
ASIABSDCON 2015 1

Go based content filtering software on FreeBSD
(Developing a content filtering software in Go on FreeBSD)

Ganbold Tsagaankhuu, Mongolian Unix User Group,
ganbold@gmail.com

Esbold Unurkhaan, Mongolian University of Science and Technology
esbold@must.edu.mn

Erdenebat Gantumur, Mongolian Unix User Group
erdenebat.gantumur@gmail.com

Abstract—Go is a new programming language, compared to many other programming languages like C, C++,
Java, etc., but it has many practical features and is in many cases more productive. On the other hand, FreeBSD
has been around for very long time and proven to be the most reliable, one of the most powerful operating system
available today. In this paper, we will discuss the issues, pros, cons, and common pitfalls of developing software in
Go on FreeBSD. We chose content filtering software for this purpose and called our project Shuultuur. Shuultuur
is a Mongolian word, which means ”filter” in English. First, we will describe the rational behind our choices for
setting up our development environment and toolchain. In addition, we will list specific hurdles that we faced
in regards to content filtering software, Go and FreeBSD. Furthermore, our real world benchmarking results in
contrast to Dansguardian and other findings will be presented. Finally, we will conclude and discuss possible
future works.

Keywords—Content filter, String matching, Go language, FreeBSD

F

1 INTRODUCTION

In our everyday life, we are witnessing how
the modern world is moving towards the In-
ternet of Things and the connected world is ex-
panding quickly. This emerging change made us
to look into existing problems from a different
prospective. For us, one of these problems was
content filtering. Therefore, we decided to take a
journey to pursue our idea. There are countless
numbers of open source projects, which are
backed by various communities available to-
day. However, some open source projects didnt
evolve well enough throughout their lifetime.
Therefore, it became difficult to improve exist-
ing code base because of various reasons. Since
our content filtering project idea grew out of
specific needs, we decided to develop it from
the scratch. Therefore, in order to save years
of development time, we needed to be produc-
tive to match up with mature content filtering
softwares features and performance, and take
it further. These initial requirements made us
search for something different.

2 RATIONALE BEHIND OUR CHOICES

2.1 Why content filter?
First of all, in regard to the main objective

of content filtering, the common understanding

is to have some sort of control over unwanted
content from web content. These types of solu-
tions are widely used in enterprises to enforce
their computer security policies. The public or-
ganizations such as libraries, schools, etc. use
content filters to protect children from content
inappropriate for their age i.e. adult, violence,
drugs etc. Therefore, content filtering can per-
form wide variety of tasks and we believe that
there is a specific need of content filtering.

2.2 Programming Language Choice

One of the questions that we had in mind
was which programming language to use? We
have looked around and considered a number
of popular programming languages. Essentially,
we were looking for a programming language
that is fast, lightweight, easy to prototype, and
that requires relatively minimal effort to pro-
duce and maintain production quality code.
Therefore, we preferred a statically typed, com-
piled language with strong type system. Of
course, there is always a tradeoff, however,
when it comes to the question of achieving our
goal faster, the previously mentioned character-
istics made sense for our project.

Go is relatively new programming language
and it was officially launched at Google 5

ASIABSDCON 2015 2

years ago [1]. Go is compiled, statically typed,
garbage collected, unconventionally object ori-
ented and general-purpose system program-
ming language. Go produces native binaries,
has a very fast compilation time and is designed
with concurrency in mind. Therefore, since Go’s
characteristics matched with our initial require-
ments well, we looked closely into it along
with other candidates and started experiment-
ing with it. Performance of Go’s native binaries
was somewhat comparable to good old low-
level C and tremendously better than inter-
preted languages [5]. After extensive research
and trials, we concluded that Go programming
language is the best suited for our goal and we
will briefly give our reasons below.

