
Evaluation of Source Code Copy Detection Methods on
FreeBSD

Hung-Fu Chang
University of Southern California

University Park Campus,
University of Southern California

Los Angeles, CA 90089, USA
+1 213 740-9621

hungfuch@usc.edu

Audris Mockus
Avaya Labs Research

233 Mt. Airy Rd.
Basking Ridge, NJ, USA 07920

+1 908 696-5608

audris@avaya.com

ABSTRACT
Studies have shown that substantial code reuse is common in
open source and in commercial projects. However, the precise
extent of reuse and its impact on productivity and quality are not
well investigated in the open source context. Previously, we have
introduced a simple-to-use method that needs only a set of file
pathnames to identify directories that share filenames and
partially validated its performance on a set of closed-source
projects. To evaluate this method and to improve reuse detection
at the file level, we apply it and four additional file copy
detection methods that utilize the underlying content of multiple
versions of the source code on the FreeBSD project. The
evaluation quantified unique advantages of each method and
showed that the filename method detected roughly half of all
reuse cases. We are still faced with a challenge to scale the
content based methods to large repositories containing all
versions of open source files.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance and
Enhancement – Restructuring, reverse engineering, and
reengineering; Version control

General Terms

Algorithms, Measurement

Keywords
Cloning, Version Control, Clone Detection, Code copying, Open
Source

1.Introduction
Code reuse is a technique that reduces redundant work by
copying existing code to another program during software
development. Previous studies [2, 3] suggested that highly reused
code provides more reliable code and requires less maintenance
efforts. Besides, research on large-scale reuse detection indicated
more implicit advantages of understanding code reuse relations
among different projects and version control systems. For
example, the code reuse relation may help trace bugs among all
reused copies if we find one in anyone of them. Because source
codes often embed the knowledge or expertise, knowing code
transfer also means that we can discover the knowledge transfer
between projects. Furthermore, we can identify the original
authors of the program. Our particular objective is to join
multiple version control systems via detected instances of file
copying to analyze the complete history of each file.

Software repositories store the whole path of files, for example,
“/directory1/directory2/file” and the content of each version of
the file. Most code reuse detection methods focus on determining
the copied files, reused components or reused functions based on
the content of the underlying source code. Our previously
proposed method [5], Filename Comparison (FC), suggested that
it may be sufficient to have only the file paths to identify reuse at
the file and directory level, without the need to extract and
process massive volumes of multiple versions of the underlying
source code. Although the accuracy of FC method has been
validated with experiments on Avaya’s projects with known
instances of reuse, we could not establish how many files that
were copied without our knowledge were missed by FC detection
approach. This issue is particularly salient in open source
projects, where no instances of file copy are known a priori.
Therefore, constructing a validation process suitable for open
source code is essential to establish the performance of FC and
other methods. We designed and implemented four additional
easy-to-implement file-level copy detection methods in this
process. As other traditional methods, these methods rely on the
underlying source code. However, the comparisons are based on
the entire sequence of versions of a file instead of being based on
a single (often final) version. Furthermore, many open source
projects have not been systematically investigated by any current
copy detection technique. We propose the validation process
using methods as a systematic way to quantify the file reuse

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’08, May 10–11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05...$5.00.

relations in open source projects and other situations where there
is no golden reference to validate a method.

Our ultimate objective is to create a more promising solution to
detect the code copy patterns in the large-scale data such as the
set of all open source projects. To achieve that, we start by
applying copy detection on FreeBSD project (of nontrivial size,
yet manageable) and compare clone detection methods against
each other to validate the detection. After the FreeBSD
experiment, we plan to apply a similar procedure on dataset
including all open source projects.

The rest of paper is arranged as follows. Section 2 starts with the
related work. Section 3 reviews the Filename Comparison and
describes other four file copy detection methods used in this
study. Section 4 presents experiment results. We conclude our
study and propose future work in Section 5.

