
An Independent H-TCP Implementation under FreeBSD 7.0
– Description and Observed Behaviour

Grenville Armitage,
Lawrence Stewart

Swinburne University of
Technology

Melbourne, Australia
garmitage@swin.edu.au
lastewart@swin.edu.au

Michael Welzl
University of Innsbruck

Austria
michael.welzl@uibk.ac.at

James Healy
Swinburne University of

Technology
Melbourne, Australia

jhealy@swin.edu.au

ABSTRACT
A key requirement for IETF recognition of new TCP algo-
rithms is having an independent, interoperable implementa-
tion. This paper describes our BSD-licensed implementation
of H-TCP within FreeBSD 7.0, publicly available as a dy-
namically loadable kernel module. Based on our implemen-
tation experience we provide a summary description of the
H-TCP algorithm to assist other groups build further inter-
operable implementations. Using data from our live testbed
we demonstrate that our version exhibits expected H-TCP
behavior, and describe a number of implementation-specific
issues that influence H-TCP’s dynamic behavior. Finally, we
illustrate the actual collateral impact on path latency of us-
ing H-TCP instead of NewReno. In particular we illustrate
how, compared to NewReno, H-TCP’s cwnd growth strat-
egy can cause faster fluctuations in queue sizes at, yet lower
median latency through, congestion points. We believe these
insights will prove valuable predictors of H-TCP’s potential
impact if deployed in consumer end-hosts in addition to spe-
cialist, high-performance network environments.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols—Protocol verification; C.4 [Computer Systems Or-
ganization]: Performance of Systems—Measurement tech-
niques

General Terms
Experimentation, Validation, Measurement, Performance

Keywords
H-TCP, TCP, FreeBSD, Congestion control

1. INTRODUCTION
From the perspective of basic connectivity, the key in-

novation underlying today’s internet is the connectionless,
destination-based forwarding of packets. The internet pro-
tocol (IP) layer sits at the thin waist of most people’s hour-
glass view of internetworking, providing an abstract layer
for common routing and addressing that spans a multitude
of different link layer technologies.

However, credit for the internet’s wide-spread utility over
the past 25+ years must also be given to the transmission
control protocol (TCP) [1]. The relatively modern NewReno
variant of TCP [2] balances two key goals: Provide reliable
transfer of byte-streams across the IP layer’s unpredictable
packet-based service, and minimise congestion inside end
hosts and the underlying IP network(s) while maximising
performance [3]. TCP is the dominant transport protocol for
internet-based applications [4], so the latter goal has been
an active and challenging area for academic and industry
research into congestion control (CC) techniques [5].

In recent years a number of new CC algorithms have
been proposed, simulated and implemented (such as HS-
TCP [6], H-TCP [7] [8], CUBIC [9], CompoundTCP [10],
and FAST [11]). Each provide different approaches to in-
ferring the level of, and appropriate dynamic response to,
congestion within an IP network. Some have reportedly [12]
been deployed operationally prior to full, independent evalu-
ation by the IETF (internet engineering task force) or IRTF
(internet research task force).

IETF standards-track progression typically requires mul-
tiple independent and interoperable implementations be suc-
cessfully created from a published specification. In July 2007
the IETF’s Transport Area has also requested the assistance
of the IRTF’s internet congestion control research group (IC-
CRG [13]) to evaluate the dynamic behavior of new TCP
CC proposals [14]. The IRTF’s transport modeling research
group (TMRG [15]) is developing metrics and test scenarios
by which new CC schemes may be compared in a consistent
and independent manner.

To hopefully assist IETF and IRTF efforts, this paper
reports on our development of a publicly-available, BSD-
licensed implementation of H-TCP within FreeBSD 7.0 [16].
H-TCP was initially designed by the Hamilton Institute (Ire-
land), and implemented in ns-2 [17] and the Linux kernel.
Our implementation derives solely from our reading of the
published literature on H-TCP and limited email exchanges
with the H-TCP authors. We did not look at any of the
Linux or ns-2 source code for H-TCP during development of
our FreeBSD implementation.

Section 2 begins with an over-view of issues surrounding
TCP CC research. Based on our implementation experience
section 3 summarises the H-TCP algorithm to assist other
groups build further interoperable implementations. Sec-
tion 5 describes our testbed, instrumented to allow precise
tracking of various TCP parameters before, during and af-

ACM SIGCOMM Computer Communication Review 29 Volume 38, Number 3, July 2008

ter congestion events. In section 6 we discuss a number of
lessons and trade-offs, and illustrate the H-TCP behaviour
shown by our FreeBSD implementation.

In section 7 we illustrate the interesting collateral impact
on RTT of using H-TCP instead of NewReno. In particu-
lar we show how unrelated UDP flows sharing a congestion
point with a long-lived TCP flow may experience lower nett
latency, but higher levels of latency variation, when H-TCP
is used instead of NewReno.

We believe these insights will prove valuable predictors
of H-TCP’s potential impact if deployed in consumer end-
hosts (rather than simply being limited to specialist, high-
performance network environments).

2. BACKGROUND
This paper’s main focus is on providing a useful descrip-

tion of our H-TCP implementation that is shown to behave
properly under FreeBSD 7.0. In this section we shall first
summarise the broader context surrounding our work.

2.1 Congestion control
In the early 1980s TCP flow control aimed to send packets

only as fast as the receiving host could buffer and consume
them (RFC896 [18]). By the late 1980s TCP had been aug-
mented with “slow start” and “congestion avoidance” be-
haviors to also protect the underlying network itself [19].
TCP congestion control today is a balancing act between
the need to get data across the network as promptly as pos-
sible while causing minimal disruption to other traffic flows
sharing points of potential congestion. TCP needs to be ag-
gressive, yet not too aggressive, in a community where few
people entirely agree on what ‘too aggressive’ really means.
Furthermore, TCP must rely on indirect and imprecise in-
dications of congestion within the underlying IP network
(such as packet loss, or packet marking by routers along the
path) without knowing what any other TCP flow is doing
at any given instant in time.

Over the past decade NewReno (the closest we currently
come to a ‘standard’ TCP) has supported an increasingly di-
verse mix of end-to-end applications running over extremely
heterogeneous network paths. Limitations in NewReno’s dy-
namic behavior have given rise to multiple newer CC algo-
rithms, each optimised for particular real-world scenarios
considered important by their developers.

Naturally, there is room for debate between proponents
of newer CC algorithms. One might insist that a new CC
algorithm exhibit good utilization of the bottleneck link in a
high bandwidth×delay product environment, be reactive to
congestion and fair to other flows of its own kind as well as
(reasonably) fair towards standard TCP (“TCP-friendly”).
However, the behavior exhibited by any particular CC al-
gorithm can depend crucially on the chosen test case and
metrics.