Go did not need any additional library to
deal with concurrency; it is already part of
the programming language features and it has
strong support for multiprocessing. In addition,
Go is a more productive language compared
to C and includes multiple useful built-in data
structures such as maps [23] and slices [24]. Es-
pecially when dealing with concurrency, many
advanced practical solutions can be easily used
in modern hardware using Go specific features
such as goroutines [21] and channels. A gorou-
tine is a function executing concurrently with
other goroutines in the same address space.
It is lightweight and communicates with other
goroutines via channels [22]. Because Go is very
simple, garbage collected and statically typed
language in nature, source code can be written
with less errors and mistakes, thus presumably
with less bugs. Furthermore, it is relatively easy
to profile for speed and memory leaks that
is handy when working on production source
code. In terms of syntax, it has loosely derived
from C and influenced by other languages such
as Python [3]. Also, Go has an extensive number
of libraries [2] and finally, Go is a BSD licensed
completely open source language [4].

In the context of content filtering, to detect the
meaning of a sentence accurately is a hard task
for an automated tool. As we know, humans
cannot detect the real meaning of sentences
without detailed information. However, in the
real world, content filters try to classify web
contents based on string matching techniques
into bad content, which should be blocked or
good content, which should be allowed [6].
In most languages, the exact string matching
technique (pattern matching) may demand high
processing power [7]. For this reason, we chose

to develop content filtering software to take the
advantage of Go’s performance.

2.3 Why FreeBSD as a platform of choice:

We have chosen FreeBSD OS as a main devel-
opment and testing platform mainly because:
• It is one of the most powerful, mature and

stable operating systems as well as a com-
plete, reliable, self-consistent distribution.

• FreeBSD’s networking stack is very solid
and fast [8].

• One of the advantages of choosing
FreeBSD is its port and package system,
which makes it easy to install and deploy
the necessary applications and software.

• Handy tools such as NanoBSD exist,
which can be used to make custom
FreeBSD image easily.

• Finally, we love FreeBSD.

3 RELATED PROJECTS

We used the following open source software for
our project:
• goproxy provides a customizable HTTP

proxy library for Go. It supports regular
HTTP proxy, HTTPS through CONNECT,
and ”hijacking” HTTPS connection using
”Man in the Middle” style attack. The
intent of the proxy is to be usable with
reasonable amount of traffic yet, customiz-
able and programmable [9].

• gcvis - Visualizes Go program gctrace data
in real time [10].

• profile is a simple profiling support pack-
age for Go [11].

• go-nude is nudity detection with Go [12].
• xxhash-go is a go wrapper for C xxhash -

an extremely fast Hash algorithm, work-
ing at speeds close to RAM limits [13].

• powerwalk is a Go package for walking
files and concurrently calling user code to
handle each file [14].

• redigo is a Go client for the Redis database
[15].

• Redis. It is open source, BSD licensed,
advanced key-value cache and store [16].

4 EXPERIENCED CHALLENGES

We have faced several problems during devel-
opment that are listed below:
• The Shallalist blacklist contains more than

1.8 million URL/Domain entries. Storing

ASIABSDCON 2015 3

go tool pprof --alloc_space ./shuultuur_mem /tmp/profile228392328/mem.pprof
Adjusting heap profiles for 1-in-4096 sampling rate
Welcome to pprof! For help, type ’help’.
(pprof) top15
Total: 11793.7 MB

3557.7 30.2% 30.2% 3557.7 30.2% runtime.convT2E
1212.1 10.3% 40.4% 1212.1 10.3% container/list.(*List).insertValue
832.3 7.1% 47.5% 2434.8 20.6% github.com/garyburd/redigo/redis.(*conn).readReply
807.9 6.9% 54.4% 1874.6 15.9% github.com/garyburd/redigo/redis.(*Pool).Get
673.8 5.7% 60.1% 673.8 5.7% github.com/garyburd/redigo/redis.Strings
544.5 4.6% 64.7% 549.4 4.7% main.regexBannedWordsGo}
521.1 4.4% 69.1% 521.1 4.4% bufio.NewReaderSize
490.9 4.2% 73.3% 490.9 4.2% bufio.NewWriter
438.2 3.7% 77.0% 438.2 3.7% runtime.convT2I

