
P A W E L J A K U B D A W I D E K A N D
M A R S H A L L K I R K M C K U S I C K

porting the Solaris ZFS file
system to the FreeBSD
operating system
Pawel Jakub Dawidek is a FreeBSD committer. In the
FreeBSD project he works mostly in the storage sub-
systems area (GEOM, file systems), security (disk
encryption, opencrypto framework, IPsec, jails), but
his code is also in many other parts of the system.
Pawel currently lives inWarsaw, Poland, running his
small company.

pjd@FreeBSD.org

Dr. Marshall Kirk McKusick writes books and articles,
teaches classes on UNIX- and BSD-related subjects,
and provides expert-witness testimony on software
patent, trade secret, and copyright issues, particu-
larly those related to operating systems and file sys-
tems.While at the University of California at Berke-
ley, he implemented the 4.2BSD fast file system and
was the Research Computer Scientist at the Berkeley
Computer Systems Research Group (CSRG) oversee-
ing the development and release of 4.3BSD and
4.4BSD.

mckusick@mckusick.com

TH E Z F S F I L E SY ST EM MAD E R EVO LU -
tionary (as opposed to evolutionary) steps
forward in filesystem design, with its
authors claiming that they threw away 20
years of obsolete assumptions to design an
integrated system from scratch. In this arti-
cle, we describe the porting of ZFS to
FreeBSD, along with describing some of the
key features of the ZFS file system.

Features of ZFS

ZFS is more than just a file system. In addition to
the traditional role of data storage, ZFS also
includes advanced volume management that pro-
vides pooled storage through a collection of one
or more devices. These pooled storage areas may
be used for ZFS file systems or exported through a
ZFS Emulated Volume (ZVOL) device to support
traditional file systems such as UFS.

POOLED STORAGE MODEL

File systems created by ZFS are not tied to a spec-
ified device, volume, partition, or disk but share
the storage assigned to a pool. The pool may be
constructed from storage ranging from a single
partition up to farms composed of hundreds of
disks. If more storage is needed, new disks can be
added at run time and the space is automatically
made available to all the file systems sharing the
pool. Thus, there is no need to manually grow or
shrink the file systems when space allocation
requirements change. There is also no need to cre-
ate slices or partitions. When working with ZFS,
tools such as fdisk(8), bsdlabel(8), newfs(8),
tunefs(8), and fsck(8) are no longer needed.

COPY-ON-WRITE DESIGN

File systems must be in a consistent state to func-
tion in a stable and reliable way. Unfortunately, it
is not easy to guarantee consistency if a power fail-
ure or a system crash occurs, because most file sys-
tem operations are not atomic. For example, when
a new hard link to a file is created, the file system
must create a new directory entry and increase the
link count in the inode. These changes usually
require writing two different disk sectors. Atomic-
ity of disk writes can only be guaranteed on a per-
sector basis. Two techniques have been used to
maintain filesystem consistency when multiple
sectors must be updated:

; LOGIN: JUNE 2007 PORTING THE SOLARIS ZFS F I LE SYSTEM TO THE FREEBSD OS 19

June07login_press.qxd:login June 06 Volume 31 5/27/07 10:22 AM Page 19

� Checking and repairing the file system with
the fsck utility on boot [11], a technique that
has lost favor as disk systems have grown.
Starting with FreeBSD 5.0, it is possible to
run the fsck program in the background, sig-
nificantly reducing system downtime [9].

� To allow an immediate reboot after a crash,
the file system uses soft updates to guarantee
that the only inconsistency the file system
might experience is resource leaks stemming
from unreferenced blocks or inodes [5, 10].

McKusick added the ability to create snapshots to
UFS, making background fsck possible [12]. Un-
fortunately, filesystem snapshots have a few disad-
vantages, because during one step of a snapshot
all write operations to the file system are blocked.
Luckily, this step does not depend on filesystem
size and takes only a few seconds. However, the
time of the step that sets up the snapshot grows
linearly with the size of the file system and gener-
ates heavy I/O load. So even though the file sys-
tem continues to operate, its performance is
degraded while the snapshot is being prepared.