The TMRG are developing a set of public baseline test
scenarios and metrics with which to compare new CC algo-
rithms. Their first “round-table” meeting on TCP evalua-
tion at Caltech on November 8 - 9, 2007 resulted in an in-
teresting discussion paper at PFLDnet 2008 [20]. This work
is on-going, and can be tracked on the TMRG website [15].

2.2 Simulation and implementation
Published studies of TCP behaviour in the past decade

have been dominated by simulation studies, often using the

ns-2 network simulator [17]. Simulation is attractive be-
cause researchers can explore basic CC ideas without having
to gain access to, or understanding of, the internals of real
operating systems. Simulations are also an attractive way
to obtain finely-grained, microscopic level details about a
CC algorithm’s dynamic behavior.

However, simulations inherently involve simplifications.
We cannot truly understand how new CC algorithms will
behave unless implemented within real-world operating sys-
tems and evaluated on real networks. Only then can we
begin to understand the impact of new CC algorithms on
the network and other traffic.

A number of studies and testbeds are attempting to pro-
vide real-world insights (cf. [21, 22]). However, instrumen-
tation is often limited to providing a relatively macroscopic
view over time of the CC algorithms under test.

The Linux-based TCP research community often utilises
Web 100 [23, 24] to instrument their end hosts and track
TCP state changes. However, Web 100 relies on regular
polling of kernel-resident TCP state (such as the congestion
window, cwnd). This imposes a trade-off between measure-
ment granularity and system performance. (It is possible
to poll in such a way that little information is lost, but
the adverse effect on machine speed may be significant). In
contrast, simulations entirely avoid the performance issues
associated with high-speed, finely-grained tracing of TCP
state variables in real operating systems.

2.3 Instrumenting FreeBSD 7.0
Our independent H-TCP implementation leverages addi-

tions to FreeBSD 7.0 created by two of the authors (Stewart
and Healy).

First, we utilised SIFTR (statistical information for TCP
research) [25], developed and released to the public during
2007. SIFTR is an event-driven (rather than polled) sys-
tem for logging changes in TCP state variables within the
FreeBSD 7.0 kernel. SIFTR performs well under realistic
network load, and provided us with a precise view of how
variables such as cwnd changed (or didn’t change) with ev-
ery packet emitted or received by our TCP end points.

Second, we implemented (and publicly released at the end
of 2007) a kernel patch for FreeBSD 7.0 that allows new
TCP congestion control algorithms to be added in a modular
fashion [26].

Our modular CC framework abstracts FreeBSD’s conges-
tion control behavior into a discrete set of functions called
from within the TCP stack. FreeBSD’s default CC algo-
rithm (NewReno) was extracted into a module and left as
the default. However, we now had the ability to add new
modules dynamically and switch between them on a per
connection basis.

(We anticipate that the framework will be available in the
FreeBSD CVS tree in the coming months, and in FreeBSD
8.0 in approximately 18 months time. Development work
can be tracked in our FreeBSD Perforce branch [27].)

3. REVIEW OF THE H-TCP ALGORITHM
The core of H-TCP is currently (as of January 2008) spec-

ified in an Internet draft [7]. A number of related papers by
Doug Leith and his colleagues at the Hamilton Institute1

1In the rest of this section we will use ‘Hamilton’ when re-
ferring to the group who developed H-TCP.

ACM SIGCOMM Computer Communication Review 30 Volume 38, Number 3, July 2008

describe further refinements to H-TCP [28, 29, 30]. This
section summarises our understanding of the attributes that
define the core of H-TCP, and the refinements proposed by
Hamilton.

3.1 Core H-TCP Algorithm
It is common practice in TCP research to generalise Stan-

dard TCP2 by specifying cwnd growth and contraction in
terms of two constants, “alpha” (α) and “beta” (β)3. Given
SMSS (the sender’s maximum segment size) we can more
precisely state that during congestion avoidance phase cwnd
grows by at most α × SMSS each rount trip time (RTT),
and after a congestion event cwnd is reduced to β × cwnd.

During congestion avoidance a common approximation
based on [3] is to grow cwnd according to Equation 1 ev-
ery time an acknowledgment arrives.

cwnd = α× (SMSS × SMSS)

cwnd
(1)

Standard TCP uses fixed values of α = 1 and β = 0.5.
In version -04 of Hamilton’s internet draft the defining

characteristic of H-TCP is the novel way in which α is var-
ied while in congestion avoidance. In particular, H-TCP
increases α based on the time (δ) since the last congestion
event.

H-TCP’s initial response to a congestion event is to behave
like NewReno, setting α = 1 until δ exceeds a configurable
threshold δl. Once δ exceeds δl, α is given by the following
quadratic:

α = 1 + 10× (δ − δl) + ((δ − δl)/2)2 (2)

δl represents the time that must elapse after a congestion
event before H-TCP’s own α increase function comes into
effect. Once δl is exceeded, cwnd growth is scaled by α
calculated according to Equation 2.

Hamilton currently recommends that δl = 1 second. Thus
for one second after every congestion event, H-TCP mim-
ics NewReno-style growth of cwnd. Beyond one second H-
TCP’s cwnd grows more aggressively the longer we go with-
out another congestion event.

Hamilton’s own Linux implementation of H-TCP includes
extensions beyond the core algorithm described above. They
include RTT scaling and Adaptive backoff, to address vari-
ous issues likely to influence H-TCP flows. To differentiate
from the core H-TCP definition we refer to the augmented
Linux implementation as defacto H-TCP. Both extensions
are briefly discussed next.

3.2 RTT scaling
Standard TCP exhibits cwnd growth that is inversely pro-

portional to RTT due to faster acknowledgment clocking.
It is therefore inherently unfair between competing flows
having different RTTs yet traversing a common bottleneck.
This sort of unfairness in the context of H-TCP is discussed
in [28] and [29].

Hamilton’s RTT scaling attempts to make the growth of
cwnd largely invariant to path RTT.

2By Standard TCP here we refer to NewReno [2], possi-
bly coupled with refinements, such as SACK [31], which do
not significantly modify NewReno’s ‘additive increase mul-
tiplicative decrease’ (AIMD) CC behavior.
3α can be considered TCP’s additive increase parameter,
while β is the multiplicative decrease parameter.

During congestion avoidance the core H-TCP algorithm’s
α from Equation 2 (now termed αraw) is scaled before being
used in the cwnd update calculation.

The scale factor ρ is calculated as:

ρ = RTTflow/RTTref (3)

where RTTflow is the current estimate of RTT between
sender and receiver, and RTTref is a common reference
RTT.

α is then calculated as follows:

αraw = 1 + 10× (δ − δl) + ((δ − δl)/2)2 (4)

α = max(1, (ρ× αraw)) (5)

Equation 5 scales αraw (the α that would be used by core
H-TCP), and the max() function ensures cwnd is always
able to grow even when ρ < 1

Selection of RTTref balances fairness and responsiveness.
Increasing RTTref penalises low RTT flows more (thereby
increasing fairness), but results in longer congestion epoch
duration and thus reduced responsiveness.

