
Managing 
FreeBSD @ Scale 

Reclaiming Control of 
Large Infrastructure 

Deployment
Allan Jude
ScaleEngine Inc.



Introductions

Allan Jude
● 11 Years as FreeBSD Server Admin
● Architect of the ScaleEngine CDN (HTTP and Video)
● Host of the weekly TechSNAP.tv Podcast
● Former Professor @ Mohawk College (2008-2011) 

teaching Network Engineering and Security Analysis
● Extensive work with Puppet to manage our 80 odd 

servers in 28 data centers in 10 countries
● Lots of work with ZFS to manage large collections of 

videos as well as extremely large website caches (15+ 
million objects in ff*ff directories)



Overview

● What is scale?
● Why I don't trust "the cloud"
● What is ScaleEngine?
● Acquiring scale on the open market
● Advanced Puppet
● Lessons learned
● Where to go from here



Scale



What Is Scale?

● "Scalability is the ability of a system, 
network, or process to handle a growing 
amount of work in a capable manner or its 
ability to be enlarged to accommodate that 
growth." [1]

[1] André B. Bondi, 'Characteristics of scalability and their impact on performance', Proceedings of the 2nd international workshop 
on Software and performance, Ottawa, Ontario, Canada, 2000, ISBN 1-58113-195-X, pages 195–203



You Cannot Predict How It Will Scale

Things never turn out the way you think they 
will



Design For Eventual Scale

● Trying to predict failure is a losing game
● Design systems with the expectation that 

they will need to scale out.
○ Tackle current, observable issues

Example: we adopted and enforced a 
geographic naming system long before we 
had servers in other countries, or even other 
cities



Planning ...

or not...



How Do You Scale?

Four usual methods once pressure points are observed
● Optimize
● Scale "up"
● Scale "out"
● Use "Cloud"



Optimize

● Make each task take less work so more tasks can be 
completed with the same resources, or tuning the 
system to have more resources. 

● Often done too early, for no benefit
● Expertise dependent: no expertise, no optimization
● Oftentimes performance tuning is limited and time 

consuming
○ Example: it's rare to tune the kernel these days
○ In the 2000s, it was common to spend time stripping 

the kernel



Scale "Up"

You can scale 'Up'
Attempt to make your existing system handle 
more work
● Scale Up (Vertical) - Buy bigger resources (faster 

CPUs, more RAM, more Spindles), eventually limited by 
available hardware or budget

● Which component is limiting your performance?
● Might work
● Might not



Scale "Out"

● You can scale 'Out', adding more nodes to 
your application, and spreading the work 
across them

● Scale Out (Horizontal) 
● Buy more servers (if your app can be scaled this way)

○ increases management cost and application 
complexity

○ requires load balancing
○ requires market awareness



Use "Cloud"

Offers Potentially Immediate Horizontal Scale 

How?
Automagically spinning up additional virtual machines

Still introduces additional management complexity, 
uncapped costs, the uncomfortable fact that you don't get 
something for nothing...

And...



Additional Potential Fail



Important: Expect To Scale

A business not built to scale, is built to fail.
Many times businesses think they can predict 
how growth and usage will happen, and build 
misguided capacity to support these predictions 
at great expense
Scale built based on predictions rather than 
measurements is usually mistargeted and 
offers little ability to react to actual growth and 
scalability issues



What Is Wrong With "The Cloud"

● Opacity
○ No visibility inside the cloud -- what is happening?
○ If there is a problem, how do you find it?
○ Following @cperciva is nice but not optimal

● Vendor Lock-in
○ There are many clouds, each is different
○ Different APIs, different abstraction layers

● Price
○ Marketing hype says it is cheaper
○ For sustained usage, usually much more expensive
○ How much is the loss of visibility worth?
○ How much is the loss of control worth?
○ How much is the additional risk worth?



TheCloudIsALie.com
The cloud is ultimately a shared resource, meaning what 
other people are doing affects your performance

[1] http://blog.scalyr.com/2012/10/16/a-systematic-look-at-ec2-io/



Why I Don't Use "The Cloud"

Sysadmins will jump to cloud providers if immediate scale 
is required, reducing autonomy and choice, and ceding 
control over many important components to large corporate 
providers, such as Amazon or Rackspace. 
● Many clouds do not offer FreeBSD
● Virtualization performance is often lacking vs bare metal
● Network IO and latency can suffer under Virtualization
● Cloud "hardware" and network is more expensive for 

sustained usage than the open market
Amazon 1st Gen dual core, 7.5gb ram: $262/30 days
Amazon 2nd Gen quad core, 15gb ram: $360/30 days
E3-1230 quad core, 16gb ram: $189/month
Dual E5630 quad core, 256gb ram: $389/month



ScaleEngine?