Once a snapshot is taken, all writes to the file sys-
tem must be checked to see whether an older
copy needs to be saved for the snapshot. Because
of the design of snapshots, copies are rarely
needed and thus do not appreciably slow down
the system. A slowdown does occur when remov-
ing many small files (i.e., any file less than 96
kilobytes whose last block is a fragment) that are
claimed by a snapshot. In addition, checking a file
system in the background slows operating system
performance for many hours because of its added
demands on the I/O system. If the background
fsck fails (usually because of hardware-based disk
errors) the operating system needs to be rebooted
and the file system must be repaired in the fore-
ground. When a background fsck has failed, it
means that the system has been running with an
inconsistent file system, which implies undefined
behavior.

The second technique used requires storing all
filesystem operations (or only metadata changes)
first in a special journal. Once the entire operation
has been journaled, filesystem updates may be
made. If a power failure or a system crash occurs,
incomplete entries in the journal are removed and
partially completed filesystem updates are finished
by using the completed entries stored in the jour-
nal. Filesystem journaling is currently the most
popular way of managing filesystem consistency
[1, 17, 18].

The ZFS file system needs neither fsck nor jour-
nals to guarantee consistency. Instead it takes an

alternate copy-on-write (COW) approach. COW
means that ZFS never overwrites valid data.
Instead, ZFS always writes data into a free area.
When the data is safely stored, ZFS switches a sin-
gle pointer in the block’s parent. With this tech-
nique, block pointers never point at inconsistent
blocks. This design is similar to the WAFL file
system design [6].

END-TO-END DATA INTEGRITY AND SELF-HEAL ING

Another important ZFS feature is end-to-end data
integrity. All data and metadata undergoes check-
sum operations using one of several available
algorithms (fletcher2, fletcher4 [4], or SHA256
[14]). ZFS can detect silent data corruption
caused by any defect in disk, controller, cable,
driver, or firmware. There have been many reports
from Solaris users of silent data corruption that
has been successfully detected by ZFS. If the stor-
age pool has been configured with some level of
redundancy (RAID-Z or mirroring) and data cor-
ruption is detected, ZFS not only reconstructs the
data but also writes valid data back to the compo-
nent where corruption was originally detected.

SNAPSHOTS AND CLONES

Snapshots are easy to implement for file systems
such as ZFS that store data using a COW model.
When new data are created, the file system simply
does not free the block with the old data. Thus,
snapshots in ZFS are cheap to create (unlike UFS2
snapshots). ZFS also allows the creation of a
clone, which is a snapshot that may be written.
Finally, ZFS has a feature that allows it to roll
back a snapshot, forgetting all modifications intro-
duced after the snapshot was created.

ZFS supports compression at the block level. Cur-
rently, Jeff Bonwick’s variant of the Lempel-Ziv
compression algorithm and the gzip compression
algorithm are supported. Data encryption is also a
work in progress [13].

Porting ZFS to FreeBSD

We describe work done by Pawel Jakub Dawidek
in porting ZFS to FreeBSD in the remainder of
this article. This task seemed daunting at first, as
a student had spent an entire Summer of Code
project looking at porting ZFS to Linux and had
made little progress. However, a study of the ZFS
code showed that it had been written with porta-
bility in mind. The ZFS code is clean, well com-
mented, and self-contained. The source files rarely

20 ; LOG I N : VO L . 3 2 , NO . 3

June07login_press.qxd:login June 06 Volume 31 5/27/07 10:22 AM Page 20

include system headers directly. Most of the time,
they include only ZFS-specific header files and a
special zfs_context.h header where system-specific
includes are placed. Large parts of the kernel code
can be compiled in a user process and run by the
ztest utility for regression and stress testing.

