not commercially supported projects. In contrast, Mozilla
is a hybrid project — it is supported by a commercial company
with paid participants. The process used to develop FreeBSD
is very similar to that of Apache. Both projects use the same
or very similar (1) developer roles, (2) concepts of code
ownership, and (3) mechanisms to assign tasks to developers.
However, the FreeBSD project has a more well-defined testing
process than the one used in the Apache project. FreeBSD
includes a form of system testing during the “code freeze”
period, while Apache does not.

2) Q2: “How many people wrote code for new func-
tionality? How many people reported problems? How
many people repaired defects?”: To determine the number

of people involved in writing code for FreeBSD, we used
the CVS “log” command to retrieve the user names of the
committers who update code in the src directory. The src
directory contains the code in the Current branch of FreeBSD;
it does not include any application code provided by third
parties. A total of 354 committers added code to the src
directory from 1993 to April 2003.

Following the steps in the Mockus et al. case study [23], we
counted the number of distinct people who contributed code to
fix defects and the number of people who contributed code for
new features. The src directory contains source code (files with
.h or .c extensions), text files such as README files, and shell
scripts. A total of 224 committers checked in 11,406 deltas to
fix problems. Among these deltas, 5,893 deltas are source code
files checked-in by 197 committers. 337 committers checked
in 516,540 deltas for new features; 301,969 of these deltas are
source code files checked in by 290 committers.

An examination of the archive of the email list freebsd-
bugs@FreeBSD.ORG determined the names of contributors
who reported problems. A total of 6082 unique individuals
(based on names) reported 16,115 problems. The email list
probably does not include all bug reporters, since there are
51,156 PRs in the GNATS database. Because we did not find
an exhaustive list of bug reporters, we conclude that there are
at least 6,082 bug reporters. This is enough data for us to
evaluate the corresponding hypothesis (Hypothesis 3).

3) Q3: “Were these functions carried out by distinct
groups of people, that is, did people primarily assume
a single role? Did large numbers of people participate
somewhat equally in these activities, or did a small number
of people do most of the work?”: A comparison of the IDs
of the developers who fixed bugs to the IDs of those who
added new features can answer the first part of the question.
The analysis shows that 220 out of 354 committers added code
to do both tasks. A comparison of the committers’ names with
bug reporters’ names provides further insight. The comparison
used committer names from the FreeBSD website, and the bug
reporter names from the email archive. At least 183 committers
also report bugs. We cannot determine if there are additional
developers who report bugs, because we do not have the
full list of bug reporters. Nevertheless, the data indicates that
FreeBSD contributors do not primarily assume a single role.
A FreeBSD committer can contribute code both to fix bugs
and to add new features, as well as report errors.

The results from Mockus et al. [17], indicate that a small
group of less than 15 committers committed more than 80%
of the new source code (code for new features). However, our
results, shown in Figure 2, indicate that the top 15 committers
contribute only 56% of the deltas adding new source code; it
took the 50 top committers to contribute 80%. We also found
that a total of 36 people were members of the Core Team at
some period, and 36 top developers (not all of them are in the
Core Team) contributed about 75% of new source code. Note
that this data is for the deltas that affected source code (.h and
.c files). We performed the same analysis on the deltas that
affected all files (not just source code) in the src directory and
got similar results.

The FreeBSD project is of much longer duration than the

6



Fig. 2. Distribution of developer (committer) contributions of source code
deltas adding new features.

Apache project. FreeBSD had been in operation for more than
ten years, while Apache had been in operation for three years
when the case studies were conducted. In order to verify the
possibility that the length of the operation time dictates the
number of the top developers, we analyzed the accumulative
distribution of the FreeBSD source code changes to add new
features in each three year period. We use three year periods
to make it easier to compare FreeBSD to the Apache project,
which had been in operation for three years when the Mockus
et al. [17] study was conducted.

Figure 3 shows the accumulative distributions of the
FreeBSD deltas in the 1994-1996, 1997-1999, and 2000-2002
periods:�

1994-1996: 209 committers added new source code in the
1994-1996 period. The top 15 committers added 69% of
the new source code and the top 28 contributed 80%.�
1997-1999 The number of committers who contributed
new source code decreased to 161 during the 1997-1999
period. However, the top 15 committers still contributed
about 69% of the new source code. The top 27 committers
contributed 80% of the new source code.�
2000-2002: The number of new source code contributors
increased to 263. However, the top 15 committers only
contributed 59% of the new source code. It took the top
42 committers to contribute 80% of the new code.