Left by itself, Equation 3 would result in RTT scaling be-
ing unduly harsh on paths with extremely low RTTs (such
as LANs) and unduly generous on paths with extremely
high RTTs (such as intercontinental/space WANs). Con-
sequently, Hamilton currently suggest setting RTTref =
100ms and bounding ρ to the range [0.1, 2]. This limits
the penalty or gain for flows exhibiting RTT ≤ 10ms or
RTT ≥ 200ms respectively (in turn bounding the achiev-
able fairness and responsiveness).

3.3 Adaptive backoff
Adaptive backoff seeks to maintain high utilisation of a

network path by ensuring the network buffers are never fully
empty. Hamilton’s approach modifies the adjustment of α
and β after acknowledgment and congestion events. The
mathematical proof underpinning their adaptive backoff al-
gorithm can be found in [30] and [28].

Adaptive backoff requires that minimum and maximum
RTT estimates (RTTmax and RTTmin) be maintained dur-
ing the flow’s lifetime, providing an indirect approximation
to the path’s propagation and queuing delays.

On receipt of an acknowledgment:

ifRTT < RTTmin, RTTmin = RTT (6)

ifRTT > RTTmax, RTTmax = RTT (7)

β = RTTmin/RTTmax (8)

α = max(1, (2× (1− β)× αraw)) (9)

where αraw is derived from Equation 4 (or Equation 2 if
you’re implementing adaptive backoff but not RTT scaling).

On congestion:

RTTmax = RTTmin + (7/8)(RTTmax −RTTmin) (10)

cwnd = β × cwnd (11)

Equation 10 provides a smoothed fading of RTTmax as con-
gestion events occur. Equations 8 and 11 ensure cwnd is
only lightly reduced on congestion if the link appears lightly
loaded (i.e. if RTTmax is not much higher than RTTmin).

ACM SIGCOMM Computer Communication Review 31 Volume 38, Number 3, July 2008

Hamilton suggests bounding β to the range [0.5, 0.8], with
β = 0.5 providing Standard TCP behavior. H-TCP does
not allow RTTmin to ever rise over time (so, for example,
RTTmin would not react to a topology change that raises
the minimum path RTT during a flow’s lifetime).

Hamilton have also proposed a further refinement called
adaptive reset, which we have not yet evaluated. Adapa-
tive reset overrides adaptive backoff if recent bandwidth es-
timates indicate the network requires more responsive reac-
tion to congestion events.

4. IMPLEMENTATION EXPERIENCE
In this section we note a number of design choices and is-

sues, and open issues that have transpired during our imple-
mentation effort. (Section 6 evaluates our implementation’s
cwnd growth after congestion events.)

4.1 Interaction with Fast Recovery
Available H-TCP literature did not clearly spell out the

relationship between H-TCP and fast recovery (FR) during
slow start. Our working assumption is that H-TCP utilises
Standard TCP FR behavior when FR is required.

Standard TCP slowstart rules govern cwnd growth when
cwnd is below the slow start threshold, ssthresh. Tradi-
tionally ssthresh is set to 0.5×cwnd on congestion, prior to
entering FR. Although not clearly stated in the published
H-TCP documentation, an email exchange with Hamilton
clarified that for H-TCP, ssthresh should be set to β×cwnd
on entry to FR (which is 0.5 × cwnd if implementing only
core H-TCP).

We do not change the Standard TCP behavior that cwnd
is set to flightsize + SMSS if the amount of inflight data
is less than ssthresh when exiting FR.

Regardless of how α is being calculated (core H-TCP, RTT
scaling, adaptive backoff or some combination) we utilise
Standard TCP’s slow start algorithm when cwnd < ssthresh,
even if α > 1.

4.2 Algorithm-specific CC data
Our H-TCP module implements additional per-flow state

in the TCP control block. New variables α and δ are re-
quired for core H-TCP, and β, RTTmin and RTTmax are
required for defacto H-TCP extensions.

δl is set to one as a global constant in our H-TCP module.
An additional variable, prev cwnd, is used to record cwnd

before entering FR, and is used to restore cwnd once we
exit FR. (FreeBSD’s existing FR code modifies cwnd in the
control block for its own purposes during the FR phase.)

4.3 Initialising and recalculating H-TCP state
Algorithm-specific variables are initialised as shown in

Listing 1. This ensures our H-TCP is functionally equiv-
alent to Standard TCP for the first δl seconds.

Listing 1 Initialisation of H-TCP specific CC variables

α = 1
β = 0.5
δ = current time
RTTmin = 0 (until 8 RTT updates have occurred)
RTTmax = 0

We piggyback updates onto the acknowledgment process-
ing data path, so RTTmin, RTTmax, β and α are all recal-
culated ready for use after each ACK received.

RTTmin is handled as a special case at the beginning of a
new TCP connection. FreeBSD’s standard RTT estimator
appeared to require a couple of packet exchanges before the
current RTT estimate became reasonable. Consequently, we
wait for 8 RTT updates to occur before setting RTTmin =
RTT (i.e. non-zero). Equation 6 applies after that point.

(Our code allows RTT scaling and/or adaptive backoff
to be turned off, which modifies or eliminates processing of
RTTmin, RTTmax and β as appropriate.)

4.4 Fixed-point calculation of alpha
The absence of floating-point operations makes Equation 2

non-trivial to perform within the FreeBSD kernel. List-
ing 2 shows our C macro that implements a reasonable
approximation to α using fixed-point arithmetic. Call this
αfixedpoint

Listing 2 Calculating α with fixed-point arithmetic

#define ALPHA_SHIFT 4

#define HTCP_CALC_ALPHA(diff) \

(((16) + \

((160 * (diff)) / hz) + \

(((diff) / hz) * \

(((diff) << ALPHA_SHIFT) / (4 * hz))) \

) >> ALPHA_SHIFT)

The macro’s parameter diff is the term δ−δl from Equa-
tion 2. Because we count time δ in terms of FreeBSD kernel
‘ticks’ the macro utilises hz (the kernel-wide constant indi-
cating the kernel’s tick rate per second) to convert back to
real time. Using hz also ensures the macro works regardless
of what kernel-wide tick rate may have been selected at boot
time.

Shifting all values by ALPHA SHIFT reduces the trun-
cation of intermediate results due to integer division. The
initial “16” value is the “1” term in Equation 2 shifted up by
ALPHA SHIFT bits (i.e. multiplied by 16, given that AL-
PHA SHIFT is currently defined as 4). Likewise, the “160”
value is the “10” multiplier in Equation 2 itself multiplied by
16. The result is down-shifted by ALPHA SHIFT to bring
it back into the correct range.

(Pre-computing the scaled forms of Equation 2’s “1” and
“10” terms speeds up the macro. However, these terms must
be re-calculated if you change ALPHA SHIFT.)

