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Abstract
The author describes ongoing development and 
tuning work to maximize performance of bulk 
data transfer over SSH. Development includes 
improvements to the HPN patch sets to resolve 
problems with dynamic window scaling (both 
TCP and SSH windows), new functionality to 
manually specify a larger remote send/receive 
socket buffer for high latency networks, and 
development of the new NONEMAC feature. The 
author also presents detailed benchmarks on the 
performance tuning required to maximize transfer 
rates over both local and long-haul networks. A 
comparative analysis of the performance of 
various ciphers on modern amd64 hardware is 
also presented.

Motivation
ScaleEngine uses SSH for bulk data transfer 
because it is the most convenient way to 
orchestrate the remote server receiving the data. 
ScaleEngine has three primary use cases for bulk 
data transfer:

1. ZFS Replication over LAN and MAN 
connections. This is used to backup 
customer data between servers in a data 
center, and to offsite locations. Data is 
usually “pulled” by the receiver.

2. ZFS Replication over the Internet. This is 
used to publish specific datasets to remote 
servers, such as the TrueOS package 
repositories. Again, data is “pulled” by 
the receiver.

3. Rsync. Recordings of customers’ live 
streams are recorded locally at various 
ingest servers around the world, then 
transferred to the central storage servers. 

This data is “pushed” from the recording 
servers to the storage servers.

4. SFTP. Customers upload original copies 
of their video content to us via 
SFTP/SCP, and we want to offer the best 
possible upload speeds without requiring 
the customer to use a modified version of 
SSH.

Since 2011 ScaleEngine has made use of the HPN 
and NONE Cipher patches for SSH to accelerate 
ZFS replication, especially over LAN. Removing 
encryption and decryption from the pipeline made 
it possible to saturate 1 gbps interfaces with a 
modest CPU. The HPN patches improved 
performance of SSH over the Internet by using a 
larger sliding window. We found the best 
performance came from setting the TcpRcvBuf 
option at runtime, to compensate for the 
bandwidth-delay product.

However, for rsync over SSH, the HPN patches 
provided only a modest improvement, as the fixed 
SSH window of 2 MB meant that the bandwidth-
delay product allowed for only 250 mbps at 60 ms 
of latency.

Recently the LAN connections between our 
storage servers were upgraded to 10 gbps, and we 
noticed a new problem; even with the NONE 
cipher, performance was limited by the speed of 
the MAC (Message Authentication Code) used by 
SSH. With assistance from AES-NI most higher 
end CPUs can achieve greater speed by using 
AES128-GCM, an AEAD (Authenticated 
Encryption with Associated Data) cipher that 
provides both encryption and authentication in a 
single pass, compared with no encryption and just 
an authentication algorithm.



Background
The test environment consisted of Mercat5 and 
Mercat6 from the FreeBSD Test Cluster hosted by 
Sentex:

● Intel(R) Xeon(R) CPU E5-1650 v3 @ 
3.50GHz

● 6 Cores + Hyperthreading (Turboboost 
Disabled)

● 32 GB RAM
● Chelsio T580-LP-CR 40 Gigabit NICs 

(connected back-to-back)
● FreeBSD 11.0-RELEASE-p1
● Base OpenSSH (default): 

OpenSSH_7.2p2, OpenSSL 1.0.2j-freebsd 
26 Sep 2016

● HPN OpenSSH (hpn): OpenSSH_7.3p1, 
OpenSSL 1.0.2j-freebsd  26 Sep 2016

● Patched OpenSSH (fixed): 
OpenSSH_7.3p1, OpenSSL 1.0.2j-freebsd 
26 Sep 2016

HPN - High Performance 
Networking

The HPN patches for OpenSSH were first 
developed in 20041 to address the issue of bulk 
data transfer over SSH. The default SSH window 
size was 64 - 128 KB, which worked well for 
interactive sessions, but was severely limiting for 
bulk transfer in high bandwidth-delay product 
situations. The first patch in the series enabled a 
dynamic window, allowing standard TCP window 
scaling to happen, and offered much better 
transfer speeds over high latency links. The 
dynamic window feature only worked on HPN-to-
HPN connections, so in the case for HPN-to-
NonHPN connections, the HPN patches increased 
the default window size to a configuration setting 
that defaulted to 2 MB.

The HPN patches also added a client side 
configuration option, TcpRcvBuf, that allowed the 

1: The first HPN patch was for OpenSSH-3.8.1p1 
in July of 2004

user to manually specify a receive socket buffer 
size via the setsockopt() SO_RCVBUF. This 
greatly increased transfer speeds when a client is 
receiving from a server. Performance for pushing 
data from a client to a server was still limited by 
the defined HPNBufferSize option, often 
suboptimal.

The HPN patches included a number of other 
features, including a threaded implementation of 
AES-CTR2, and the NONE cipher. The NONE 
cipher feature allowed a standard SSH session to 
be established, with encryption, then once the 
login process is finished, and the data transfer 
begins, the encryption was switched to a null 
cipher. 