*** 369.8 3.1% 80.1% 7622.9 64.6% main.workerWeighted
255.0 2.2% 82.3% 255.9 2.2% main.regexWeightedWordsGo
235.5 2.0% 84.3% 235.5 2.0% bytes.makeSlice
229.9 1.9% 86.2% 397.1 3.4% io.Copy
168.3 1.4% 87.6% 168.3 1.4% github.com/garyburd/redigo/redis.String

*** 162.6 1.4% 89.0% 4048.9 34.3% main.getHkeysLen
(pprof)

Fig. 1: Pprof result - Memory allocation in initial stage

them in memory was challenging and ini-
tially we stored the URL/Domain entries
in Redis in the following way:

...
// Store URL/Domains as a key and
// category as value
conn.Do("SET", urls_or_domain, category)
...

This was not effective in terms of memory
utilization and performance. After a bit of
research, we have found a way to reduce
it to around 4100 hash keys. We used
Stephane Bunel’s xxhash-go to compute a
hash from each URL/Domain and sliced
it and then stored those slices in Redis
similar to the following way:

...
// use xxhash to get checksum from URL/Domain
blob := []byte(url_or_domain)
h32g := xxh.GoChecksum32(blob)
/*
* Store it as hash in Redis in following way:
* key = 0xXXXX (first half of URL/Domain),
* field = XXXX (second half of URL/Domain),
* value = category
*/
hash_str := fmt.Sprintf("0x%08x", h32g)
key := hash_str[0:6]
value := hash_str[6:]
conn.Do("HSET", key, value, category)
...

• Banned and weighted phrase lookup
problem. Originally they were stored in
Redis, and accessing them in a loop was
slow and inefficient. We improved it us-
ing a graph and map. An every word
that exists in the phrase lists (banned,
weighted etc.) is an edge of the graph
and it should be unique in the same
category. For example, we have banned
phrases such as ”sex woman”, ”sex man”
and ”mature sex”. Shuultuur creates four
Edges such as ”sex”, ”woman” , ”man”

and ”mature” and Vertices. The Edges and
their related Vertices are stored in the map
because of programming efficiencies. Go
language provides a built-in map type that
implements a hash table. In addition, we
have replaced a regular expression based
search algorithm with Boyer Moore search
algorithm, which is implemented in Go.

• Reading HTTP response bodies into
strings makes the heap memory usage
grow very large due to lots of allocations,
especially when the rate of connections
per second is high. Ideally, this should
be processed using a streaming parser
by utilizing the io.Reader interface. Also,
limiting the connection rate on incoming
requests could be an option. We have op-
timized and improved it by doing some
CPU and memory profiling [19]. This is
done by enabling memory profiling in
Shuultuur and we have used Go’s built-in
profiler pprof. The Figure 1 shows report
in memory allocations during the initial
stage of development:
In this initial report you can see lots
of allocations in main.workerWeighted and
main.getHkeysLen. Those functions were
used for searching banned and weighted
phrases using Redis. We improved Shuul-
tuur by removing those functions, did
some code level optimizations and intro-
duced a better algorithm. The Figure 2 is
the report generated by the same com-
mand after the previously mentioned im-
provements were done and we think that
there is still some room for further im-
provements.

ASIABSDCON 2015 4

go tool pprof --alloc_space ./shuultuur /tmp/profile287823990/mem.pprof
Adjusting heap profiles for 1-in-4096 sampling rate
Welcome to pprof! For help, type ’help’.
(pprof) top30
Total: 2156.3 MB

596.9 27.7% 27.7% 1066.4 49.5% io.Copy
406.3 18.8% 46.5% 406.3 18.8% compress/flate.NewReader
177.3 8.2% 54.7% 177.4 8.2% bytes.makeSlice
113.5 5.3% 60.0% 115.4 5.4% code.google.com/p/go.net/html.(*Tokenizer).Token
78.3 3.6% 63.6% 78.3 3.6% code.google.com/p/go.net/html.(*parser).addText
68.4 3.2% 66.8% 68.4 3.2% strings.Map