Our macro cannot take an arbitrary value for diff , lest
the middle term ((160 ∗ diff)/hz) overflows. We constrain
diff to be less than the max size of an unsigned long divided
by the constant 160 figure, i.e.
diff < [(2 ^ (sizeof(u_long) * 8)) - 1] / 160

With 32-bit unsigned longs we can support diff greater
than 24 hours, which we consider to be more than sufficient.

Figure 1 plots both αfixedpoint and Equation 2’s ‘theo-
retical’ floating-point α for diff up to 5 seconds (that is,
δ > 6 given that δl is 1). Given the rounding down in our
macro, αfixedpoint usually slightly underestimates the theo-
retical value for α. Thus our H-TCP is never more aggressive
than theoretical H-TCP behavior.

ACM SIGCOMM Computer Communication Review 32 Volume 38, Number 3, July 2008

ooo
ooooooooooooooooooo

0 1 2 3 4 5

0
1

0
2

0
3

0
4

0
5

0

diff (s)

a
lp

h
a

++
alpha vs. diff

o +fixed point alpha theoretical alpha

Figure 1: Fixed-point and theoretical alpha vs (δ−δl)

4.5 Open issues
A number of questions remain around our current design

choices, and their impact on processing load or H-TCP be-
havior performance.

Are we updating RTTmax, RTTmin, β and α more fre-
quently than necessary (by doing it on receipt of every ACK)?

We currently rely on the FreeBSD kernel’s existing smoothed
RTT estimator, based on RFC1323 and RFC 2988 [32, 33].
Future work is required to properly characterise the range of
errors this might introduce into H-TCP’s RTT scaling and
adaptive backoff.

We currently calculate δ prior to entering FR, as this is the
time at which we know congestion occurred. However, the
time spent in FR thus accrues as time since congestion. For
large RTT paths this could potentially lead to interesting
side effects where we exit fast recovery with α > 1, and
immediately begin aggressive cwnd growth.

We treat RTO firing as an indication of likely congestion.
However, in case the first firing was a false alarm we set δ
on the second firing of RTO. It may be necessary to revisit
this decision.

Finally, our work showed up some inconsistencies between
the various published works relating to H-TCP. Beneficially,
we have provided feedback to Hamilton and demonstrated
that functional H-TCP implementation can indeed be cre-
ated using the public material. However, errors may have
also crept into our own understanding.

5. EXPERIMENTAL METHODOLOGY
Although hardly representative of normal network com-

plexity, the traditional dumbbell topology in Figure 2 is quite
suitable for this paper’s goals. First, we need to show that
our H-TCP implementation’s dynamic behavior in the face
of congestion equals that of H-TCP behavior published else-
where. Second, we aim to measure and compare the changes
in latency through a congested node when using H-TCP
rather than NewReno.

Hosts A, B, C and D run FreeBSD 7.0-RC1 on a 1.86GHz
Intel Core2 Duo E6320 (4MB L2 Cache) with 1GB PC5300
DDR2 RAM and Intel PRO/1000 GT 82541PI PCI giga-
bit Ethernet interfaces. These hosts are instrumented with
SIFTR [25], enabling precise tracking of cwnd over the life-
times of active TCP sessions.

Figure 2: Simple dumbbell topology for FreeBSD
H-TCP validation and latency measurements across
a congested router

The router runs FreeBSD 7.0-RC1 on a 2.80GHz Intel
Celeron D (256K L2 Cache), 512MB PC3200 DDR-400 RAM,
with two Intel PRO/1000 GT 82541PI PCI gigabit Ethernet
cards as forwarding interfaces.

We utilise dummynet [34] to provide configurable latency
and bandwidth limits through the router. The router’s ker-
nel ticks 2000 times per second (kern.hz = 2000) for fine-
grained responsiveness and latency resolution of 0.5ms. In
addition, we patched dummynet to log changes in internal
queue size on a per-packet basis.

An Endace 3.7GF gigabit ethernet traffic capture card
(not shown in Figure 2) timestamps packet arrivals and de-
partures on both sides of the router. This allows us to calcu-
late one way delay (OWD) through the router for the trials
in section 7.

Host X is a SmartBits 2000 traffic generator, sending 200-
byte UDP/IP packets to Host D at 20ms intervals during the
latency trials in section 7. By monitoring the UDP pack-
ets from host X to host D, OWD across the router is thus
sampled approximately every 20ms, regardless of the TCP
traffic flowing at any given instant.

6. VERIFYING CORE H-TCP BEHAVIOR
A key step in verifying our FreeBSD H-TCP implemen-

tation is showing that cwnd growth in core H-TCP mode
behaves as expected.

Figure 3 compares the growth of cwnd for 2.5 seconds after
a congestion event when using core H-TCP, defacto H-TCP
(RTT scaling and adaptive backoff) and regular NewReno
over our testbed in Figure 2. A single flow ran from host
A to host C, with 80ms configured as the RTT (40ms each
way through the router).

As expected, cwnd grows more aggressively with the core
H-TCP algorithm than defacto H-TCP, and NewReno is less
aggressive than either form of H-TCP. The behavior of cwnd
exhibited by our FreeBSD H-TCP is also consistent with
previously published analyses of H-TCP.

Figure 4 compares the growth of cwnd for 2.5 seconds
after a congestion event for our implementation of core H-
TCP and Hamilton’s ns-2 implementation of H-TCP4. We
configured ns-2 to simulate the same testbed configuration
used for Figure 3. The dynamic growth of cwnd tracks very

4We ported Hamilton’s ns-2.26 code (available from
http://www.hamilton.ie/net/research.htm) to ns-2.31 [35]

ACM SIGCOMM Computer Communication Review 33 Volume 38, Number 3, July 2008

oooooo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oooo
ooooooooooooooooo

ooooo
ooo
ooo
oooo

ooo
ooo
ooo
ooo
ooo
ooo
oooooo

ooooooooooo oooo oooooooooooooo
ooooooo

ooooo
oooo

oooo
ooo

ooo
ooo

ooo
ooo

ooo
ooo

ooo
oo

ooo
oo

o

0.0 0.5 1.0 1.5 2.0

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

time since congestion (secs)

c
w

n
d

 (
p

k
ts

)

+++++
++
++
++
++
++
++
++
++
++
++
++
++
++
++++
++++
+++++++++++++++++

++++
+++
+++
+++
+++
+++
+++
+++
+++
++++

++++++++++++++++
+++++++++++++++

+++++++++++++++
+++++++++

++++++
+++++

++++
+++

+++
+++

++
++

+

XXXXX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XXXXXXXXXXXX

XXXXXXXXXXXXX
XXXXXXXXXXXXXX

XXXXXXXXXXXXXX
XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX

XXXX

Experimental (FreeBSD) Cwnd vs Time (80ms, 10Mbps, 1bdpq)

o + xhtcp_core htcp_defacto newreno

Figure 3: Core H-TCP, H-TCP with RTT scaling
and NewReno cwnd since last congestion event

+++++++++++++++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++++++
+++++++++++++++++++++++++

++++++++
+++++
+++++
++++
++++++

+++++
++++
+++++
+++++
++++
+++++
++

++++++++++++++++++++++++++++++
+++++++++++++

+++++++++
++++++++

+++++++
++++++

++++++
++++++

+++++
+++++

+++++
+++++

+++++
+++++

+++++
+++++

+++++
+++

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

time (s)

c
w

n
d

 (
p

k
ts

)

ooo

time (s)

c
w

n
d

 (
p

k
ts

)

Experimental (FreeBSD) vs Simualted (ns−2) HTCP cwnd (80ms, 10Mbps, 1bdpq)

+ oexperimental ns

Figure 4: FreeBSD core H-TCP and Hamilton’s ns-2
H-TCP cwnd since last congestion event

closely5. It seems reasonable to conclude our implementa-
tion’s behaviour matches Hamilton’s intentions.

