Ioctl(2) is so 1980ies...

Poul-Henning Kamp
phk@FreeBSD.org

Kernel Hacker

What is ioctl(2)

e Toctl(2) is the 6" system call for files in UNIX
- Open(2), close(2)
- Read(2), write(2)
- Lseek(2)
- Toctl(2)
 From the manpage:

- "joctl -- control device”

What is ioctl(2) used for ?

e "control device”

- Set bit-rate on serial ports.

- Tell tape-station to rewind tape.
- Format disk.

- Pass DVD/DCESS key to drive.

- Configure network interfaces.

- (Re)define ATA-raid layout.

e The kitchen sink.

Nothing important of course...

e Loosing data
- Format disk, erase tape etc.
e Destroy Hardware
- Setting bogus parameters
* Make system unusable in various ways

- Panic(8) implementations.

— Set SLIP linedisc on console.

Kitchensink arguments

e joctl(int d, unsigned long request, ...);

- Request = magic number

- ... = "something”
e Type-checking is a town in Russia.

 Magic number collisions.

- SLIOCSKEEPAL == PPPIOCSRASYNCMAP
- Not that much of a problem.

e until you use the wrong program on a device.

The 3BSD situation (1980)

tty.h:
#define TIOCSETC (('t'<<8)[17)
#define TIOCGETC (('t'<<8)[18)

userland:
e = ioctl(fd, TIOCSETC, &tc);

kernel:
case TIOCSETC:
if (copyin(addr, (caddr_t)&tun, sizeof(struct tc)))
u.u_error = EFAULT;
break;

case TIOCGETC:
if (copyout((caddr_t)&tun, addr, sizeof(struct tc)))
u.u_error = EFAULT;
break;

CSRG ports UNIX to 32 bits

Being smart, the 1980ies way

* Move to VAX gives request 16 extra bits.

- Use them for generic handling:
* 1 bit Copy args in.
e 1 bit Copy args out.
* 1 bit Don't copy args.
e 13 bits Length of args.

- Retain bottom 16 bits compatible:

e 8 bits Group (typically ASCII char).
* 8 bits Number (typically integer).

The 4.2BSD situation (1983)

tty.h:
#define TIOCSETC _IOW(t,17,struct tchars) /* set special characters */
#define TIOCGETC _IOR(t,18,struct tchars) /* get special characters */

userland:
e = ioctl(fd, TIOCSETC, tc);

kernel:

case TIOCGETC:
bcopy((caddr_t)&tp->t_intrc, data, sizeof (struct tchars));

break;

case TIOCSETC:
bcopy(data, (caddr_t)&tp->t_intrc, sizeof (struct tchars));
break;

Banned or doomed.

e How do we design the API ?

- Struct foo_control reflect the hardware bits.

- Struct foo_control is abstract representation.

Hardware representation

e Good sides:

- Easy to prototype and fiddle hardware.
- Small amount of code in kernel.

e Bad sides:

- People tend to skip parameter validation.
- MKk IT controller will have different registers.

- Puts hardware knowledge in userland.
e UNIX is all about not doing that.

Abstract representation

e Good sides:

- Encourages sanity checks
- Provides hardware independent API/ABI

e Bad sides:

- Takes de-abstraction code in the kernel.
- Generalizing from 1 instance.

— Still does not cope well with Mk II hardware.

Diminishing return...

 Joctls are mainly used administratively.

 Administrative operations happen seldom.
* Flexible hardware -> many ioctls.
 Many ioctls -> much code.

 Much code seldom used -> less testing.

* QED: more bugs & security issues.

Public API/ABI location ?

 Where is the public API/ABI for the device ?

e Isittheioctls?

- Requires argument checking, security.

e [sit the foocontrol(8) program ?

- Does that mean we do not need to check ?

The True UNIX spirit: DDTT (?)

 The argument goes something like:

- We make sure only root can do this ioctl.
* No security issues.

- We provide a program to do so: foocontrol.
- No other program should use the ioctl.

- If people complain, we tell them:
e Don't Do That Then!

* Joctl calls are not a supported API/ABI.