So, Dawidek felt a fresh start on doing a port
seemed appropriate, this time taking the approach
of making minimal changes to the ZFS code base
itself. Instead, Dawidek built a set of software
compatibility modules to convert from the
FreeBSD internal interfaces to those used by
Solaris and expected by ZFS. Using this approach,
he had an initial port up and running with just
ten days of effort.

SOLARIS COMPATIB I L ITY LAYER

When a large project such as ZFS is ported from
another operating system, it is important to keep
modifications of the original code to a minimum.
Having fewer modifications makes porting easier
and makes the importation of new functionality
and bug fixes much less difficult.

To minimize the number of changes, Dawidek cre-
ated a Solaris-compatible application program-
ming interface (API) layer. The main goal was to
implement the Solaris kernel functions that ZFS
expected to call. These functions were imple-
mented by using the FreeBSD kernel program-
ming interface (KPI). Many of the API differences
were simple, involving different function names,
slightly different arguments, or different return
values. For other APIs, the functionality needed to
be fully implemented from scratch. This tech-
nique proved to be quite effective. For example,
after these stubs were built, only 13 files out of
112 of the core ZFS implementation directory
needed to be modified.

The following milestones were defined to port the
ZFS file system to FreeBSD:

1. Create a Solaris-compatible API using the
FreeBSD API.

2. Port the user-level utilities and libraries.
3. Define connection points in ZFS where

FreeBSD makes its service requests. These
service requests include:
� ZFS POSIX Layer, which has to be able to

communicate with the virtual filesystem
(VFS) layer

� ZFS Emulated Volume (ZVOL), which has
to be able to communicate with the Free-
BSD volume-management subsystem
(GEOM)

� /dev/zfs, a control device that communi-
cates with the ZFS user-level utilities and
libraries

4. Define connection points in ZFS where the
storage pool virtual device (VDEV) needs to
make I/O requests to FreeBSD.

ZFS POSIX LAYER

The ZFS POSIX layer receives requests from the
FreeBSD VFS interface. This interface was the
hardest part of the entire port to implement. The
VFS interface has many complex functions and is
quite system-specific. Although the Solaris and
FreeBSD VFS interfaces had a common heritage
twenty years ago, much has changed between
them over the years. VFS on Solaris seems to be
cleaner and a bit less complex than FreeBSD’s.

ZFS EMULATED VOLUME

A ZFS VDEV managed storage pool can serve
storage in two ways, as a file system or as a raw
storage device. ZVOL is a ZFS layer responsible
for exporting part of a VDEV-managed storage
pool as a disk device.

FreeBSD has its own GEOM layer, which can also
be used to manage raw storage devices either to
aggregate them with RAID or by striping, or to
subdivide them using partitioning. GEOM can
also be used to provide compression or encryption
(see [12], pp. 270–276, for details on GEOM).

To maximize the flexibility of ZVOL, a new ZVOL
provider-only GEOM class was created. As a
GEOM provider, the ZVOL storage pool is
exported as a device in /dev/ (just like other
GEOM providers). So, it is possible to use a ZFS
storage pool for a UFS file system or to hold a
swap-space partition.

ZFS VIRTUAL DEVICES

A ZFS VDEV-managed storage pool has to use
storage provided by the operating system [16].
The VDEV has to be connected to storage at its
bottom layer. In Solaris there are two types of
storage used by VDEVs: storage from disks and
storage from files. In FreeBSD, VDEVs can use
storage from any GEOM provider (disk, slice, par-
tition, etc.). ZFS can access files by making them
look like disks using an md(4) device.

Rather than interfacing directly to the disks, a
new VDEV consumer-only GEOM class was cre-
ated to interface ZFS to the GEOM layer in

; LOGIN: JUNE 2007 PORTING THE SOLARIS ZFS F I LE SYSTEM TO THE FREEBSD OS 21

June07login_press.qxd:login June 06 Volume 31 5/27/07 10:22 AM Page 21

FreeBSD. In its simplest form, GEOM just passes
an uninterpreted raw disk to ZFS. But all the
functionality of the GEOM layer can be used to
build more complex storage arrangements to pass
up to a VDEV-managed storage pool.