7. IMPACT OF H-TCP ON PATH LATENCY
CC algorithms used by consumer end hosts will increas-

ingly share congestion points with latency-sensitive traffic
(such as home ‘broadband routers’ supporting internet-based
VoIP and multiplayer game applications). It is not intrin-
sically noteworthy that TCP flows can create an increase
in average queue length at congestion points. However, the
dynamic nature of the resulting queue fluctuations is inter-
esting as it impacts on unrelated application flows. This is
particularly true for CC algorithms that can exhibit ‘faster
than NewReno’ growth for cwnd (or include path latency in
their congestion-estimation feedback loop).

Rather than simply duplicate previous work comparing
H-TCP’s performance against various other CC variants [8],
here we present some initial observations regarding the im-
pact of H-TCP on the latency experienced by an unrelated

5Delayed ACKs were enabled in the FreeBSD H-TCP stack
and disabled in the ns-2 simulation. We are still review-
ing this minor discrepancy at the time of writing. Delayed
ACKs were used in all empirical measurements involving
FreeBSD H-TCP.

UDP flow sharing a single congestion point. The impact on
“innocent bystanders” (such as VoIP or game traffic sharing
a congestion point) is not yet covered by existing TMRG
guidelines for evaluating CC algorithms. To provide some
context for our results we compare H-TCP with the latency
fluctuations that would be caused by New Reno under the
same circumstances. We hope that this preliminary obser-
vation of H-TCP’s impact will encourage similar empirical
analyses involving other non-New Reno CC algorithms in
the future.

7.1 Latency measurement testbed
Two trial scenarios were run on the testbed of Figure 2 -

low speed (router configured for 1Mbit/sec rate limit) and
moderate speed (router configured for 10Mbit/sec rate limit).
In each case the router provided a one way delay (OWD) of
40ms in each direction. (These figures are rough approxi-
mations for someone serving data from behind a consumer
broadband connection to other sites within a modest coun-
try or state region. In much of the western world 1Mbit/sec
uplink speeds are unusual. Nevertheless certain countries
are trending towards deployment of consumer broadband
services with multi-megabit/sec uplinks.)

The bandwidth-delay product (BDP) of the unloaded path
was 100000 bytes (80ms × 10Mbit/sec) and 10000 bytes
(80ms × 1Mbit/sec) for the moderate and low speed cases
respectively. Some trials had the router’s dummynet queue
set (in bytes) to one BDP, other trials used 0.25 BDP.

Non-overlapping bulk data transfers of 60 second duration
were initiated from Hosts A and B toward C and D using H-
TCP and NewReno. The destination hosts (C and D) were
configured to advertise a receive window of 3 BDP (300000
and 30000 bytes for the moderate and low speed scenarios
respectively). Other details are as stated in section 5.

For clarity the Figures in this section will focus on rep-
resentative subsets of time from each trial, rather than the
full 60 seconds.

7.2 OWD due to H-TCP and NewReno

7.2.1 H-TCP with one flow
Figure 5 shows the variation over time of the router’s in-

ternal queue size, and the OWD experienced by UDP pack-
ets from Host X to Host D, when a single flow of H-TCP
traffic transits the router with a 10Mbit/sec rate limit. The
queue was capped at 1 BDP. OWD takes ≈2.5 seconds to
grow from 40ms (the configured minimum) to 120ms (40ms
plus the peak queuing delay) and collapse back to 40ms.

Figure 6 shows the same trial as Figure 5, but showing the
relationship between cwnd and router queue size over time.
(Under the same test conditions NewReno showed a cyclical
queue growth pattern, but taking ≈10 seconds to grow from
40ms to 120ms and then collapse back to 40ms.)

Figure 6 shows a consistent relationship between the growth
of cwnd and the growth in queue size at the router. This is
to be expected - as cwnd grows the sender launches packets
into the network even more frequently, increasing the nett
backlog of packets in the router queue.

One aspect of Figure 6 may seem somewhat surprising at
first sight: at the end of the FR phase, a sender should set
cwnd to ssthresh, which should be half of the cwnd before
entering this phase. However, Figure 6 shows that cwnd is

ACM SIGCOMM Computer Communication Review 34 Volume 38, Number 3, July 2008

*
*

*

*

**

*

*
*

*

**
**
**
*
**
**
**
**
**
*
**
*
**
**
**
*
**
**
**
**

*

*

*

*

*

*

*

*
*

*
*
*

**
**
**
**
**
*
**
**
**
*
*
**
**
**
**
**
*
**
**
**

*

*

*

*

*

*

*

*
*

*
*
*

**
**

**

**

**
**
*
**
**
**
**
*
**
**
**
**
**
*
**
**
**

*

*

*

*

17 18 19 20 21 22 23 24

4
0

6
0

8
0

1
0

0
1

2
0

time (secs)

o
w

d
 (

m
s
)

0
2

0
4

0
6

0
8

0
1

0
0

q
u

e
u

e
 o

c
c
u

p
a

n
c
y
 (

K
b

y
te

s
)

Delay/Queue Occupancy vs. Time

*
one way delay queue size

Figure 5: OWD and queue size vs time - 1 H-TCP
flow, 1 UDP flow, 1 BDP queue size, 10Mbit/sec

**

**

**

**
**

**

**

**

**

**

**

**

**

**
**

**

**

**
**

**

**

**

**
**
**

**

**

**

**

**
**

**

**

**

**

**

**

**

**

8 9 10 11 12 13 14

0
5

0
1

0
0

1
5

0

time (secs)

c
w

n
d

 (
p

k
ts

)

Cwnd vs. Time

0
2

0
4

0
6

0
8

0
1

0
0

q
u

e
u

e
 o

c
c
u

p
a

n
c
y
 (

K
b

y
te

s
)

*
flow 1 cwnd queue size

Figure 6: cwnd and queue size vs time - 1 H-TCP
flow, 1 UDP flow, 1 BDP queue size, 10Mbit/sec

set to a very small value and quickly increased up to half
the previous value of cwnd (ssthresh) after the FR phase.