These results suggest that the number of top developers
— those who contribute 80% or more of the source code
— in the FreeBSD project was always larger than that of
the Apache project. The number of the top developers in the
FreeBSD project is actually comparable to the number of the
top developers in the Mozilla project (Table II). These results
suggest that the number of top developers does not depends
on the length of the time a project has been in operation.

Figure 4 shows the cumulative distribution of the source
code changes that were checked-in to fix defects. The top 15
contributors checked-in about 40% of the deltas, and the top
50 developers contributed about 70% of the fixes. This result
is somewhat similar to the Apache case study [17]. A small
number of committers added most of the new features, but the

Fig. 3. Distribution of developer contributions of new source code during
each three-year period.

effort required to fix defects is more evenly distributed.
Among the 6,082 individual reporters reporting 16,115

defects, the top 15 reporters reported between 49 and 100
problems each, which represents 0.6% of the PRs. There were
3,370 reporters who reported one bug, 1875 reporters who
reported two bugs, and 447 who reported three.

4) Q4: “Where did the code contributors work in the
code? Was strict code ownership enforced on a file or

7



TABLE II
THE NUMBER OF DEVELOPERS (DEV), TOP DEVELOPERS (TOPDEV —

DEVELOPERS CONTRIBUTING 80% OR MORE OF THE SOURCE CODE, AND

% OF DEVELOPERS WHO ARE TOP DEVELOPERS (% TOPDEV)

Project Dev Kdeltas TopDev % TopDev
FreeBSD (94-96) 212 180 28 13.2
FreeBSD (97-99) 161 172 27 16.7
FreeBSD (00-02) 265 174 42 15.8
Apache 388 15 18 4.6
Mozilla (layout) 174 42 35 20.1
Mozilla (js) 127 14 24 18.9
Mozilla (rdf) 123 12 26 21.1
Mozilla (network) 106 10 24 22.6
Mozilla (editor) 118 8 25 21.2
Mozilla (intl) 87 5 22 25.2
Mozilla (xpinstall) 102 5 22 21.5

Fig. 4. Distribution of developer (committer) contributions of source code
deltas to fix errors.

module level?” : The study of the Apache project [17]
suggests that there is no strict code-ownership involved in OSS
developments. The result of our study strongly supports this
suggestion. Our study shows that among 26,048 .c and .h files,
only 30% of the files were modified by one committer, 25%
by two committers, 15% by three committers, and 8% by ten
or more committers. One file was changed by 74 developers.

In fact, every committer has the privilege to make any
change to any file in the system. Code ownership in FreeBSD
does not exist. Instead, FreeBSD committers are only required
to respect each other by asking for a code review before
committing code to files that are actively maintained by other
committers.

5) Q5: What is the defect density of FreeBSD code?:
Following the approach used by Mockus et al. [17], we
measure the number of defects per thousand lines of code
added and per thousand deltas. Among the PRs recorded in
the GNATS data base, we only counted the problems that
require a correction to software. These PRs are categorized
into the class “sw-bug”. The “mistaken” and “duplicated” PRs
are obviously not real problem reports. The “change-request”,
“update”, and “maintainer update” PRs are also not reports
about defects. The “doc-bug” PRs are the reports about defects
in the documents, hence they are outside the scope of interest.
We also counted the deltas and lines of code added to the

src directory only, since this directory contains the Free-BSD
code.

To determine the defect density after feature test, we
counted the “sw-bug” occurrences in all FreeBSD branches.
The defect density after release is determined by counting only
PRs of the Stable branch. The result is shown in Table III. We
compare the result with the defect density in the Apache and
the four commercial software systems as reported by Mockus
et al. The four commercial projects are denoted as projects A,
C, D and E. There is no data for the post-feature defects in
Project A.