...
41.7 1.9% 77.2% 41.7 1.9% concatstring

*** 37.7 1.7% 78.9% 736.6 34.2% main.ProcessResp
27.9 1.3% 80.2% 27.9 1.3% makemap_c

...
12.8 0.6% 91.8% 44.5 2.1% bitbucket.org/hooray-976/shuultuur/db.GraphBuild
12.5 0.6% 92.4% 12.5 0.6% strings.genSplit

*** 10.7 0.5% 92.9% 595.5 27.6% main.getContentFromHtml
...

Fig. 2: Pprof result - Memory allocation in after imrovement

The Figure 3 is a top report that shows CPU
usage in the beginning of development and it
was very high.

As you can see in Figure 4, the following
top report shows much less CPU usage after
optimizing the banned and weighted phrase
search.

Figure 9 (see Appendix) is a gcvis graph
shows memory usage when the program was
not optimized.

Figure 10 (see Appendix) shows memory us-
age after some optimizations.

We have implemented a number of other
improvements such as learning URL/Domains
to not check banned and weighted phrases ev-
ery time in HTTP response bodies. The learned
mode feature was added something like in fol-
lowing way:

...
// Learn and store this URL to redisdb
// temporarily use xxhash to get
// checksum from URL/Domain
blob1 := []byte(requrl)
h32g := xxh.GoChecksum32(blob1)

// key = 0xXXXXXXXX for expire_time seconds,
// 1 for BLOCK, 2 for PASS
key := fmt.Sprintf("%s0x%08x", policy, h32g)

// SET key value [EX seconds]
// [PX milliseconds] [NX|XX]
db.Exec("SET", key, BLOCK, "EX", EXPIRE, "NX")
...

Another improvement we did was a possi-
bility to limit the listener to accept a speci-
fied number of simultaneous connections. Rate
limiting on incoming requests was done again
utilizing Redis like:

...
// Will set this via config file
limit := 10

// Increment counter for request

// (this will create a new key
// if it does not exist)
current, err := redis.Int(db.Incr

(url_path + remote_addr))
...

// Check if the returned counter
// exceeds our limit
if current > limit {

fmt.Println(">>> Too many requests -",
url_path + remote_addr)

response := goproxy.NewResponse(request,
goproxy.ContentTypeHtml, 429,
"Too many requests!")

return request, response
} else if current == 1 {

fmt.Println(">>> SET counter for:",
url_path + remote_addr)

// Set expiry on fresh counter for the
// given url_path and remote address
db.Exec("SETEX", url_path +

remote_addr, 1, 1)
}
...

• Slow image filtering on HTTP response.
It is temporarily disabled until we find a
proper solution.

• One last major issue could be related
to the high number of goroutines under
heavy load, which results in high CPU and
memory usage. Currently we are investi-
gating the issue [17].

5 BENCHMARK RESULTS

Case 1:
In order to compare performance of our imple-
mentation in contrast to existing solutions, we
have used Dansguardian-2.12.0.3 and tested it
in the same environment. We know that Dans-
guardian is usually used with squid, therefore
we used squid version 3.4.8 2 in our test. At
last, our content filtering software, Shuultuur,
was written in Go 1.3.2 on FreeBSD/amd64.
We used the same server for this performance
test comparison and the Internet link speed was

ASIABSDCON 2015 5

Fig. 3: Top report - In initial stage

Fig. 4: Top report - After improvement

5Mbps. The server’s technical specification is
listed below:

• CPU - Intel(R) Xeon(R) X5670 2.93GHz
• Memory - 8192MB
• FreeBSD/SMP -12 CPUs (package(s) x 6

core(s) x 2 SMT threads)

We used FreeBSD 9.2-RELEASE and
/etc/sysctl.conf includes following:

