
Building a FreeBSD Appliance
With NanoBSD

Poul-Henning Kamp

phk@FreeBSD.org

Appliance:

● A device or instrument designed to
perform a specific function, especially
an electrical device, such as a toaster,
for household use.

Computer appliance:

● A specialized server that is designed for
ease of installation and maintenance.
Appliances have their hardware and
software bundled in the product, so all
applications are pre-installed. The
appliance is plugged into an existing
network and can begin working
(almost) immediately.

Appliance example (1)

● Firewall / Router

Appliance example (2)

● VPN gateway

Appliance example (3)

● Data Collection Engine

Appliance Design

● Hardware considerations
– Interfaces
– Performance
– Moving parts vs. Solid state
– Power demand (& cost of ownership)
– Physical (temperature, size, vibration)
– Cost

Rotation: just say no!

● #1 cause of failure in embedded
systems:

 “Something stopped rotating”

● Disks will crash.
– And generate heat.

● Fans will fail.
– And fill the interior with dust.

Rotation: just say no!

● #1 cause of failure in embedded
systems:

 “Something stopped rotating”

● Disks will crash.
– And generate heat.

● Fans will fail.
– And fill the interior with dust.

Disks

● Disks die from old age and heat
– Some die young

● Laptop disks are tougher than desktop
disks

● Beware of “duty cycle”
– Many disks only designed for 8h/d duty

● Disks need civilized temperatures
– 10 - 40 °C

● Disks don't like vibration and shock

Flash storage

● Indestructible in read-only usage
● Flash cells die after N erase operations
● Flash adaptation layer

– Wear leveling distributes the damage
– Bad sector handling tries to recover
– Bigger media last longer than small media
– Good, but not perfect remedy.

Counting flash writes

● 200.000 writes, worst case:
– Superblock updated 1/s = 55 hours

lifetime
– File written 1/m = 138 days lifetime
– File written 1/h = 22 years lifetime
– File written 1/d = 547 years lifetime

Flash Adaptation Layer

● Attempt to wear out flash cells equally
fast

● Logical->Physical mapping
● Bad bit/sector handling
● Works much better if you tell it about

erase
● ...or do large sequential writes

(camera)

FAL's MTBF

● Conservative rule of thumb:
– Multiply write guarantee by free/used ratio.

● Example:
– 200k writes per cell
– 100MB used on 4GB media

● 200k * (4GB-100MB)/100MB =
200k * 39 =
7.8 Mwrites per logical sector.

Industrial Flash ?

● Expensive
● Guaranteed number of writes

– Typical: 10x commercial (~2M writes per
cell)

● Good EMC protection
● -40...+70 °C

Consumer Flash

● Cheap
● Vague promises of durability

– 20k...200k writes
● Before or after FAL ?
● Guaranteed or worst case ?
● Per sector or per photo ?

● Often faster than industrial flash
● Easy to get hold of

Power budget

● 1W * 24h * 365d * .25 $/kWh ~= 2$/Wy

● Power-over-ethernet: max 12.95W

Machine Watt [avg] USD/year
Real Server 220 440
Light server 120 240
Desktop 60 120
Mini-ITX 30 60

4 8Soekris

4W = Power options

● Solar power
– Depends on your lattitude/climate.

● Battery backup
– $100 Lead-Acid -> 2+ days without power.

● Portable
– Runs on 6 D-size batteries

● Car/motorcycle
– Remember surge-protection.

Human Factors

● User interaction when no screen
available
– telnet/ssh into box
– HTML/webserver interface
– Serial console

● Hardware solutions
– LED
– LCD displays

Flashing a hint

● The LED(4) device driver can be used
to signal using a LED, lamp, foghorn
etc.
– /bin/echo “d13” > /dev/led/error

More LED(4) features

● /bin/echo 0 > /dev/led/error
● /bin/echo 1 > /dev/led/error
● /bin/echo f > /dev/led/error
● /bin/echo sAaAaAcEaEaEcAaAaA \
 > /dev/led/error

● /usr/games/morse -l \
 “+++ OUT OF CHEESE +++” \
 > /dev/led/error

LCD displays

● Readily available with usable interfaces
– Serial, USB, parallel, etc

● Expensive compared to computer
– Remember to check eBay for bargains

● Mechanical/Mounting issues
● Also need a keyboard/keypad

Cables and interfaces

● Beware of ground-loops
– serial/parallel/usb/gpio/power
– (Non-POE) Ethernet is isolated.