The results indicate that after feature tests, the defect density
of FreeBSD is similar to Apache and is lower than that of
the commercial systems. The results also indicate that the
defect density of FreeBSD after release is at least equivalent
to or better than that of the commercial telecommunications
software systems used in our comparison. The testing strategy
used in the FreeBSD project appears to be as effective as
those used in commercial practice, at least in the systems used
in the study. The case study provides empirical support for
claims that OSS systems are not less reliable than commercial
software systems [19, 6].

TABLE III
DEFECT DENSITIES IN FREEBSD, APACHE, AND FOUR COMMERCIAL

SYSTEMS.

Measure FreeBSD Apache A C D E
Post-release

defects/KLOC 0.55 2.64 0.11 0.1 0.7 0.1
Post-release

defects/Kdelta 11.17 40.8 4.3 14 28 10
Post-feature

defects/KLOC 1.89 2.64 * 5.7 6.0 6.9
Post-feature

defects/Kdelta 38.58 40.8 * 164 196 256

B. Evaluating the Hypotheses

We examine each hypothesis concerning successful OSS
projects in order:
H1: A core of 10 to 15 developers in an OSS project will

control the code base, and create approximately 80% or
more of the new functionality.
In FreeBSD, the code base was controlled by the Core
Team, an elected core of developers. A total of 36 people
were members of the Core Team at some time over the
period studied. These Core Team members contributed
47% of the new functionality deltas. The core team
contained 13 members at the beginning of the project;
later the team size was restricted to between seven and
nine members, perhaps because the larger sized group
was unwieldy.
Thus, the size of the Core Team was smaller than that
given in H1, and the Core Team members contributed
much less of the functionality. A possible explanation
for why the FreeBSD Core Team members contributed a
smaller portion of the functionality than the correspond-
ing group in the Apache project is that FreeBSD is a
larger project with more than ten times as many deltas as

8



shown in Table II. In addition, each FreeBSD Core Team
member also had to spend time for other responsibilities
such as coordinating the CVS mirror sites, managing the
Release Engineering Team, or managing the mailing lists.
We also examined a larger group of influential developers,
the “top developers” — developers who contribute 80%
or more of the code base, to match the 80% threshold
used in the Mockus et al. study. As is shown in Table II,
there were between 28 and 42 top developers over the
ten year period studied. Thus, the number developers who
contribute 80% of the code base is larger than that given
in H1.
We suggest that H1 is overly proscriptive. A more realistic
hypothesis will separate the core developers from the top
developers as follows:

H1’: A core of fifteen or fewer core developers will
control the code base and contribute most of the
new functionality. A group of fifty or fewer top
developers at any one time will contribute 80% of
the new functionality. The group will represent less
than 25% of the set of all developers.

H2: In projects where more than 15 people contribute 80%
of the code, some formal arrangements will be used to
coordinated the work.
FreeBSD had more than 15 top developers throughout
the project. In fact, in every three-year-period that we
studied, the number of FreeBSD top developers was al-
ways more than 15. Compared to Apache, FreeBSD uses
additional mechanisms to coordinate code contribution.
These mechanisms include the use of release engineering
teams, a system test procedure, a set of rules to assign
committer and core team privileges. FreeBSD also has
guidelines for “assigning” development tasks, unit testing,
and inspection. However, most of these mechanisms are
still informal. The system test procedure is informal; for
example, it does not have a well-defined criterion to
determine when the testing should stop. Also, FreeBSD
lacks a mechanism to verify that developers follow the
development guidelines. Therefore, our results do not
fully support H2, and suggest a revised hypothesis:

H2’: As the number of developers needed to con-
tribute 80% of OSS code increases, a more well-
defined mechanism must be used to coordinate
project work.

H3: A group that is much larger than the core will repair
defects, and an even larger group will report problems.
The FreeBSD project was consistent with the relationship
in H3 between the relative size of Core Developers, those
who repair defects, and those who report problems.

H4: OSS projects without many contributors, in addition to the
core, may create new functionality, but will fail because
of a lack of defect discovery and repair capability.
Since FreeBSD did have many contributors, we could not
evaluate H4.