• kern.ipc.somaxconn = 27737
• kern.maxfiles = 123280
• kern.maxfilesperproc = 110950
• kern.ipc.maxsockets = 85600
• kern.ipc.nmbclusters = 262144
• net.inet.tcp.maxtcptw = 47120

We also had to change tcp-backlog setting to
high value in the Redis config file. Furthermore,
we performed HTTP load test using http load-
14aug2014 (parallel and rate test) [18] for both
Dansguardian and Shuultuur. In http load test,
we used following URLs:

• http://fxr.watson.org/fxr/source
/arm/lpc/lpc dmac.c

• http://www.news.mn/news.shtml
• http://mongolian-it.blogspot.com/
• http://www.patrick-

wied.at/static/nudejs/demo/
• http://news.gogo.mn/
• http://www.amazon.com/
• http://edition.cnn.com/?refresh=1
• http://www.uefa.com/
• http://www.tmall.com/
• http://www.reddit.com/r/aww.json
• http://nginx.com
• http://www.yahoo.com
• http://slashdot.org/?nobeta=1
• http://www.ikon.mn
• http://www.gutenberg.org
• http://en.wikipedia.org/ wiki/BDSM
• http://www3.nd.edu/d̃pettifo

/tutorials/testBAD.html
• http://penthouse.com/# cover new?{}
• http://www.playboy.com

ASIABSDCON 2015 6

Fig. 5: Performance test result (Server)

• http://www.bbc.com/earth
/story/20141020-chicks-tumble-of-terror-
filmed

• http://173.244.215.173/go /indexb.html
• http://breakingtoonsluts. tumblr.com/
Some of above URLs are listed in the Shallalist

blacklist, some URLs contain phrases which are
in the banned and weighted phrase lists, some
URLs have lots of content and javascript and
rest of the URLs are chosen with no particular
reason. The following test commands used for
HTTP load tests:

./http_load -proxy 172.16.2.1:8080 -parallel 10
-seconds 600 urls

./http_load -proxy 172.16.2.1:8080 -rate 10
-jitter -seconds 600 urls

The option -parallel in the first command indi-
cates the number of concurrent connections to
establish and maintain, the -rate option in the
second command controls number of requests
sent out per second, the -jitter option varies
the rate by about 10%, and the -seconds option
indicates the number of seconds to run the
test. Figure 5 shows the comparison table of
http load parallel and rate test results.

Based on the above result Shuultuur has some
advantages and disadvantages. For example,
since Shuultuur is still under development,
it responded with Internal Server Error (500)
more often than Dansguardian. On the other
hand, Shuultuur responded with much more
successful responses (200). Dansguardian has
some limitations and it responded 341 times

with Service Unavailable (503) and had much
more timeouts. On the performance side, in
average, Shuultuur’s performance was higher
than Dansguardian in most cases for both tests.

Case 2:
In this case, the scenario is almost the same
as in Case 1, but we used different hardware
(APU system board) [20], updated Go to 1.4.1
and changed the Internet link speed to 2Mpbs.
The hardware’s technical specification is listed
below:
• CPU -AMD G series T40E, 1 GHz dual

Bobcat core with 64 bit support, 32K data
+ 32K instruction + 512K L2 cache per core

• Memory - 4096MB
On APU, we used FreeBSD 10.1-RELEASE

and /etc/sysctl.conf includes following:
• kern.ipc.somaxconn = 4096
• kern.maxfiles = 10000
• kern.maxfilesperproc = 8500
• kern.ipc.maxsockets = 6500
• kern.ipc.nmbclusters = 20000
• net.inet.tcp.maxtcptw = 4000

Because of the smaller hardware we had to
change tcp-backlog setting to 4096 in the Redis
config file. In this case, we also used HTTP load
test using http load-03feb2015 (parallel and rate
test) [18] for both Dansguardian and Shuul-
tuur. Figure 6 shows the comparison table of
http load parallel and rate test results.