EVENT NOTI F ICATION

ZFS has the ability to send notifications on vari-
ous events. Those events include information
such as storage pool imports as well as failure
notifications (I/O errors, checksum mismatches,
etc.). Dawidek ported this functionality to send
notifications to the devd(8) daemon, which
seemed to be the most suitable communication
channel for those types of messages. In the future,
a dedicated user-level daemon to manage mes-
sages from ZFS may be written.

KERNEL STATISTICS

Solaris exports various statistics (mostly about
ZFS-cache and name-cache usage) via its kstat
interface. This functionality was directed to the
FreeBSD sysctl(9) interface. All statistics can be
printed using the following command:

sysctl kstat

ZFS AND FREEBSD JAI LS

ZFS works with Solaris zones [15]. In our port,
we make it work with FreeBSD jails [7], which
have many of the same features as zones. A useful
attribute of ZFS is that once it has constructed a
pool from a collection of disks, new file systems
can be created and managed from the pool with-
out requiring direct access to the underlying disk
devices. Thus, a jailed process can be permitted
to manage its own file system since it cannot
affect the file systems of other jails or of the base
FreeBSD system. If the jailed process were permit-
ted to directly access the raw disk, it could mount
a denial-of-service attack by creating a file system
with corrupted metadata and then panicking the
kernel by trying to access that file system.

ZFS fits into the jail framework well. Once a pool
has been assigned to a jail, the jail can operate on
its own file system tree. For example:

main# zpool create tank mirror da0 da1
main# zfs create tank/jail
main# zfs set jailed=on tank/jail
main# zfs jail 1 tank/jail

jail# zfs create tank/jail/home
jail# zfs create tank/jail/home/pjd
jail# zfs create tank/jail/home/mckusick
jail# zfs snapshot tank/jail@backup

FreeBSDModifications

There were only a few FreeBSD modifications
needed to port the ZFS file system.

The mountd(8) program was modified to work
with multiple export files. This change allows the
zfs(1) command to manage private export files
stored in /etc/zfs/exports.

The vnode-pointer-to-file-handle (VPTOFH) oper-
ation was switched from one based on the filesys-
tem type (VFS_VPTOFH) to one based on the
vnode type (VOP_VPTOFH). Architecturally, the
VPTOFH translation should always have been a
vnode operation, but Sun first defined it as a
filesystem operation, so BSD did the same to be
compatible. Solaris changed it to a vnode opera-
tion years ago, so it made sense for FreeBSD to do
so as well. This change allows VPTOFH to sup-
port multiple node types within one file system.
For example, in ZFS the v_data field from the
vnode structure can point at two different struc-
tures (either znode_t or zfsctl_node_t). To be able
to recognize which structure it references, two dif-
ferent vop_vptofh functions are defined for those
two different types of vnodes.

The lseek(2) API was extended to support the
SEEK_DATA and SEEK_HOLE operation types
[2]. These operations are not ZFS-specific. They
are useful on any file system that supports holes
in files, as they allow backup software to identify
and skip holes in files.

The jail framework was extended to support “jail
services.” With this extension, ZFS can register
itself as a jail service and attach a list of assigned
ZFS datasets to the jail’s in-kernel structures.

User-level Utilities and Libraries

User-level utilities and libraries communicate with
the kernel part of ZFS via the /dev/zfs control
device. We needed to port the following utilities
and libraries:

� zpool: utility for storage pools configuration
� zfs: utility for ZFS file systems and volumes

configuration
� ztest: program for stress testing most of the

ZFS code
� zdb: ZFS debugging tool

22 ; LOG I N : VO L . 3 2 , NO . 3

June07login_press.qxd:login June 06 Volume 31 5/27/07 10:22 AM Page 22

� libzfs: the main ZFS user-level library used by
both the zfs and zpool utilities

� libzpool: test library containing most of the
kernel code, used by ztest

To make it work, we also ported libraries (or
implemented wrappers) they depend on: libavl,
libnvpair, libutil, and libumem.