H5: Defect density in OSS releases will be lower than com-
mercial code that has only been feature-tested.
The results from FreeBSD are consistent with H5. Based

on our results from the FreeBSD project, which separates
unstable releases from final releases, we revise H5 as
follows:

H5’: Defect density in OSS releases will be lower
than commercial code that has only been feature-
tested. If an OSS has a mechanism to separate
unstable code from stable code or “official” releases,
then the defect density of the stable code releases
will be equivalent to that of commercial code after
release.

H6: Developers will be users of the software.
The developers of FreeBSD were clearly users, thus
supporting H6.

H7: There will be rapid responses to customer problems.
Unfortunately, we do not have enough data yet to evaluate
H7.

V. THREATS TO VALIDITY

Like most case studies there are threats to validity. We
assess four types of threats: construct validity, content validity,
internal validity and external validity. Construct validity refers
to the meaningfulness of measurements [10, 20] — do the
measures actually quantify what we want them to? To validate
the meaningfulness of measurements, we need to show that
the measurements are consistent with an empirical relation
system, which is an intuitive ordering of entities in terms of
the attribute of interest [5,11,16]. The variables in this study,
which include counts of defects, deltas, and the size of the
different project groups, match those used in the Apache study.
A count of the deltas in the code base is an intuitive measure
of the relative contribution of project members, and a count of
defects is an intuitive indicator of code quality. However, not
all deltas or defects are equal, but the large number of deltas
and defects should minimize the impact of the variability of
delta size or defect severity. Counts of the number of members
in the different OSS development groups do not appear to
represent any threat to construct validity.

Content validity refers to the “representativeness or sam-
pling adequacy of the content ... of a measuring instru-
ment” [10]. The content validity of this research depends
on whether the individual measures of deltas and defects
adequately cover the notion of the relative contribution of
developers and code quality respectively. The count of deltas
quantifies only one aspect of relative contribution. We only
look at one quality attribute, defects. It is always difficult
obtaining quantitative indicators of all aspects of quality. One
real concern is that the qualitative understanding of the process
used is based on informal dialogue with only a subset of Core
Developers. A representative sample of all Core Developers
and committers might offer different insights. Also, there is
an implicit judgement in this research. That is that all of the
OSS projects involved (FreeBSD, Apache, and Mozilla) may
be considered successful OSS developments. One may always
debate such judgements.

Internal validity focuses on cause and effect relationships.
The notion of one thing leading to another is applicable here
and causality is critical to internal validity. This study did

9



TABLE IV
COMPARISONS BETWEEN FREEBSD, APACHE, AND FOUR COMMERCIAL

SYSTEMS.

Project K Deltas Years Developers
FreeBSD 528 10 354
Apache 18 3 388

A 129 3 101
C 2.8 1.3 17
D 0.7 1.7 8
E 2.4 1.5 16

not really lend itself to a statistical analysis of correlations
between variables. In a sense, we did not have a control —
an OSS system that is a failure. In addition, the hypotheses
were expressed as necessary conditions for success, but they
are not sufficient conditions. A project may satisfy all of
the organizational conditions, yet fail due to other external
reasons. For example, there may turn out to be little user
interest in the OSS product. Thus, a study of a failed project
would shed little light on the hypotheses. Ultimately we can
find conclusive evidence only when the hypotheses can be
clearly rejected — when a data from a successful OSS project
contradicts the hypotheses. An intuitive argument does support
a causal relationship between OSS project organization and
success.

External validity refers to how well the study results can be
generalized beyond the study data. An adequate study should
be valid for the population of interest [28]. A general problem
with case studies is that they may or may not apply to other
projects. One objective of this project is to add another piece
of evidence to that collected by Mockus et al. [17]. Thus, this
study has reduced the threats to the validity of the earlier study.

There are some specific threats to the validity of this
research. There is a lack of information about the commercial
systems. In order to evaluate the quality of OSS development,
we compare the defect density of FreeBSD with commercial
products A, C, D and E, which were provided in the Apache
and Mozilla case studies. [17]. These commercial projects
were chosen so that they are comparable to Apache, which
may not be completely comparable to FreeBSD as shown in
Table IV.

Another threat is that we studied only 16,115 out of a total
of 51,156 PRs to extract the names of the problem reporters.
The key result is that the number of problem reporters in
FreeBSD is larger than the number of developers (committers)
by an order of magnitude (this result supports Hypothesis H3).
Obviously, if we examined all PRs, the number of problem
reporters would have been even larger, and it will not affect
our conclusion at all.