ScaleEngine is a Global CDN specializing in HTTP Delivery 
and Video Streaming
● 80 non-virtualized hosts

○ 28 different data centers
○ 10 countries
○ Aggregate 1600GB of ram
○ Aggregate 50 gigabits/sec usable capacity

● All running FreeBSD 9.x - Transitioning to Root-on-ZFS
● Managed by Puppet
● Extensive use of Jails (w/ ezjail)
● HTTP powered by Varnish and NGINX
● The last year (May 1 2012 - May 1 2013)

○ HTTP: 80.8 B requests, 566 TB
○ Video: 257 M requests, 1915 TB



Puppet
● Allows us to quickly scale up and out on our own 

terms at the best market rate
● Deploying puppetmaster for scale
● Creating and using custom facts (freebsd specific facts)
● Advanced configuration files with templates
● Managing packages (with portupgrade)
● Deploying jails with puppet (with ezjail)



What Is Puppet?

Puppet is a configuration management engine. 
Describe what your server should look like, and 
Puppet brings the additional server into the 
desired state.
● Driven by simple declarative configuration 

files called manifests
● Manages Packages, Users, Files and other 

configurable objects
● Collects 'Facts' about your nodes
● Uses SSL certificates to verify clients and 

control access



Starting With Puppet

● This talk does not cover the basics of getting 
started with puppet

● See "Config Management in FreeBSD using 
Puppet - Edward Tan, EuroBSDcon 2012" 
http://youtu.be/nto9HPes8Ko

● Or Edward Tan's Article in BSDMag - http:
//bsdmag.org/magazine/1784-freebsd-get-up-to-date

● We use the shell_config and ports_conf 
macros from http://projects.puppetlabs.
com/projects/1/wiki/Puppet_Free_Bsd

http://youtu.be/nto9HPes8Ko
http://youtu.be/nto9HPes8Ko
http://bsdmag.org/magazine/1784-freebsd-get-up-to-date
http://bsdmag.org/magazine/1784-freebsd-get-up-to-date
http://bsdmag.org/magazine/1784-freebsd-get-up-to-date
http://projects.puppetlabs.com/projects/1/wiki/Puppet_Free_Bsd
http://projects.puppetlabs.com/projects/1/wiki/Puppet_Free_Bsd
http://projects.puppetlabs.com/projects/1/wiki/Puppet_Free_Bsd


Replacing The Default Web Server

● WEBRick - Default, Ruby library, single threaded, only 
good for testing

Use nginx to get SSL offloading; a real web server is much 
better at scaling SSL than a ruby script
● Mongrel - Partially deprecated in Puppet 2.7, fixed size 

pool of workers, can be distributed across hosts
● Passenger - module for Apache or nginx to run ruby 

apps, dynamic workers (can be distributed with nginx or 
mod_proxy)

I originally used Mongrel because it was closer to the PHP-
FPM type workflow I was used to, but when I upgraded to 
Puppet 3 I switched to Passenger



Bypassing Ruby Entirely

Part of our puppet deployment involves installing some 
basic jails on every host using ezjail 

This requires puppet to pull some rather large jail archives 
from the puppet master

To accelerate this and avoid the overhead caused by 
reading the file in ruby and copying it to the socket, we 
have nginx deliver the files directly, bypassing ruby 
entirely

nginx verifies the SSL client certificate to ensure that only 
authorized clients can access the files



nginx Config
server {

listen 8140 ssl;
ssl_certificate /var/puppet/ssl/certs/puppetmaster.scaleengine.net.pem;
ssl_certificate_key /var/puppet/ssl/private_keys/puppetmaster.scaleengine.net.pem;
ssl_client_certificate /var/puppet/ssl/ca/ca_crt.pem;
ssl_crl /var/puppet/ssl/ca/ca_crl.pem;
ssl_verify_client on;
root /usr/local/etc/puppet/rack/public;
passenger_enabled   on;
passenger_set_cgi_param HTTP_X_REAL_IP $remote_addr;
passenger_set_cgi_param HTTP_X_CLIENT_DN $ssl_client_s_dn;
passenger_set_cgi_param HTTP_X_CLIENT_VERIFY $ssl_client_verify;
passenger_set_cgi_param HTTP_X_SSL_SUBJECT $ssl_client_s_dn;
types { } # make sure we serve everything as raw
default_type application/x-raw;
##location blocks go here (next slide)