This is caused by a mechanism for preventing so-called
“microbursts” in the FreeBSD TCP implementation. To
prevent the queue from drastically growing for a short period
by setting cwnd directly to ssthresh, cwnd is updated in
a smoother manner. Several algorithms for doing this were
proposed in [36]. In FreeBSD, a (sort of) slow start behavior
is implemented, the only difference to RTO-initiated slow
start being that there are not zero but ssthresh packets in
flight when slow start begins.

This speeds things up significantly. For instance, starting
with cwnd = one packet, it takes an RTT for cwnd to grow
to 2, another RTT to for it grow to 4 and so on. If, however,
slow start begins with ssthresh packets in flight, it takes
just one RTT for cwnd to reach ssthresh. In comparison
with setting cwnd directly to ssthresh, this behavior is less
bursty on a very short timescale.

7.2.2 H-TCP and NewReno with four flows
Figure 7 shows the OWD variation when four independent

H-TCP flows running concurrently through the router with a
10Mbit/sec rate limit and 1 BDP queue size. Two flows from
A to C, two flows from B to D. Queue growth is more rapid

*

*

**
*
*
*
*

*

*
*
*

**
**

**
**
*

*

*
**
*
**
*
*
*
**
**

*

*

*
*

*

*

**
*

*

*

*

*
**

*

**
**

**

**

**

*

*
**
*
**
**
*
*

*

*

*

*
*

*

*

*
**
**

*

*
*
*

**

**

**

**

*
**

*
**
**
**

*

*

*

*

*

*

*

18 19 20 21 22 23

4
0

6
0

8
0

1
0

0
1

2
0

time (secs)

o
w

d
 (

m
s
)

0
2

0
4

0
6

0
8

0
1

0
0

q
u

e
u

e
 o

c
c
u

p
a

n
c
y
 (

K
b

y
te

s
)

Delay/Queue Occupancy vs. Time

*
one way delay queue size

Figure 7: OWD and queue size vs time - 4 H-TCP
flows, 1 UDP flow, 1 BDP queue size, 10Mbit/sec

**
**
**
**

**
**

*

**

**

**

**

*
**
**

*

**

*

*

**

*

*

*
**

**
**

**
*
**
**

*

**

**
**

*

*
**
**

**

*

**

*
*

*
*

**
**

**
*
**

**

*

**
**
**
**

**

**
**

**
**

*
**

**
**

*

*

*

*

*

**

34 35 36 37 38 39 40 41

4
0

6
0

8
0

1
0

0
1

2
0

time (secs)

o
w

d
 (

m
s
)

0
2

0
4

0
6

0
8

0
1

0
0

q
u

e
u

e
 o

c
c
u

p
a

n
c
y
 (

K
b

y
te

s
)

Delay/Queue Occupancy vs. Time

*
one way delay queue size

Figure 8: OWD and queue size vs time - 4 NewReno
flows, 1 UDP flow, 1 BDP queue size, 10Mbit/sec

(driven by the higher aggregate number of packets in flight),
shortening the time between congestion events. OWD now
takes ≈1.6 seconds to vary from 40ms to 120ms. (Inspection
of the SIFTR logs revealed that cyclic cwnd growth and
decrease for all four flows was synchronised during this trial.)

For comparison, Figure 8 shows the same system’s be-
haviour when the end hosts use four NewReno flows rather
than H-TCP. The cyclic change in OWD takes ≈2.4 seconds,
slower than that caused by four H-TCP flows in Figure 7.

7.2.3 H-TCP with 0.25 BDP queue size
Figure 9 shows OWD and queue variation over time for H-

TCP with a 10Mbit/sec rate limit, but this time the router’s
queue size is reduced to 0.25 BDP. Congestion events occur
with a sufficiently small number of packets in flight that our
H-TCP implementation struggles to ‘regain its feet’ after ex-
iting fast recovery. Almost 1.5 seconds elapse before cwnd
growth (and hence queue growth) leaps upward, almost im-
mediately triggering another congestion event. (This isn’t
specific to H-TCP. With the queue capped at 0.25 BDP
NewReno exhibited a similar inability to grow the queue
until roughly 2.5 seconds after a previous congestion event.)

ACM SIGCOMM Computer Communication Review 35 Volume 38, Number 3, July 2008

*

*

**

*

*

*

*

*

*
*
*
*
*
*
*
**
*

*
*
*
**
*
*
**

*

*

*
*
**

*

*

*

*

*

*

*
*

*
*
*

*

*

*
*
*

*

*
*
*

*

*

*
*

*

*
*

**
*
*
*
*
*

*

**
*
*

*

*
*
*

*

*

*

*
*

*
*
*
*
**
*
*
**

*

*
**
*
*

*
**
*
*
**
*
*
*

*
*
*
*
*
*
*
**
*
*

*
*
*
*
*
*
*
*
**
*

*
*
*

*

*

*
*
*
*
*

*
*

*
*

*

*

*

*

*

*

*

*

*

**
*
*
**

*

*

*

*
*
*

*

*
*
*
*

**
*
*

*
*
*
*

*

*
*
*
*
*
*
*

*

**
*
*

*

*
*
*
*
*
*
*
**
**
*
*
**

*

*
**
*
*
*
*

*

*

*
*

*

*
*

*
*
*
*
*

*
*

*
*
*

*
*

*

*
*

*
*

*
**
*
*

19 20 21 22 23 24

4
0

4
5

5
0

5
5

6
0

time (secs)

o
w

d
 (

m
s
)

0
5

1
0

1
5

2
0

2
5

q
u

e
u

e
 o

c
c
u

p
a

n
c
y
 (

K
b

y
te

s
)

Delay/Queue Occupancy vs. Time

*
one way delay queue size

Figure 9: OWD and queue size vs time - 1 H-TCP
flow, 1 UDP flow, 0.25 BDP queue size, 10Mbit/sec

*

*

*
**

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*
* *

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *
*

*
*

*
* *

*

*

*

*

*

*

**

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*
* *

* *
*

*

20 21 22 23

4
0

6
0

8
0

1
0

0
1

2
0

time (secs)

o
w

d
 (

m
s
)

0
2

4
6

8
1

0

q
u

e
u

e
 o

c
c
u

p
a

n
c
y
 (

K
b

y
te

s
)

Delay/Queue Occupancy vs. Time

*
one way delay queue size

Figure 10: OWD and queue size vs time - 1 H-TCP
flow, 1 UDP flow, 1 BDP queue size, 1Mbit/sec

7.2.4 H-TCP with 1Mbit/sec rate limit
Figure 10 shows OWD and queue variation over time for

H-TCP through a 1 BDP queue, but this time the router’s
rate limit is reduced to 1Mbit/sec. Because of the rela-
tively low rate limit, a 1 BDP queue is only a handful of
packets long. Given the 80ms base RTT over the path,
H-TCP congests the queue in just over a one second, es-
sentially while still in its NewReno phase. The equivalent
graph for NewReno at 1Mbit/sec and a 1 BDP queue is not
shown because, not surprisingly, it looked virtually identical
to Figure 10.