The Figure 11 and Figure 12 (see Appendix)
shows memory usage on http load test on

ASIABSDCON 2015 7

Fig. 6: Performance test result (APU)

Shuultuur during rate and parallel tests respec-
tively.

The above test results are similar to what we
have observed during the tests that were done
on the server. As in previous tests, Shuultuur’s
performance was higher than Dansguardian in
most cases for both tests.

During the test time we captured top reports
for both Shuultuur and Dansguardian, which
are shown below figure 7 and 8.

As you can see from the above, the system
load average especially CPU usage was high
when Shuultuur was working.

6 CONCLUSIONS AND FUTURE WORK

Developing application in Go using its useful
built-in data structures such as maps and slices
were simple and mostly straight forward. We
were able to make a first working prototype in
a matter of days. There were many open source
projects written in Go in online source code
repositories such as GitHub and many of those
projects were very helpful for our development.
The test results in Section 5 are results of only
two cases. So far, we made http load test multi-
ple times and results were consistent. We expect
that when we reach at first stable version the
result will be lot better. As mentioned before,
our implementation lacks fast and stable image
checking feature. In the future work, we will
improve image checking and we have to solve
high number of goroutines problem described
in Section 4. Finally, the memory usage and CPU

load problem is a major issue for embedded
system applications and we are planning to do
more research on this to stabilize the resource
usages.

ACKNOWLEDGMENTS

We would like to thank Christoph Badura from
NetBSD project for his helpful comments and
suggestions on this document.

ASIABSDCON 2015 8

last pid: 1317; load averages: 1.52, 1.00, 0.58
71 processes: 1 running, 64 sleeping, 6 stopped
CPU: 31.4% user, 0.0% nice, 5.9% system, 1.6% interrupt, 61.2% idle
Mem: 58M Active, 189M Inact, 158M Wired, 70M Buf, 3519M Free
Swap: 978M Total, 978M Free

PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND
1300 user 18 25 0 84540K 43672K uwait 1 6:16 91.85% shuultuur
1299 user 5 21 0 28544K 9484K piperd 1 0:18 4.10% gcvis
822 redis 3 52 0 28108K 6540K uwait 1 0:21 0.29% redis-server
1024 root 1 20 0 43580K 17092K select 0 3:42 0.00% dansguardian
794 squid 1 20 0 164M 68400K kqread 1 1:20 0.00% squid
1030 nobody 1 20 0 43580K 18660K select 1 0:02 0.00% dansguardian
1028 nobody 1 20 0 43580K 18664K select 1 0:02 0.00% dansguardian

Fig. 7: Top report for Shuultuur

last pid: 1151; load averages: 0.42, 0.68, 0.81
156 processes: 1 running, 152 sleeping, 3 stopped
CPU: 0.2% user, 0.0% nice, 10.2% system, 1.8% interrupt, 87.8% idle
Mem: 103M Active, 245M Inact, 161M Wired, 58M Buf, 3415M Free
Swap: 978M Total, 978M Free

PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND
1024 root 1 35 0 43580K 17092K nanslp 0 1:13 23.49% dansguardian
794 squid 1 26 0 160M 62060K kqread 0 0:13 4.59% squid
1002 user 19 42 0 93636K 51320K STOP 0 9:58 0.00% shuultuur
1001 user 6 20 0 33856K 10692K STOP 0 0:32 0.00% gcvis
822 redis 3 52 0 28108K 6452K uwait 1 0:15 0.00% redis-server
932 user 1 20 0 21916K 3244K CPU0 0 0:06 0.00% top
1028 nobody 1 20 0 43580K 18152K select 0 0:01 0.00% dansguardian
1033 nobody 1 20 0 43580K 18172K select 0 0:01 0.00% dansguardian
926 user 1 20 0 86472K 7240K select 1 0:01 0.00% sshd
1025 nobody 1 20 0 31292K 5328K select 1 0:00 0.00% dansguardian
1030 nobody 1 20 0 43580K 18304K select 0 0:00 0.00% dansguardian
1053 nobody 1 20 0 43580K 18664K select 0 0:00 0.00% dansguardian
1051 nobody 1 20 0 43580K 18180K select 1 0:00 0.00% dansguardian
1059 nobody 1 20 0 43580K 18252K select 1 0:00 0.00% dansguardian
1064 nobody 1 20 0 43580K 18244K select 0 0:00 0.00% dansguardian
1029 nobody 1 20 0 43580K 18164K select 1 0:00 0.00% dansguardian
1027 nobody 1 20 0 43580K 18624K select 0 0:00 0.00% dansguardian
917 user 1 20 0 86472K 7192K select 0 0:00 0.00% sshd
1034 nobody 1 20 0 43580K 18192K select 1 0:00 0.00% dansguardian
1037 nobody 1 20 0 43580K 18208K select 0 0:00 0.00% dansguardian
1026 nobody 1 20 0 31292K 5272K select 1 0:00 0.00% dansguardian

Fig. 8: Top report for Dansguardian

REFERENCES

[1] Half a decade with Go Retrieved from The Go blog:
http://blog.golang.org/5years

[2] Retrieved from Go language resources: http://go-
lang.cat-v.org/pure-go-libs

[3] Go (programming language). Retrieved from
Wikipedia: http://en.wikipedia.org/wiki/Go
%28programming language%29

[4] The Go programming language. Retrieved from
http://golang.org/

[5] Computer Language Benchmarks Game. Retrieved
from http://benchmarksgame.alioth.debian.org/

[6] String Matching Algorithms and their Applicability
in various Applications. (D. G. Nimisha Singla, Ed.)
International Journal of Soft Computing and Engi-
neering (IJSCE), 1 (6).

[7] Fast Cache for Your Text: Accelerating Exact Pattern
Matching with Feed-Forward Bloom Filters. School of
Computer Science. Pittsburgh, USA: Carnegie Mellon
University.

[8] FreeBSD. Retrieved from
https://www.freebsd.org/internet.html

[9] goproxy. (E. Leibovich) Retrieved from
https://github.com/elazarl/goproxy

[10] gcvis. (D. Cheney) Retrieved from
https://github.com/davecheney/gcvis

[11] profile. (D. Cheney) Retrieved from
https://github.com/davecheney/profile

[12] go-nude. (Koyachi) Retrieved from
https://github.com/koyachi/go-nude

[13] xxxhash-go. (S. Bunel) Retrieved from
https://bitbucket.org/StephaneBunel/xxhash-go

[14] powerwalk. (Stretchr) Retrieved from
https://github.com/stretchr/powerwalk

[15] redigo. (G. Burd) Retrieved from
https://github.com/garyburd/redigo

[16] Redis. Retrieved from http://redis.io

[17] HTTP ListenAndServe Goroutines throughput.
Retrieved from http://grokbase.com/t/gg/golang-
nuts/147b9nb2nq/go-nuts-http-listenandserve-
goroutines-throughput

[18] HTTP Load. (ACME Lab) Retrieved from
http://acme.com/software/http load/

[19] Profiling Go programs. Retrieved from
https://blog.golang.org/profiling-go-programs

[20] PC engine APU board.
http://www.pcengines.ch/apu1d4.htm

ASIABSDCON 2015 9

[21] Goroutines. Retrieved from
https://golang.org/doc/effective go.html#goroutines

[22] Channels. Retrieved from
https://golang.org/doc/effective go.html#channels

[23] Go maps in action. Retrieved from
https://blog.golang.org/go-maps-in-action

[24] Arrays, slices (and strings): The mechanics of ’ap-
pend’. Retrieved from https://blog.golang.org/slices

APPENDIX A

ASIABSDCON 2015 10

Fig. 9: Memory usage before optimization

Fig. 10: Memory usage after optimization

ASIABSDCON 2015 11

Fig. 11: Rate test

Fig. 12: Parallel test