Testing FileSystem Correctness

It is quite important and very hard to verify that a
file system works correctly. The file system is a
complex beast and there are many corner cases
that have to be checked. If testing is not done
right, bugs in a file system can lead to application
misbehavior, system crashes, data corruption, or
even security failure. Unfortunately, we did not
find freely available filesystem test suites that ver-
ify POSIX conformance. Instead, Dawidek wrote
the fstest test suite [3]. The test suite currently
contains 3438 tests in 184 files and tests all the
major filesystem operations including chflags,
chmod, chown, close, link, mkdir, mkfifo, open,
read, rename, rmdir, symlink, truncate, and
unlink.

Filesystem Performance

Below are some performance numbers that com-
pare the current ZFS version for FreeBSD with
various UFS configurations. Note that all file sys-
tems were tested with the atime option turned off.
The ZFS numbers are measured with checksum-
ming enabled, as that is the recommended config-
uration.

Untarring src.tar archive four times one by one:

UFS 256s
UFS+soft-updates 207s
UFS+gjournal+async 127s
ZFS 237s

Removing four src directories one by one:

UFS 230s
UFS+soft-updates 94s
UFS+gjournal+async 48s
ZFS 97s

Untarring src.tar by four processes in parallel:

UFS 345s
UFS+soft-updates 333s
UFS+gjournal+async 158s
ZFS 199s

Removing four src directories by four processes in
parallel:

UFS 364s
UFS+soft-updates 185s
UFS+gjournal+async 111s
ZFS 220s

Executing dd if=/dev/zero of=/fs/zero bs=1m
count=5000:

UFS 78s
UFS+soft-updates 77s
UFS+gjournal+async 200s
ZFS 111s

Status and Future Directions

After about six months of work, the ZFS port is
almost finished. About 98% of the functionality is
ported and tested. The primary work that remains
is to tune its performance.

Here are some missing functionalities:

� ACL support. Currently ACL support has not
been ported. ACL support is difficult to im-
plement because FreeBSD has only support
for POSIX.1e ACLs, whereas ZFS implements
NFSv4-style ACLs. Porting NFSv4-style ACLs
to FreeBSD requires the addition of system
calls, updating system utilities to manage
ACLs, and preparing procedures on how to
convert from one ACL type to another.

� Allowing ZFS to export ZVOLs over iSCSI. At
this point there is no iSCSI target daemon in
the FreeBSD base system, so there is nothing
with which to integrate this functionality.

� Code optimization. Many parts of the code
were written quickly but inefficiently.

ZFS was recently merged into the FreeBSD base
system. Indeed, it may be ready for version 7.0
release. There are no plans to merge ZFS to the
RELENG_6 branch.

The UFS file system supports system flags—
chflags(2). There is no support for those in the
ZFS file system, but it would be easy to add sup-
port for system flags to ZFS.

There is no encryption support in ZFS itself, but
there is an ongoing project to implement it. It
may be possible to cooperate with Sun developers
to help finish this project. With a properly defined
interface within ZFS, it would be easy to integrate
encryption support provided by the opencrypto
framework [8].

; LOGIN: JUNE 2007 PORTING THE SOLARIS ZFS F I LE SYSTEM TO THE FREEBSD OS 23

June07login_press.qxd:login June 06 Volume 31 5/27/07 10:22 AM Page 23

ACKNOWLEDGMENTS

We would like to thank the ZFS developers, who
created a great file system, and the FreeBSD Foun-
dation (www.FreeBSDFoundation.org) for their
support. The machines from the FreeBSD Netperf
Cluster (www.freebsd.org/projects/netperf/cluster
.html)were used for much of the development
work. Pawel Jakub Dawidek would like to thank
Wheel LTD (www.wheel.pl). He was able to do
this work during his day job. Finally, we would
like to thank the FreeBSD community for their
never-ending support and warm words.