7.2.5 Median OWD versus number of flows
Figure 11 illustrates the impact of queue size and num-

ber of flows on the median OWD caused by H-TCP and
NewReno.

The difference between H-TCP and NewReno is most no-
table for 10Mbit/sec rate limit and 1BDP queue size. In
the single flow case, the median OWD added by H-TCP is
≈21ms, whereas the median OWD added by NewReno is
almost 50ms. This is likely due to H-TCP’s more aggressive
cwnd growth when congestion events occur more than one
second apart. Because H-TCP then spends shorter periods
of time with the queue close to full, unrelated traffic shar-

o
o

o
o

1 2 3 4

0
2
0

4
0

6
0

8
0

Flows

A
d
d
e
d
 O

W
D

 (
m

s
)

x x x x

1 2 3 4

0
2
0

4
0

6
0

8
0

^
^ ^

^

1 2 3 4

0
2
0

4
0

6
0

8
0

~ ~ ~

~

1 2 3 4

0
2
0

4
0

6
0

8
0

+ + + +

1 2 3 4

0
2
0

4
0

6
0

8
0

v v v v

1 2 3 4

0
2
0

4
0

6
0

8
0

OWD vs. Flows

o xhtcp,10Mbps,1bdpq newreno,10Mbps,1bdpq

+ vhtcp,10Mbps,0.25bdpq newreno,10Mbps,0.25bdpq

^ ~htcp,1Mbps,1bdpq newreno,1Mbps,1bdpq

Figure 11: Median OWD versus number H-TCP or
NewReno flows, 1 and 0.25 BDP queue size

ing the queue sees less frequent instances of high additional
latency. NewReno, by comparison, leaves the queue in a rel-
atively full state for longer as it climbs towards generating
a congestion event.

As the number of flows increases, the absolute OWDs
added by H-TCP and NewReno at 10Mbit/sec both increase
slightly, but the difference between them shrinks. More
flows result in more frequent congestion events, and less time
spent by H-TCP in its aggressive cwnd growth phase.

Trials at 1Mbit/sec and 1 BDP queue size show virtu-
ally no difference between the OWD added by H-TCP or
NewReno. They both contribute just under 50ms in the one
flow case, growing to just over 60ms in the four flow case.
As seen in Figure 10, H-TCP spends virtually no time in
its more aggressive cwnd growth mode, essentially behaving
just like NewReno.

Trials at 10Mbit/sec with 0.25 BDP queue size also show
virtually no difference between H-TCP and NewReno. This
is largely because both H-TCP (as seen in Figure 9) and
NewReno spend most of their time between congestion events
struggling to grow cwnd at all. (And as the queue stays
largely unfilled between congestion events, the median OWD
added in either case is quite low.)

In other words, if available bandwidth, RTT and a con-
gestion point’s queue size together allows H-TCP to spend a
lot of time in its aggressive cwnd growth phase, H-TCP will
cause faster fluctuations in latency through the congestion
point than NewReno. But the median increase in latency is
likely to be lower than that imposed by NewReno.

8. CONCLUSION AND FURTHER WORK
This paper is our contribution to the community process

for evaluation and independent implementation of new con-
gestion control algorithms for TCP. Based on our experience
developing the first publicly-available, BSD-licensed imple-
mentation of H-TCP within FreeBSD 7.0 [16], we provide
a description of H-TCP and associated parameter settings
that should assist other implementors. Our independent im-
plementation replicates H-TCP’s cwnd growth behavior as
seen in papers previously published by the original authors
of H-TCP.

In addition, we make a preliminary exploration of the im-
pact of H-TCP’s modified CC algorithm on latency mea-
sured through a congested point in the network. TCP (re-

ACM SIGCOMM Computer Communication Review 36 Volume 38, Number 3, July 2008

gardless of CC algorithm) shares the best-effort internet
with increasingly popular non-reactive, latency-sensitive ap-
plications such as VoIP and online games. Our experiments
confirmed that H-TCP can (compared to NewReno) induce
faster cycling of queue length in (and hence latency through)
a congested router, whilst causing slightly lower increase
in median latency. We believe there is clearly room for
more research into the impact of other CC algorithms on
the dynamic network conditions experienced by unrelated
IP-based traffic.

9. ACKNOWLEDGMENTS
This work has been made possible in part by a grant from

the Cisco University Research Program Fund at Community
Foundation Silicon Valley.

10. REFERENCES
[1] J. Postel, “Transmission Control Protocol,” RFC 793

(Standard), Sep. 1981, updated by RFC 3168.
[Online]. Available: http://www.ietf.org/rfc/rfc793.txt

[2] S. Floyd, T. Henderson, and A. Gurtov, “The
NewReno Modification to TCP’s Fast Recovery
Algorithm,” RFC 3782 (Proposed Standard), Apr.
2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3782.txt

[3] M. Allman, V. Paxson, and W. Stevens, “TCP
Congestion Control ,” RFC 2581 (Proposed
Standard), Apr. 1999, updated by RFC 3390. [Online].
Available: http://www.ietf.org/rfc/rfc2581.txt

[4] M. Fomenkov, K. Keys, D. Moore, K. Claffy,
“Longitudinal study of Internet traffic in 1998-2003,”
in Winter International Symposium on Information
and Communication Technologies (WISICT), Cancun,
Mexico, January 2004. [Online]. Available:
{http://www.caida.org/publications/papers/2003/
nlanr/nlanr overview.pdf}

[5] S. Floyd, “Congestion Control Principles,” RFC 2914
(Best Current Practice), Sep. 2000. [Online].
Available: http://www.ietf.org/rfc/rfc2914.txt

[6] S. Floyd, “HighSpeed TCP for Large Congestion
Windows,” RFC 3649 (Experimental), Dec. 2003.
[Online]. Available:
http://www.ietf.org/rfc/rfc3649.txt

[7] D. Leith, R. Shorten, “H-TCP: TCP Congestion
Control for High Bandwidth-Delay Product Paths,”
Hamilton Institute, Tech. Rep., July 2007. [Online].
Available: {http://tools.ietf.org/draft/
draft-leith-tcp-htcp/draft-leith-tcp-htcp-04.txt}

[8] Y.-T. Li, D. Leith, and R. N. Shorten, “Experimental
evaluation of TCP protocols for high-speed networks,”
IEEE/ACM Trans. Netw., vol. 15, no. 5, pp.
1109–1122, 2007.

[9] I. Rhee, L. Xu and S. Ha, “CUBIC for Fast
Long-Distance Networks,” North Carolina State
University, Tech. Rep., August 2007. [Online].
Available: {http:
//tools.ietf.org/id/draft-rhee-tcpm-cubic-00.txt}

[10] M. Sridharan, K. Tan, D. Bansal and D. Thaler,
“Compound TCP: A New TCP Congestion Control
for High-Speed and Long Distance Networks,”
Microsoft, Tech. Rep., October 2007. [Online].