Finally, to avoid the replication of experimental errors
caused by the specific research tools used by Mockus et
al. [17], we independently developed our own data extraction
and analysis tools.

Further research can reduce the threats to validity. Studies
that include additional product quality indicators (other than
defects), such as adaptability, will reduce threats to content
validity. In addition, studies of the distribution of deltas, and

a wider sampling of developers and PRs can reduce content
validity threats. Clearly, additional case studies of both OSS
and commercial development will reduce threats to external
validity.

VI. CONCLUSIONS

The goal of this study was to better understand the nature
of Open Source software development, and to see if prior case
study results can be replicated in a study of another system.

This study repeated the work of Mockus et al. [17], a study
of Apache and Mozilla, on FreeBSD. We conclude that the
FreeBSD process is fairly well-defined and organized; project
members understand how decisions are made, and it appears
fairly effective.

We examined whether the FreeBSD project supported six
hypotheses proposed by Mockus et al. We gathered enough
data to evaluate hypotheses H1, H2, H3, H5 and H6. Our
data supports hypotheses about the relationship between the
number of core developers, developers and contributors (H3),
the defect density of OSS (H5), and that OSS developers are
also users (H6). Our results show that the hypothesis about
core developers (H1) needs revision. FreeBSD uses a smaller
group of core developers to control the code base. However,
a larger group of top developers contribute 80% of the code
base. Our results do not support the hypothesis about the need
for a formal arrangement to coordinate the work (H2) —
in the FreeBSD project more than 15 developers contribute
80% of the code, yet the guidelines for assigning task, testing
and inspection are informal. We also extend the hypothesis
concerning the defect density of OSS (H5). Our data suggests
that the defect density after release of OSS is equivalent
to that of the commercial software systems. We cannot test
hypotheses H4 due to the nature of FreeBSD. Hypothesis H7
concerning the time to respond to customer problems was not
tested due to a lack of data.

Additional studies of existing, on-going open source and
commercial software projects are clearly needed to gain further
insights into the nature of software development. The follow-
ing is a sample of open questions that can be answered only
through further research:

1) What are the factors that distinguish between successful
and unsuccessful OSS projects? Answering this ques-
tion, relevant to evaluating Hypothesis 4, requires the
development of criteria to identify unsuccessful OSS
projects, and in depth studies of them.

2) Do the hypotheses hold with successful, but smaller OSS
projects? In particular, do small OSS projects require
large groups of code contributors and bug reporters?

3) What testing techniques are used in the OSS projects
that exhibit higher reliability than equivalent commercial
software? Answering this question requires developing
an assessment mechanism that can objectively compare
the reliability between OSS and commercial software,
and an examination of the testing process, tools, and
criteria used in these projects.

Results from efforts to answer these and other related ques-
tions can surely lead to improvements in development meth-

10



ods. The advantage of studying OSS projects is that process
and product data is readily available.

ACKNOWLEDGEMENTS

We thank many FreeBSD project participants for help on
this research. FreeBSD Core Team members W. Peters, J.
Baldwin, M. Losh, and M. Murray provided detailed project
information. Core Team member R. Watson and FreeBSD
developer J. Gibbs helped us to mirror the FreeBSD CVS
repository. GNATS Administrator C. Davies provided infor-
mation about PR classes and the bug report process.

We also thank Audris Mockus for his encouragement and
for his very helpful comments and suggestions for revising and
extending an earlier version of this paper. Suggestions by the
reviewers helped to improve the presentation of our results.

This material is based in part on work supported by the
U.S. National Science Foundation under grant CCR-0098202.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] D. Cooke, J. Urban, and S. Hamilton. Unix and beyond: An interview
with Ken Thompson. IEEE Computer, 32(5):58–62, 1999.

[2] T. T. Dinh-Trong and J. Bieman. Open source software development: A
case study of FreeBSD. Proc. Tenth Int. Software Metrics Symposium
(Metrics 2004), pages 96–105, 2004.

[3] J. Feller. Meeting challenges and surviving success: The 2nd workshop
on open source software engineering. Proc. 24th Int Conf. Software
Engineering (ICSE-24), pages 669–670, 2002.