2.Related Work
Many kinds of code copy detection approaches have been
proposed in the past. For instance, Ducasse [9] suggested a
pattern matching technique to compare strings divided from
programs to find out copies. Kamiya [10] developed a tool -
CCFinder to identify duplicated codes according to the matched
syntax trees from the lexical analysis of source code (our AST
based approach is similar the CCFinder). However, until now,
existing methods have not been used to quantify reuse in large
open source repositories because most of these studies emphasize
developing better algorithms or tools to detect clones. They also
tend to be applied on relatively smaller datasets in comparison to
the collection of all the open source codes.

Bellon et al. [14] proposed an evaluation technique that defined
three types of clones to compare 6 existing clone detection tools.
Their experiment was based on eight large C and JAVA
programs with a total of almost 850 KLOC. The results indicated
that one tool cannot analyze programs across language (only for
C) and some tool's performance in worse cases was disappointing
even on a single relative large program of their dataset. However,
their study emphasized the more significant evaluation methods
and the quality of current existing clone tools rather than
applying them to investigate all open source codes.

Because the version history of a software system represents the
evolution process of software itself, Godfrey and Zou [15]
suggested an origin analysis to detect function or file merges and
splits that have happened between versions. Although their
approach can detect the relations between versions, it may be
limited within a single system and also requires human efforts on
deciding the real match of two entities (function or file). It might
not be suitable to be applied across different software projects
(systems) such as all OSS projects.

German [12] investigated binary reuse by examining
dependencies in the Debian distribution. Here we are only
looking at the instances where the source code was copied, not
reused without change in binary form.

A service offered by Google allows users to search source code. It
is not clear how large the dataset or the methods employed by
this service.

Stefan et al. [4] believe knowledge reuse has been particularly
salient in code reuse but there are few systematic investigations
of code reuse in open source software projects. Their approach
invited open source developers to join the survey in order to
quantify code reuse among some open sources projects. Although
they observed the knowledge reuse behaviors, their method lacks

copy detection methods that can automatically identify the code
reuse in open source projects. The data they collected may not be
as large as the FreeBSD repository and much smaller than all
OSS code.

3.Method
Our focus is to measure reuse at the granularity of individual file
in open source repositories - not at a finer granularity of a
method or a function. We refer to this as a large-scale reuse as
opposed to small-scale reuse that investigates reuse at the
function, method, or even a code block level. Our interest in
large scale reuse is motivated by our overreaching objective to
reconstruct a complete history of each source code file fen if it
spans multiple version control systems or other types of
repositories. To simplify further discussion we define two terms -
Files and Reused Files. The term “File” represents the whole
pathname of a file in a repository. If at least one nonempty (>60
characters) version of the first File is identical (is represented by
the same string) to at least one version of the second File, the
files are called Reused Files. We refer to this way of identifying
reuse as Identical Content method (IC).

We first apply FC method and then compare it to IC method on
the entire FreeBSD repository. We then further validate the copy
instances that are detected only by the FC method but are not
identified by IC method. To accomplish that, we apply Nilsimsa,
Abstract Syntax Tree, and Vector-Space methods on this subset
of files and manually inspect a small sample of mismatches. Our
fundamental assumption underlying the validation process is that
different methods are likely to detect somewhat different
instances of copying and, therefore, instances obtained by at least
one of the five methods would provide an approximation to the
full extent of reuse. We start by describing each method, present
a comparison among them, and discuss the results of the
validation.

3.1Algorithms

3.1.1Filename Comparison
In Filename Comparison method, Reused Files are detected by
finding directories that have a large fraction of identical
filenames. It contains two steps: (1) finding directory pairs with a
large fraction of identical filenames; (2) considering files with
the same names in an identical directory pair to be Reused Files.
More details are presented in [5].

3.1.2Identical Content
Identical Content method considers entire content in the version
of a source code file as a string. File A and file B are determined
to be Reused Files if there is at least one nonempty version of
file A matching at least one version in file B (the two strings
representing these versions are identical).

This method presents a way to organize our sample data. We
extract the content of all versions of all files in our target open
source site and then place them into an associative array indexed
by the content (See Table 1). The array is implemented using
Berkeley db using hash functions.

The IC method has the largest storage requirements, and, as
other content-based methods requires retrieval of all versions of
the code, but is computationally the fastest among content-based
methods used in validation.