Pseudo code...

include/ fooio.h:
struct foo_control {
I3
#define FOOBAR _IOC('F, 23, struct foo_control)
sbin/foocontrol/foocontrol.c:
Main()
{
Process arguments
check that they make sense
parse, interpret and pack into struct foo_control
error = ioctl(fd, FOOBAR, fc);
}
sys/ dev/foo.c:
foo_ioctl(...)
{
case FOOBAR:
[* XXX: should check permissions */
[* XXX: should check arguments */
Unpack struct foo_control and apply

Needless multiplication...

/ sbin/ atacontrol

/ sbin/ camcontrol

/ sbin/ comcontrol

/ sbin/ifconfig

/ sbin/ldconfig

/ sbin/ sconfig

[usr/ sbin/ acpiconf
[usr/sbin/arlcontrol
[usr/ sbin/ nxtconfig
[usr/sbin/ fwcontrol
[usr/sbin/ kbdcontrol
[usr/ sbin/Iptcontrol
[usr/ sbin/ mlxcontrol
[usr/ sbin/ raycontrol
[usr/ sbin/ sdpcontrol
[usr/ sbin/vidcontrol
[usr/ sbin/wicontrol

/ sbin/ atmconfig

/ sbin/ ccdconfig

/ sbin/ conscontrol

/ sbin/ kldconfig

/ sbin/ mdconfig

/ sbin/ spppcontrol

[usr/ sbin/ancontrol

[usr/ sbin/ cdcontrol

[usr/ sbin/ fdcontrol

[usr/ sbin/ hccontrol
[usr/sbin/l2control

[usr/ sbin/ memcontrol
[usr/ sbin/ pciconf

/ usr/sbin/rndc- confgen
[usr/sbin/ sicontrol

[usr/ sbin/vnconfig

[usr/ sbin/wlconfig

This is not the errno you look for.

e For system calls which can only do simple
thing, simple error categories are fine.

e For configuring TCP/IP over CLAW on an
ESCON fiber in the precense of Escon
directors "EINVAL” will just not do.

Ioctl's other weakness.

fooctrl -mode bidir -cl1l,3-8 -121 -f foo.conf
fooctrl: Invalid Argument

fooctrl -mode duplex -cl1,3-8 -121 -f foo.conf
fooctrl: Invalid Argument

fooctrl -mode auto -cl1,3-8 -121 -f foo.conf
fooctrl: Invalid Argument

fooctrl -h

fooctrl: Usage: fooctrl -mode <mode> <args>...
/usr/games/fortune

To err 1s human -- to blame 1t on a computer 1s
even more so.

AD

Workarounds

e Private errno in the struct passed in ioctl.
e Separate ioctl: "retrieve last error”.

e Return line number of failed test.

e Print cause message on console.

e Log cause message to logtile

 Break combo-operation into tens of steps.

* elcC.

In-band / out-of-band.

e In-band:

 Move the tape one file forward.

- Addressing is implicit (file handle)

e Out-of-band:

* Rescan SCSI bus for new devices.

- Addressing is explicit.

In-band / out-of-band.

 Makes a BIG difference security wise.

e Using in-band for out-of-band is bad:
- "Eject that other CDROM”

e Using out-of-band for in-band has issues
- "Rewind that tape”

e JToctl(2) is in-band

e Sysctl(2) is out-of-band.

P e [

i .._ﬁ;%&vt& vﬁhﬁﬂ. 7l 3¢ ﬁaﬁi w.ﬁ?ﬁﬁ. r,,..!.»:.tr T
{0 —r L_...,

._..
..J...q... .rI.J_W e .Jﬁ. p J_\.. r... 5

irely

t

itferent

d

rl.. ..¥.. p s o e iy - o B B A
.\.f A e A P N e L P DR NI T RN

e e b

0 g%u& ﬁw?? .u».ﬁwﬁ@%fmﬁﬁ.?ﬁﬂ%?

e S i E

And now for something en

What if there is no device driver ?

e Joctl(2) needs a file descriptor.
e What if we don't have a device driver ?

e Non-device administrative interfaces:
- Mount
- Sysctl
- Other (make a device driver anyway!)

mount(2)

e Ditferent filesystems needs different
parameters.