REFERENCES

[1] S. Best, “JFS Overview” (2000): http://
www-128.ibm.com/developerworks/linux/
library/l-jfs.html.

[2] J. Bonwick, “SEEK_HOLE and SEEK_DATA
for Sparse Files” (2005): http://blogs.sun.com/
bonwick/entry/seek_hole_and_seek_data.

[3] P. Dawidek, “File System Test Suite” (2007):
http://people.freebsd.org/~pjd/fstest/.

[4] J. Fletcher, “Fletcher’s Checksum” (1990):
http://en.wikipedia.org/wiki/Fletcher’s_checksum.

[5] G. Ganger, M.K. McKusick, C. Soules, and Y.
Patt, “Soft Updates: A Solution to the Metadata
Update Problem in File Systems,” ACM Transac-
tions on Computer Systems 18(2) (2000): 127–153.

[6] D. Hitz, J. Lau, and M. Malcolm, “File System
Design for an NFS File Server Appliance,” USE-
NIX Association Conference Proceedings (Berkeley,
CA: USENIX Association, 1994), pp. 235–246.

[7] P. Kamp and R. Watson, “Jails: Confining the
Omnipotent Root,” Proceedings of the Second Inter-
national System Administration and Networking
Conference (SANE) (2000): http://docs.freebsd.org/
44doc/papers/jail/.

[8] S. Leffler, “Cryptographic Device Support for
FreeBSD,” Proceedings of BSDCon 2003 (Berkeley,
CA: USENIX, 2003), pp. 69–78.

[9] M.K. McKusick, “Running Fsck in the Back-
ground,” Proceedings of the BSDCon 2002 Confer-
ence, pp. 55–64.

[10] M.K. McKusick and G. Ganger, “Soft
Updates: A Technique for Eliminating Most Syn-
chronous Writes in the Fast Filesystem,” Proceed-
ings of the FREENIX Track at the 1999 USENIX
Annual Technical Conference (Berkeley, CA:
USENIX Association, 1999), pp. 1–17.

[11] M.K. McKusick and T.J. Kowalski, “Fsck:
The UNIX File System Check Program,” in
4.4BSD System Manager’s Manual (Sebastopol, CA:
O’Reilly & Associates, 1994), vol. 3, pp. 1–21.

[12] M.K. McKusick and G. Neville-Neil, The
Design and Implementation of the FreeBSD Operat-
ing System (Reading, MA: Addison-Wesley, 2005).

[13] D. Moffat, “ZFS Encryption Project” (2006):
www.opensolaris.org/os/project/zfs-crypto/files/
zfs-crypto.pdf.

[14] NIST, “SHA Hash Functions” (1993):
http://en.wikipedia.org/wiki/SHA-256.

[15] D. Price and A. Tucker, “Solaris Zones: Oper-
ating System Support for Consolidating Commer-
cial Workloads,” Proceedings of LISA ’04: 18th
Large Installation System Administration Conference
(Berkeley, CA: USENIX Association, 2004), pp.
241–254.

[16] Sun Microsystems, “ZFS Source Tour”
(2007): http://www.opensolaris.org/os/
community/zfs/source/.

[17] A. Sweeney, D. Doucette, W. Hu, C. Ander-
son, M. Nishimoto, and G. Peck, “Scalability in
the XFS File System,” USENIX 1996 Annual Tech-
nical Conference Proceedings (Berkeley, CA:
USENIX Association, 1996), pp. 1–14.

[18] S. Tweedie, “EXT3, Journaling Filesystem,”
Ottawa Linux Symposium (2003): http://ssrc.cse
.ucsc.edu/PaperArchive/ext3.html.

24 ; LOG I N : VO L . 3 2 , NO . 3

June07login_press.qxd:login June 06 Volume 31 5/27/07 10:22 AM Page 24