[4] J. Feller, B. Fitzgerald, and A. Hoek. Making sense of the bazaar:
1st workshop on open source software engineering. ACM SIGSOFT
Software Engineering Notes, 26(6):51–52, 2001.

[5] N. Fenton and S.L. Pfleeger. Software Metrics - A Rigorous and
Practical Approach Second Edition. Int. Thompson Computer Press,
London, 1997.

[6] B. Fitzgerald and T. Kenny. Developing an information systems
infrastructure with open source software. IEEE Software, 21(1):50–55,
Jan-Feb 2004.

[7] K. Fogel. Open Source Development with CVS (1st Ed.). Coriolis Open
Press, http://cvsbook.red-bean.com/, 1999.

[8] E. Gamma, R Helm, Johnson R., and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading MA, 1995.

[9] M. Godfrey and Q. Tu. Evolution in open source software: A case study.
Proc. Int. Conf. Software Maintenance (ICSM), pages 131–142, 2000.

[10] F. Kerlinger. Foundations of Behavioral Research, Third Edition.
Harcourt Brace Jovaonvich College Publishers, Orlando, Florida, 1986.

[11] D. Krantz, R. Luce, P. Suppes, and A. Tversky. Foundations of Mea-
surement, volume I Additive and Polynomial Representations. Academic
Press, New York, 1971.

[12] T. Lawrie and C. Gacek. Issues of dependability in open source software
development. ACM SIGSOFT Software Engineering Notes, 27(3):34–37,
2002.

[13] A. Lonconsole, D. Rodriguez, J. Borstler, and R. Harrison. Report on
Metrics 2001: The science & practice of software metrics conference.
ACM SIGSOFT Software Engineering Notes, 26(6):52–57, 2001.

[14] S. Lussier. New tricks: How open souce changed the way my team
works. IEEE Software, 21(1):68–72, Jan-Feb 2004.

[15] D. G. Messerschmitt. Back to the user. IEEE Software, 21(1):89–90,
Jan-Feb 2004.

[16] J. Michell. An Introduction to the Logic of Psychological Measurement.
Lawrence Erlbaum Associates, Inc., Hillsdale, New Jersey, 1990.

[17] A. Mockus, T. Fielding, and D. Herbsleb. Two case studies of
open source software development: Apache and Mozilla. ACM Trans.
Software Engineering and Methodology, 11(3):309–346, July 2002.

[18] Netcraft. Nearly 2 million active sites running
FreeBSD. Netcraft, July 2003. Posted July 12, 2003 to
http://news.netcraft.com/archives/2003/07/12/nearly 2 million active sites running freebsd.htm.

[19] J.S. Norris. Mission-critical development with open sourse software:
Lessons learned. IEEE Software, 21(1):42–49, Jan-Feb 2004.

[20] J. Nunnally. Psychometric Theory, Second Edition. McGraw-Hill, New
York, 1978.

[21] G. Perkins. Cultural clash and the road to world domination. IEEE
Software, 16(1):23–25, 1999.

[22] GNATS GNU Project. Gnats (version 4.0).
http://www.gnu.org/software/gnats/.

[23] The Free BSD Project. FreeBSD (version 5.0), [computer software].
http://www.freebsd.org/, 2003.

[24] E.S. Raymond. Up from alchemy. IEEE Software, 21(1):88–90, Jan-Feb
2004.

[25] S. Schach, B. Jin, D. Wright, G. Heller, and J. Offutt. Maintainability of
the Linux kernel. IEE Proceedings — Software, 149(1):18–23, February
2002.

[26] N. Serrano, S. Calzada, J. M. Sarriegui, and I. Ciordia. From proprietary
to open source tools in information systems development. IEEE
Software, 21(1):56–58, Jan-Feb 2004.

[27] G. Wilson. Is the open source community setting a bad example? IEEE
Software, 16(1):23–25, 1999.

[28] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and
A. Wesslen. Experimentation in Software Engineering: An Introduction.
Kluwer Academic Publishers, Boston/Dordrecht/London, 2000.

[29] M. Wu and Y. Lin. Open source software development: An overview.
IEEE Computer, 46(6):33–38, 2001.

11