 Some parameters are shared

- R/Ovs R/IW
- NOEXEC, NODEV, NOSUID etc.

e Mount(2) passes a pointer to fs-private stuif.

The exact same mess!

e Each filesystem needs a specialized
userland program:

- mount_ufs, mount _msdosfs, mount cd9660...

e Insufficient parameter checking.

e ABI instability every time filesystem grows
an option.

* (even worse than ioctl actually: no 'request’
argument available).

Sysctl — a hack.

e Only structure imposed is namespace.
e Very tlexible and easy to use.
* Generally not documented.

 Moves a variable length byte sequence
in/out of the kernel.

e Clean in source, ugly in implementation.

e The real kitchensink.

eanwhile in the lab...

GEOM

e GEOM is a framework.

e Methods are p

e Methods can d

ugged in as needed.

0 anything:

- RAID-0,1,3,5,1

- Paritioning
— Ship requests
- Encryption

0

to userland

GEOM OaM interface.

 The old way:

- Each class defines ioctls.
- Each class has fooctrl(8) program.

* Nothing works together.

e A unified administrator tool is not feasible.

- Per class loadable objects for mgt program ?

Unified OaM

e Export global state of GEOM
- Extensible format (XML)

e (Different issue, not discussed here).

e Define API for sending instructions to
GEOM classes and instances.

- Without need for encoding instructions.

What is it we really need ?

e We need a conduit for passing commands
from userland to some code in the kernel.

e The command consists of
— Address

 What piece of code in the kernel.
- Verb

e What action
- Parameters

"Parameters”

e Kernel has extensible subsystems.

- NetGraph, GEOM, device drivers, KLDS.
e Size and Format must be flexible.

- Must be able to cater for all.
 Format unknown at compile time.

- At least in the userland/foocontrol() end.

Extensible & Variable formats

e Encoded

- Needs code to parse and encode user input
e XML
e Netgraph Parse
* ASN.1

e Direct

- Pass user input directly as text.

e argc/env/contfig file.

Abstract notations

e ASN.1
- "This is not the format you are looking for.”
* Netgraph parse code.

- Convert to byte stream.
— Metadata in boths ends to control conversion.

e XML
- Theoretically perfect
- Practically overkill.

Direct transter

 "Communicate, don't interpret”
» Userland passes string input to kernel.
* Kernel does parsing & validation.

* Advantage:
- No per class userland code
e Disadvantage:

- Parsing strings in the kernel.

Lets kill a stigma...

e Parsing and validating strings into

information

is not banned in the kernel.

* Doesn't take more code than parsing and

validating a |

binary format.

e ...0r a encoded structure with multiple
historical versions.

ign

A new des

e

T

T -

2) o
A
4 ;
¥ i m

TREH

1
|
|
B e I L

. (!
; e e B e <
kW _ T

e e _.....T = = -

N e V\ . !

The G_ctl API

e Build request "environment style”
 Add elements as required.
* [ssue request

e Check for errors.

G_ctl Example

struct gctl_req *r;
const char **errstr;

r =
gct’
gct|

gct’

gctl_get_handle();

_ro_param(r, "verb", -1, "create geom");
_ro_param(r, "class", -1, "BDE");
_ro_param(r, "provider", -1, dest);

errstr = gctl_issue(r);
1f (errstr != NULL)

errx(1l, "Attach to %s failed: %s",
dest, errstr);

G_ctl Example

geom verb="create geom” class=BDE provider=5%d

Important points...

 Each element has Read/Write status:
- Read-only: gctl_ro_param()
- Read-write: gctl_rw_param()
e Must specity buffer size
e First error message is latched.

— All subsequent calls become no-ops.

Nmount API

e Same general principle:
- fstype=msdos

- fsname=/dev/dala
- fspath=/mnt
e Trickier:
- Backwards compatible semantics necessary.

e Different implementation than g_ctl.

Conclusions
(sort of)

e ¢ ctl and nmount breaks new ground.

e Much other code has similar needs:

- Arguments to loadable device drivers
- Sysctl variables controlling code.
- Ifcontig(8) and network interfaces.

* Should we generalize to cover all ?