}



Serve Files Directly
# serve static file for the [files] mountpoint
location /production/file_content/files/ { 

alias /usr/local/etc/puppet/files/;
}

# serve modules files sections
location ~ /production/file_content/[^/]+/files/ { 

alias /usr/local/etc/puppet/modules;
# rewrite /production/file_content/module/files/file.txt 
# to /module/file.text
rewrite ^/production/file_content/([^/]+)/files/(.+)$ $1/$2 break; 

}



New Puppet Agents
In the previous config, nginx will only talk to you if you 
have an SSL client certificate (you are already an approved 
puppet agent)
There are two ways around this:
● Configure ssl_verify_client to optional and add 

checking for the SSL certificate before files are served 
directly

● Configure nginx to listen on a second port with 
ssl_verify_client optional and pass everything to ruby, 
then puppet agents use --ca_port 8141
○ Also helpful if you have multiple puppetmasters, 

as you can only have a single CA, but the additional 
puppetmasters can proxy the CA port to the real CA 
server



Templates Instead Of Configs

● Rather than just deploying the same config 
file to every server, we use Puppet 
templates to customize the config file for 
each server

● We use the 'facts' that puppet collects about 
each system to manage the configuration

● We create our own 'facts' that are distributed 
from the puppetmaster to the nodes, 
allowing us to collect specific information

● We define variables in our node 
configuration based on role, geography, 
hardware and policy



Node Configuration
node 'Chicago2.CHI1.ScaleEngine.net' {
    $se_host = 'Chicago2'
    $se_fqdn = 'Chicago2.CHI1.ScaleEngine.net'
    $se_location = 'CHI1.ScaleEngine.net'
    $se_identity = 'CHI1-2'
    $se_varnish_ips = ['23.19.138.19','23.19.138.18']
    $se_wowza_ip = '23.19.138.21'
    $se_nginx_ip = '23.19.138.22'
    $se_max_mbps = 600
    $se_norm_mbps = 400
    
    include edgeserver
    include videohost
}



Custom Facts
Facter.add("sysctl-hw_physmem") do
  confine :kernel => :freebsd
  setcode do

Facter::Util::Resolution.exec('/sbin/sysctl -n hw.physmem').to_i
  end
end

Facter.add("sysctl-hw_ncpu") do
  confine :kernel => :freebsd
  setcode do

Facter::Util::Resolution.exec("/sbin/sysctl -n hw.ncpu").to_i
  end
end



Varnish Template
<% varnish_ips = Array.new -%>
<% se_varnish_ips.each do |vip| -%>
<%   varnish_ips << vip.concat(":80") -%>
<% end -%>
varnishd_listen="<%= varnish_ips.join(",") -%>"
varnishd_config="/usr/local/etc/varnish/scaleengine.vcl"
varnishd_storage="malloc,<%= (se_memory.to_i * 0.25).to_i -%>M"
varnishd_identity="<%= se_identity -%>"
varnishd_params="-p thread_pool_add_delay=5 -p thread_pools=<%= sysctl-
hw_ncpu.to_i -%> -p thread_pool_min=48 -p thread_pool_max=<%= (8192 / 
sysctl-hw_ncpu.to_i).to_i -%>"
varnishd_flags="-P ${varnishd_pidfile} -a ${varnishd_listen} -f 
${varnishd_config} -s ${varnishd_storage} -u ${varnishd_user} -g 
${varnishd_group} -T ${varnishd_admin} -i ${varnishd_identity} 
${varnishd_params}"



Installing Ports & Packages
Package {

provider    => portupgrade,
ensure    => installed,
require    => File["/usr/local/etc/pkgtools.conf"],

}
file { "/usr/local/etc/pkgtools.conf":
            owner       => root,
            group       => wheel,
            mode        => 0644,
            source      => "puppet:///files/pkgtools.edge",
}



