
Variant Symbolic Links for FreeBSD

Brooks Davis

Computer Systems Research Department
Computers and Software Division

The Aerospace Corporation

August 2008



Introducing Variant Symlinks Our Implementation Implementation Questions

Outline

1 Introducing Variant Symlinks

2 Our Implementation
Overview
Namespaces
System Calls
Structures

3 Implementation Questions



Introducing Variant Symlinks Our Implementation Implementation Questions

Outline

1 Introducing Variant Symlinks

2 Our Implementation
Overview
Namespaces
System Calls
Structures

3 Implementation Questions



Introducing Variant Symlinks Our Implementation Implementation Questions

What are Variant Symlinks?

Symbolic links that change targets based on variables
$ echo bar > bar; echo baz > baz
$ ln -s ’${XXX}’ foo
$ ls -l foo
lrwxr-xr-x 1 brooks wheel ... foo -> ${XXX}
$ varsym XXX=bar cat foo
bar
$ varsym XXX=baz cat foo
baz



Introducing Variant Symlinks Our Implementation Implementation Questions

Prior Art

AFS @sys
AFS allows symlinks to contain the magic variable @sys which
identifies the local system type.

Domain/OS
Apollo’s Domain/OS allows arbitrary environment variablesa in
symlinks.

aPossible due to path lookup being done in userspace.



Introducing Variant Symlinks Our Implementation Implementation Questions

Outline

1 Introducing Variant Symlinks

2 Our Implementation
Overview
Namespaces
System Calls
Structures

3 Implementation Questions



Introducing Variant Symlinks Our Implementation Implementation Questions

Overview

Overview

Derived from DragonFly BSD Implementation
Matt Dillon did the DFBSD version
Andrey Elsukov did an initial port to FreeBSD

/bin/sh style syntax
${VAR} can appear anywhere in a symlink path
Administrator may optionally enable ${VAR:default}
support.
Variables are set with varsym(1)



Introducing Variant Symlinks Our Implementation Implementation Questions

Overview

Overview

Derived from DragonFly BSD Implementation
Matt Dillon did the DFBSD version
Andrey Elsukov did an initial port to FreeBSD

/bin/sh style syntax
${VAR} can appear anywhere in a symlink path
Administrator may optionally enable ${VAR:default}
support.
Variables are set with varsym(1)



Introducing Variant Symlinks Our Implementation Implementation Questions

Namespaces

Namespaces

System Scope Variables
Take precedence over process variables
Settable by super user only
No allocation limits
Target for virtualization

Process Scope Variables
Settable on the current process
Variables follow fork
Setting is a privileged operation by default
Limited in number if unprivileged



Introducing Variant Symlinks Our Implementation Implementation Questions

System Calls

syscalls

int varsym set(int scope, id t which,
const char *name, const char *data)

Sets the variable name in the object specified by scope and
which to the value pointed to by data.

int varsym get(int scope, id t which,
const char *name, char *buf, size t *size)

Retrieves the variable name in the object specified by scope
and which and returns the value in buf. The amount written is
returned in size.



Introducing Variant Symlinks Our Implementation Implementation Questions

System Calls

syscalls

int varsym list(int scope, id t which,
char *buf, size t *size);

Retrieves all variables in the object specified by scope and
which and writes them to buf as a 0 separated list. The
amount written is returned in size.

General Notes
The which variable is currently unused. To prevent
applications from setting values that might someday be
used, we require which to be set to 0.
There is no easy way to size the buffer for
varsym list() so allocating something largish and
looping until you don’t get E2BIG is required.



Introducing Variant Symlinks Our Implementation Implementation Questions

Structures

Kernel Structures

varsym t
struct varsym {

u_int vs_refs;
int vs_namelen;
char *vs_name;
char *vs_data;

};
typedef struct varsym *varsym_t;



Introducing Variant Symlinks Our Implementation Implementation Questions

Structures

Kernel Structures

struct varsymset
struct varsyment {

TAILQ_ENTRY(varsyment) ve_entry;
varsym_t ve_sym;

};

struct varsymset {
TAILQ_HEAD(, varsyment) vx_queue;
int vx_setsize;

};



Introducing Variant Symlinks Our Implementation Implementation Questions

Outline

1 Introducing Variant Symlinks

2 Our Implementation
Overview
Namespaces
System Calls
Structures

3 Implementation Questions



Introducing Variant Symlinks Our Implementation Implementation Questions

Other Things I’m Thinking About

Should we use /bin/sh, AFS, or some other syntax like
%%VAR%%?
Should we limit varsyms when they can only be
manipulated by privileged users?
Should we have separate privileged and unprivileged
per-process sets?
Syscalls return ENOSYS when disabled, is that OK?
Should we put this in GENERIC?


	Introducing Variant Symlinks
	Our Implementation
	Overview
	Namespaces
	System Calls
	Structures

	Implementation Questions