Table 1. A schematic table of the structure of sample data

Content 1 filename1/version3;filename1/version5;
filename2/version4;…;
filename20/version4

Content 2 filename1/version1;filename4/version9

... …

Content M filename 8/version3;filenameN-1/version2;
filenameN/version4;…filenameN/version5

3.1.3Nilsimsa
This algorithm accumulates trigrams from the file content and
then hashes the summation into a 64 digit hex code. The
different bits between two Nilsimsa codes are on a scale of -128
to +128. For example, if we get 92 after comparing two
Nilisimsa codes, we know 36 bits are different and 220 bits are
the same. In this method, we setup around 24 bits as our
thresholds (around 10 %) and apply it between two file versions;
that is, we identify two files are Reused Files if the different bits
between any one version of one file and any one version the other
file are smaller 24 bits.

3.1.4Vector-Space
Like Identical Content and Nilsimsa, Vector-Space method is
also applied on two file versions to define Reused Files. We
extract programming language keywords (ex: include and main)
to build term-by-document matrices between two file version
contents and then compute the similarity (cosines of two
matrices). We setup the similarity value 0.9 as the threshold.

3.1.5Abstract Syntax Tree (AST)
We approximate the Abstract Syntax Tree by extracting control
flow keywords and block delimiters from two different versions;
then each AST becomes a string. By using string similarity
comparison method on two strings, if their similarity value is
over the threshold 0.8, we think these two versions are
duplicated. We can also identify Reused Files by its definition.
We use code to extract AST provided by Prof. A. Hassan.

3.1.6Discussion of Reused File detection methods
Table 2 summarizes the advantages and disadvantages of each
method. By understanding the pros and cons, we can understand
the possible false-positive cases in each method. In addition, a
better Reused File detection can be created by integrating
different methods though this is beyond the scope of this paper.

Table 2. Method comparison

Method Pros/Cons

Filename
Comparison

(FC)

Does not require retrieval and processing of the
code. Simple to apply and fast on large-scale
data. Cannot determine which version of a file
matches. Misses cases where individual files
were copied or renamed

Identical
Content (IC)

Simple to apply and fast (once data has been
retrieved and stored in the array). Miss cases
where copies involved a slightest edit in the
content. Is less likely to detect reuse in
repositories without version history. Requires a
large network bandwidth to retrieve and disk
space to store the data (this drawback applies
to all content-based methods).

Nilsimsa

Compare files (versions) without removing any
text. Programming language independent.
Requires some computation to compare 64
digit hex codes. May suffer from many false
positives.

Vector-Space

Programming language independent. Requires
time to extract language related tokens from
files (versions). May suffer from many false
positives.

Abstract
Syntax Tree

Can detect control flow reuse. Needs to know
about programming language syntax.

3.2Filename Comparison Validation
Above four content-based methods can be used to validate the FC
method. Because IC method indicates reuse only when two
versions share identical content (our definition of reuse), it is
used as the first choice in the validation process. Figure 1 shows
four possible validation situations.

Figure 1. Validation groups

(1) Filename & Content:

Reused Files are found by both FC and IC.

(2) Filename only:

Reused Files are found by FC but not by IC.

(3) Only Content:

Reused Files are not found by FC but found by IC.

(4) No reuse detected:

Neither FC nor IC can detect any Reused Files.

Figure 1 shows total numbers of files in each area. If the source
code is changed after a copy, the Identical Content method would
be unable to detect those files as reused. Most of these cases may
be still identified by the other three content-based methods.
Therefore, we apply Nilsimsa, Vector-Space and AST methods
on Filename only Reused Files to validate reuse that was not
identified by Identical Content method.

We apply the remaining three methods on this subset to further
validate FC method and to compare Nilsimsa, Vector-Space, and
AST methods. The following steps describe this process:

Step 1: Apply the three methods on FC-only subset.

Step 2: Extract and categorize Files detected as reused by a
single method (in addition to the filename method).

Step 2: Extract and categorize Files detected as reused by a
single method (in addition to the filename method).
For example, reuse detected only by the AST method
but not by Nilsimsa or Vector-Space method.