Creating Package Definitions
class bsdpkg::denyhosts {
    package { "security/denyhosts": }
    file { "/usr/local/etc/denyhosts.conf":
    source    => "puppet:///files/denyhosts.conf",
    require    => Package['security/denyhosts'],
    }
    ports_conf { "denyhosts_enable":
    port    => "denyhosts",
    key    => "denyhosts_enable",
    value    => "YES",
    }
    service { "denyhosts":
    ensure    => running,
    name    => "denyhosts",
    enable    => true,
    subscribe    => File['/usr/local/etc/denyhosts.conf'],
    }
}



Installing EZJail
class bsdpkg::ezjail($os_version = "9.1-RELEASE") {
    package { "sysutils/ezjail":
    provider    => portupgrade,
    ensure    => present,
    }
    exec { "ezjail_setup":
    provider => "shell",
    command => "/usr/local/bin/ezjail-admin install -mp -r ${os_version}",
    creates => "/usr/jails/basejail",
    require => Package['sysutils/ezjail'],
    }
    ports_conf { "ezjail_enable":
    port    => "ezjail",
    key    => "ezjail_enable",
    value    => "YES",
    }
}



Creating Jails
class ezjail($jail_name, $jail_ip, $jail_archive = undef, $jail_root = "/usr/jails") {
    exec { "create_jail_${jail_name}":
    provider => "shell",
    command => "/usr/local/bin/ezjail-admin create -a ${jail_archive} ${jail_name} ${jail_ip}",
    creates => "${jail_root}/${jail_name}",
    require => [
    Package["sysutils/ezjail"],
    Exec["ezjail_setup"],
    File["${jail_root}/${jail_archive}"],
    ],
    notify => Service["ezjail_${jail_name}"],
    }
    file { "${jail_root}/${jail_archive}":
    ensure    => file,
    source      => "puppet:///archives/${jail_archive}",
    backup    => false,
    }



Creating Jails (Continued)
    service { "ezjail_${jail_name}":
    ensure    => running,
    name    => "ezjail",
    enable    => true,
    hasstatus   => false,
    start    => "/usr/local/bin/ezjail-admin start ${jail_name}",
    stop    => "/usr/local/bin/ezjail-admin stop ${jail_name}",
    restart    => "/usr/local/bin/ezjail-admin restart ${jail_name}",
    status    => "/usr/local/bin/ezjail-admin console -e /usr/bin/true ${jail_name}",
    }
}
#In your Node config:
class { 'ezjail':
    jail_name => 'chi2-test.scaleengine.net',
    jail_ip => '23.19.138.20',
    jail_archive => 'video_jail.tar.gz'
}



Open Market Server Acquisition

Based on the current market for commodity 
server hardware and network transit, we can 
quickly add several nodes, with predictable, 
negotiated monthly cost, and can rapidly 
configure each node based on its disk size, 
memory configuration, and cpu

Some providers provision new servers w/ IPMI 
in as little as 10 minutes



Cloud Virtual Server Acquisition

Contrast this with a cloud provider, where we 
control less of the specifics of geography, 
server configuration and network transit cost
We are reclaiming large infrastructure 
deployment with commonly available open 
source tools, to deploy FreeBSD quickly and 
efficiently when we require additional scale



More to do

● Switch to PKGNG and build our own custom binary 
packages, faster installs, easier upgrades and more 
control

● Automate our Root-on-ZFS deployment, rather than 
booting stock .iso and partitioning with scripts, deploy a 
small image to the drives then gpart resize

● Augment deployment image to have puppet preinstalled 
for faster bootstrapping

● Auto-tune web and video disk cache sizes based on 
available space (ZFS dataset, maybe with a quota)
○ Based on size not free space so puppet rewriting the 

config and restarting the service constantly
● Auto-tune ZFS (ARC, vdev cache, etc) based on system 

specs gathered by facter



Going Forward

● FreeBSD patches for facter, some of our 
custom facts should be standard, many facts 
exist for OpenBSD but not FreeBSD even 
though they are collected the same way

● 'stored configs' was deprecated in 3.x, 
investigate puppetdb (needs porting), would 
allow hosts to know about each other
○ Using puppet to automatically configure nagios
○ Easier management of ssh known_hosts

● Investigate switching to augeas for rc.conf 
etc, rather than the shell method