● GPIO pins are sensitive
– Surgeprotection on inputs
– Drivers on outputs

● Lightning protection if outdoors.
– In particular POE!

What is NanoBSD ?

● NanoBSD is just FreeBSD

● Compiled from FreeBSD source tree
● No cut corners.
● Ports/packages works like they always

do.

● If you can do it with FreeBSD, you can
do it with NanoBSD.

 NanoBSD features

● Everything is read-only at run-time.
● Safe to pull power-plug.

– No fsck necessary.
● No missing functionality

– Unless you remove it yourself.
● Easy to build and customize.

NanoBSD recipe

● diskless(8)

– Gives boot time configurable R/O runtime.
● Boot0(8)

– Choice of which code image to boot.
● One shell script with light magic

– src/tools/tools/nanobsd.sh
● A few convenience features.

– At no extra cost!

How to build a NanoBSD
image

● # cd /usr/src/tools/tools/nanobsd
sh nanobsd.sh
cd /usr/obj/nanobsd.full
dd if=_.disk.full of=/dev/da0 bs=64k

How to customize Nanobsd

● # sh nanobsd.sh -c myconf.nano
● # cat myconf.nano
NANO_NAME=myconf
CONF_WORLD='
NO_CXX=YES
'
NANO_KERNEL=MYKERNEL
FlashDevice Sandisk 512M
#

NanoBSD disk layouts

code#1 /cfg

code#1 code#2 /cfg

code#1 code#2 /cfg data

code#1 /cfg data

boot0

/cfg magic

● The config partition contains files for
/etc

● Partition briefly mounted r/o during
boot.

● Remember to save files when you edit:

vi /etc/resolv.conf
[...]
mount /cfg
cp /etc/resolv.conf /cfg
umount /cfg

Configuring the media size

● NANO_MEDIASIZE=1048576

– Count of sectors.
– Diskinfo(8) is useful.

● NANO_SECTS=32
NANO_HEADS=16

– Necessary for some BIOS'es which can't
use “packet mode” in boot0(8).

Configuring the media size

● FlashDevice vendor ident
– Small library of common device data
– See .../nanobsd/FlashDevice.sub

● FlashDevice SanDisk 1G
FlashDevice Soekris NET4526
etc.

Controlling Media Layout

● NANO_IMAGES={1,2}
● NANO_CODESIZE={0,sectors}
● NANO_CONFSIZE={sectors}
● NANO_DATASIZE={0,sectors}

● Zero means “autosize”
● Explicit sizing is more future-proof.

Build/Install/World options

● CONF_BUILD='...'

– Passed to buildworld
● CONF_INSTALL='...'

– Passed to installworld
● CONF_WORLD='...'

– Both buildworld & installworld.

Customizing

● List of customizing commands.
– NB: commands without arguments!

● Use shell functions:

cust_foo () (
 echo “bar=topless” > \
 ${NANO_WORLDDIR}/etc/foo
)
customize_cmd cust_foo

Size of RAM disks

● /etc and /var are md(4) [malloc] disks.
● Default size: 5MB
● Change size:

NANO_RAM_ETCSIZE=20480

NANO_RAM_TMPVARSIZE=40960

Default customize functions

● customize_cmd cust_comconsole

– Serial console, no gettys on VGA
(/dev/ttyv*)

● customize_cmd cust_allow_ssh_root

– Allow root to login with ssh(1)
● customize_cmd cust_install_files

– Installs files from .../nanobsd/Files
– Contains sysadm convenience scripts

Sysadm on Nanobsd

● change_password

– Changes roots password, saves on /cfg
● save_sshkeys

– Saves ssh host keys on /cfg
● updatep1
updatep2

– Updates codepartition.

Updating software

● Myhost# nc -l 2222 < _.disk.image
● # nc myhost 2222 | sh updatep1

● # ftp myhost
get _.disk.image “| sh updatep1”

● # ssh myhost cat _.disk.image.gz |
 zcat | sh updatep1

Living with NanoBSD

● Prepare for software updates:

tail /etc/rc.local

if [-f /etc/ntpns] ; then
 /etc/ntpns -c /etc/ntpns.conf
else
 /sbin/ntpns -c /etc/ntpns.conf
fi

Nailing NanoBSD to the wall