Step 3: Randomly sample several files from these sets
detected by one method. This way we manually
check only a sample where a method is most likely
to have produced a false positive. Otherwise we are
likely to spend most of manual comparison effort on
files that are not false positives and we would need a
much bigger sample to see a meaningful number of
false positives. The size of the sample should be
large enough to make inference about method's error
rate on that set.

Step 4: Assign two experts to investigate the reuses and
record the results and reasons.

Step 5: Compare two result sets.

To get a more complete understanding of performance of all
methods, we plan to apply the last three methods to the entire
dataset to estimate the reuse cases missed by IC and FC methods.
More extensive manual validation may allow to test our
underlying assumption that different methods are likely to detect
different instances of copying.

4.Results
The sample data were extracted from the FreeBSD project. The
project had a total of 57128 Files and 492583 versions of which
360877 are distinct and nonempty. All the versions of all Files
contain 8.16e9 characters. For comparison, the File list takes
only 2.6e6 characters – a difference of 3.5 orders of magnitude.

Because the current AST tool we have works only on C or C-like
programming language (ex: JAVA), we apply our methods only
to C or C-like sample data here. Consequently, 47559 Files were
extracted and 12908 Reused Files were found by Filename
Comparison method and 13077 Reused Files were found by
Identical Content method. Figure 1 shows the distribution of
those Reused Files. According to the total number Reused Files
detected by both methods, we can say that at about 43 % C-
language related Files ((7328+5580+7947) / 47559 = 43%) are
reused in FreeBSD.

Upon inspection of Reused Files detected by both methods, we
noticed that many clones were detected among different
platforms; for example, file “gen/_set_tp.c” was identical in
subdirectories “amd64”, “sparc64”, “powerpc”, “ia64”, and
“i386” of the “/freebsd/src/lib/libc/” directory. Other clones
appear to relate to directory restructuring, fore example,
“bit_fix.h“ is reused in “/freebsd/src/gnu/usr.bin/as/” and in
“/freebsd/src/contrib/binutils /gas/”.

Table 3 shows the results of validation using the other three
content-based methods on the Filename only subset. Both
Nilsimsa and AST methods detected around 3000 Reused Files
but Vector-Space method detected only 1120 files. Fewer reuses
detected imply that Vector-Space method might be influenced by
the language relevant keyword frequency. For some small size
files, Vector-Space is unable to detect copying. Furthermore, 812
files were not detected as Reused Files by the three methods
suggesting that these files are false positives (incorrectly
identified as reused) by the Filename comparison method. The
false positive rate would then be 4% (818/(20855-818)).

Table 3. Nilsimsa, Vector-Space and AST results in Filename
only zone

Method Number of Reused Files Detected

Nilsimsa 3027

AST 3143

Vector-Space 1120

Table 4 presents expert (represented by the two authors)
evaluation of the 60 samples identified as copied by only one of
the three methods. It shows that both experts agreed that AST
method correctly identified 12 Reused Files in this set. We found
that most of those Non-Reused Files were not C-language code,
for example, “c.t” file. For the Nilsimsa-only samples, only one
sample caused disagreement between two examiners. We also
found that Nilsimsa appears to match primarily on the copyright
notice. This is not particularly surprising, given the small size of
the files. The most controversial method is Vector-Space, where
both examiners have disagreement on 12 files suggesting that
even manual comparison may need firmer guidelines (the
disagreements were largely caused by different interpretations of
what constitutes copying). Based on agreed cases Vector-Space
had the highest false positive rate and, in conjunction with the
fact that it identified the smallest number of copied files, it
implies that Vector-Space may not be particularly suited for copy
detection. We heard a similar opinion from private
communications with other researchers in this area.

Table 4. Summary of random sampling results

Method Both True Both False Disagreement

AST 12 8 0

Nilisimsa 12 7 1

Vector-Space 3 5 12

5.Conclusion and Future Work
Our primary contribution is to propose a large-scale copy
detection and validation process for repositories where the
information about the copy patterns is not easily obtainable, as,
for example, in open source projects. We also extend the concept
of copy detection to the comparison files having multiple
versions and exemplify the methods and the validation process
on FreeBSD CVS version repository.