Available: {http://www.ietf.org/internet-drafts/
draft-sridharan-tcpm-ctcp-01.txt}

[11] D. W. C. Jin and S. Low, “FAST TCP for High-Speed
Long-Distance Networks,” Caltech, Tech. Rep., June
2003. [Online]. Available: {http:
//tools.ietf.org/id/draft-jin-wei-low-tcp-fast-01.txt}

[12] “[e2e] Are we doing sliding window in the Internet?”
January 2008. [Online]. Available:
{http://mailman.postel.org/pipermail/
end2end-interest/2008-January/007032.html}

[13] Internet Research Task Force, “Internet Congestion
Control Research Group,” Accessed 8 Jan 2007.
[Online]. Available:
{http://www.irtf.org/charter?gtype=rg&group=iccrg}

[14] Internet Engineering Task Force, “Experimental
Specification of New Congestion Control,” July 2007,
Accessed 3 Mar 2008. [Online]. Available: {http:
//www.ietf.org/IESG/content/ions/ion-tsv-alt-cc.txt}

[15] Internet Research Task Force, “Transport Modeling
Research Group,” Accessed 8 Jan 2007. [Online].
Available: {http:
//www.irtf.org/charter?gtype=rg&group=tmrg}

[16] J. Healy, L. Stewart, “H-TCP Congestion Control
Algorithm for FreeBSD,” December 2007. [Online].
Available: {http://caia.swin.edu.au/urp/newtcp/
tools/htcp-readme-0.9.txt}

[17] “The Network Simulator - ns-2,” Accessed 19 Nov
2007. [Online]. Available:
{http://www.isi.edu/nsnam/ns/}

[18] J. Nagle, “Congestion control in IP/TCP
internetworks,” RFC 896, Jan. 1984. [Online].
Available: http://www.ietf.org/rfc/rfc896.txt

[19] R. Braden, “Requirements for Internet Hosts -
Communication Layers,” RFC 1122 (Standard), Oct.
1989, updated by RFC 1349. [Online]. Available:
http://www.ietf.org/rfc/rfc1122.txt

[20] L. Andrew, C. Marcondes, S. Floyd, L. Dunn,
R. Guillier, W. Gang, L. Eggert, S. Ha, and I. Rhee,
“Towards a Common TCP Evauation Suite,” in Sixth
International Workshop on Protocols for Fast
Long-Distance Networks, Manchester, GB, March
2008. [Online]. Available: {http://www.hep.man.ac.
uk/PFLDnet2008/paper/08 Lachlan pfldnet2008.pdf}

[21] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu, “A Step
toward Realistic Performance Evaluation of
High-Speed TCP Variants,” in Fourth International
Workshop on Protocols for Fast Long-Distance
Networks, Nara, Japan, March 2006. [Online].
Available: {http:
//netsrv.csc.ncsu.edu/export/realistic-evaluation.pdf}

[22] G. S. Lee, L. L. H. Andrew, A. Tang, and S. H. Low,
“WAN-in-Lab: Motivation, Deployment and
Experiments,” in Fifth International Workshop on
Protocols for Fast Long-Distance Networks, Marina
Del Rey, CA USA, February 2007, pp. 85–90. [Online].
Available:
{http://wil.cs.caltech.edu/pubs/PFLDnet07.pdf}

[23] M. Mathis, J. Heffner, and R. Reddy, “Web100:
extended tcp instrumentation for research, education
and diagnosis,” SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 3, pp. 69–79, 2003.

ACM SIGCOMM Computer Communication Review 37 Volume 38, Number 3, July 2008

[24] “The Web100 Project,” November 2007, Accessed 19
Nov 2007. [Online]. Available: {http://web100.org/}

[25] L. Stewart, J. Healy, “Characterising the Behaviour
and Performance of SIFTR v1.1.0,” CAIA, Tech. Rep.
070824A, August 2007. [Online]. Available:
{http://caia.swin.edu.au/reports/070824A/
CAIA-TR-070824A.pdf}

[26] L. Stewart, J. Healy, “Light-Weight Modular TCP
Congestion Control for FreeBSD 7,” CAIA, Tech.
Rep. 071218A, December 2007. [Online]. Available:
{http://caia.swin.edu.au/reports/070717B/
CAIA-TR-070717B.pdf}

[27] J. Healy, L. Stewart, “P4DB: Branch jhealy tcpcc,”
Accessed 3 Mar 2008. [Online]. Available:
{http://perforce.freebsd.org/branchView.cgi?
BRANCH=jhealy%5ftcpcc}

[28] D. J. Leith, R. N. Shorten, Y. Lee, “H-TCP: A
framework for congestion control in high-speed and
long-distance networks,” Hamilton Institute, Tech.
Rep., August 2005. [Online]. Available:
{http://www.hamilton.ie/net/htcp2005.pdf}

[29] D. J. Leith, R. N. Shorten, “On RTT Scaling in
H-TCP,” Hamilton Institute, Tech. Rep., September
2005. [Online]. Available:
{http://www.hamilton.ie/net/rtt.pdf}

[30] D. Leith, R. Shorten, “H-TCP: TCP for high-speed
and long-distance networks,” in Second International

Workshop on Protocols for Fast Long-Distance
Networks, Argonne, Illinois USA, February 2004.
[Online]. Available:
{http://www.hamilton.ie/net/htcp3.pdf}

[31] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow,
“TCP Selective Acknowledgement Options,” RFC
2018 (Proposed Standard), Oct. 1996. [Online].
Available: http://www.ietf.org/rfc/rfc2018.txt

[32] V. Jacobson, R. Braden, and D. Borman, “TCP
Extensions for High Performance,” RFC 1323
(Proposed Standard), May 1992. [Online]. Available:
http://www.ietf.org/rfc/rfc1323.txt

[33] V. Paxson and M. Allman, “Computing TCP’s
Retransmission Timer,” RFC 2988 (Proposed
Standard), Nov. 2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2988.txt

[34] L. Rizzo, “Dummynet: a simple approach to the
evaluation of network protocols,” ACM SIGCOMM
Computer Communication Review, vol. 27, no. 1, pp.
31–41, 1997.

[35] M. Welzl, “Port of h-tcp from ns-2.26 to ns-2.31,”
Accessed 22 May 2008. [Online]. Available:
http://caia.swin.edu.au/urp/newtcp/tools/htcp ns-2.
31.tar.gz

[36] M. Allman and E. Blanton, “Notes on burst mitigation
for transport protocols,” SIGCOMM Comput.
Commun. Rev., vol. 35, no. 2, pp. 53–60, 2005.

ACM SIGCOMM Computer Communication Review 38 Volume 38, Number 3, July 2008