In particular, we validated previously introduced Filename
Comparison method that uses only file paths without the need to
retrieve and process file content. We found FC to detect a
significant fraction of Reused Files in FreeBSD. Despite its
severe limitation of not using file content, it detected around
60% of Reused Files that were identified using content based
methods and it has produced a 4% false-positive rate. We also
plan to validate the basic assumption of our validation procedure
that different methods detect somewhat different instances of
reuse and to estimate file copy patterns in a much larger database
of all open source projects.

Based on expert investigation on Reused Files detected by a
single content-based method, we conclude that Vector-Space
method may not be suitable for copy detection in the source code.
We may be able modify it in the future to get better results, but

combined with validation with multiple automatic methods help
us evaluate the performance of various content-based methods
and to approach our ultimate objective. Evaluation on FreeBSD
showed us that some content-based methods have to overcome
the computational challenge to be scaled to much larger scale
data.

6.Acknowledgements
We thank Prof. D. German, Prof. A. Hassan, and Dr. D. M.
Weiss for their helpful suggestions, and, especially, Prof. A.
Hassan for providing us AST approximation code.

7.References
[1] Brenda Baker. On finding duplication and near duplication

in large software system, IEEE Working Conference on
Reverse Engineering 1995.

[2] B. Lague, D. Proulx, E. Merlo, J. Maryland, J. Hudepohl,
Assessing the benefits of incorporating function clone
detection in a development process, IEEE International
Conference on Software Maintenance 1997.

[3] Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin-ichi
Sato and Ken-ichi Matsumoto. Software quality analysis by
code clones in industrial legacy software, Proceedings of
the 8th International Symposium on Software Metrics
2002.

[4] Stefan Haefliger, Georg von Krogh and Sebastian
Spaeth. Code reuse in open source software.
Management Science, Articles in Advance, pp. 1-14.

[5] Hung-Fu Chang and Audris Mockus. Constructing
universal version history. ICSE’06 Workshop on
Mining Software Repositories, pp. 76–79, Shanghai,
China, May 22-23 2006.

[6] E. Damiani, S. De Capitani di Vimercati, S.
Paraboschi, P. Samarati. An Open Digest-based
Technique for Spam Detection. ACM, vol. 41, no. 8,
pp. 74-83. The 2004 International Workshop on
Security in Parallel and Distributed Systems.

[7] Michael W. Barry and Murray Browne.
Understanding search engines: mathematical
modeling and text retrieval. SIAM 1999.

[8] Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo
SantAnna and Lorraine Bier. Clone detection using
abstract syntax trees. In Proceedings of the 8th
International Symposium on Software Metrics 1998.

[9] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
International Conference on Software Maintenance
1999.

[10] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans.
Software Engineering, Vol. 28, No.7, 2002.

[11] Audris Mockus. Large-scale code reuse in open source
software. International Workshop on Emerging
Trends in FLOSS Research and Development, May
20-26 2007.

[12] Daniel M. German. Using Software Distributions to
Understand the Relationship among Free and Open
Source Software Projects.ICSE’07 Workshop on
Mining Software Repositories, pp.24, 2007.

[13] Cory Kapser and Michael W. Godfrey. Improved tool
support for the investigation of duplication in
software. International Conference on Software
Maintenance 2005.

[14] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens
Krinke, Ettore Merlo. Comparison and Evaluation of
Clone Detection Tools. IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp.577-591,
Sep., 2007.

[15] Michael W. Godfrey, Lijie Zou. Using Origin Analysis
to Detect Merging and Splitting of Source Code
Entities. IEEE Transactions on Software
Engineering, vol. 31, no. 2, pp.166-181, Feb., 2005

	1.Introduction
	2.Related Work
	3.Method
	3.1Algorithms
	3.1.1Filename Comparison
	3.1.2Identical Content
	3.1.3Nilsimsa
	3.1.4Vector-Space
	3.1.5Abstract Syntax Tree (AST)
	3.1.6Discussion of Reused File detection methods

	3.2Filename Comparison Validation

	4.Results
	5.Conclusion and Future Work
	6.Acknowledgements
	7.References