OpenSSH later increased the default SSH window 
size to 2 MB with the release of version 4.73 in 
2007.

None Cipher
One of the early features of the HPN patch set 
was the none cipher. Skipping the encryption 
process can greatly increase the transfer speed of 
bulk data where confidentiality is not required. In 
order to preserve the advantages of using SSH 
instead of a plain TCP connection, the None 
Cipher does not engage until the login process 
completes. The connection starts the same as a 
regular SSH session, and after the key exchange, 
the user’s login credentials are exchanged, 
encrypted as normal. At this point, if the 
NoneSwitch command line option is present, and 
the session does not have a TTY allocated, the 
session is rekeyed with NULL encryption. The 
NONE cipher feature contains a number of 
protections to ensure it cannot be used for an 
interactive session, and can never spawn a shell. 
If the -T switch (manually requesting no TTY) is 

2: Multi-Threaded AES-CTR was released as part 
of HPN13v1 in January 2008
3: https://github.com/openssh/openssh-
portable/commit/395ecc2bdeefd86a31562dd4145
f370b816814bd

https://github.com/openssh/openssh-portable/commit/395ecc2bdeefd86a31562dd4145f370b816814bd
https://github.com/openssh/openssh-portable/commit/395ecc2bdeefd86a31562dd4145f370b816814bd
https://github.com/openssh/openssh-portable/commit/395ecc2bdeefd86a31562dd4145f370b816814bd


present, the NoneSwitch is automatically 
disabled. These checks ensure an interactive 
session is never transmitted in the clear. Even 
when the NONE cipher is used, a MAC is still 
applied, so the authenticity of the data is still 
ensured.

None MAC
With modern hardware support for AES-NI, using 
the AES-GCM cipher is often faster than using 
the none cipher. When the none cipher is used 
data is not encrypted, but a MAC is still applied, 
to detect modification of the data in transit. 
Whereas AES-GCM is an authenticated cipher 
and obviates the need to calculate a MAC as a 
separate pass. The fasted available MAC in 
OpenSSH is UMAC-64. On our test system, this 
limited the throughput of the none cipher to 
approximately 6,000 mbps, while AES128-GCM 
reached 8,500mbps. By switching to OpenSSL's 
null MAC, throughput in excess of 15,000 mbps 
was achieved, and the MAC was no longer the 
bottleneck. The same safeguards used for the 
none cipher are also applied to the none MAC. It 
cannot be used during an interactive session, or 
when a TTY is allocated.

Figure 1 shows a comparison of the performance 
of the various ciphers on the test system. Using 
the NONEMAC test, no encryption, and no MAC, 
the patched version of OpenSSH was able to 
reach more than 80% of the performance of the 
netcat control transfer, while the NONE cipher 
was limited by the performance of UMAC64, and 
fell short of AES-GCM. AES-CTR was only 
~10% slower than the NONE cipher, as both were 
constrained by the calculation of the MAC. The 
tests for AES-CBC and AES-CTR were then 
repeated with the NONEMAC. CBC mode saw 
40% improvement for 128 bit, and 30% for 256 
bit, while CTR mode results were improved by 
90% and 80% respectively. The multi-threaded 
implementation of AES-CTR performed quite 

poorly; this has been reported4 to the maintainer 
of the HPN patchset, and is being investigated. 
Increasing the number of threads from 2 to 4 
made only a modest improvement.

Broken Windows
ScaleEngine found it was necessary to use the 
HPN TcpRcvBuf settings to get acceptable 
transfer speeds. Recently when this was 
investigated, it was determined to be because the 
dynamic window scaling feature of the HPN 
patches was not working. During both HPN and 
non-HPN bulk data transfers it was observed that 
the TCP window rarely grew beyond 256 KB. 
When investigating, it was determined that the 
channel_check_window() function slides the SSH 
window forward each time half of the window has 
been consumed. In version 4.75 an additional 
check was added, and the window is slid forward 
if the consumed portion of the window exceeds 3 
times the maximum packet size (32 KB in 
OpenSSH 7.2). We found that this pattern causes 
the TCP window to never increase much beyond 
that size, 128 KB.

One of our initial patches changed the condition 
to: if (session_is_interactive && consumed > 
3*max_packet) || remaining < max_window/2

This kept the window small for interactive 
sessions, but allowed it to grow for bulk data 
transfer. At this point it was observed that the TCP 
window would increase until it reached just more 
than half of the maximum window size. 
Experimentation revealed that this behaviour 
remained the same while the amount the window 
was slid forward was adjusted.

The HPN patch dynamic window feature 
increases the maximum SSH window to 1.5 times 

4: https://github.com/rapier1/openssh-
portable/issues/13
5: https://github.com/openssh/openssh-
portable/commit/3191a8e8ba454c0cc27fa8a24a9e
ed87cd111e4b

https://github.com/openssh/openssh-portable/commit/3191a8e8ba454c0cc27fa8a24a9eed87cd111e4b
https://github.com/openssh/openssh-portable/commit/3191a8e8ba454c0cc27fa8a24a9eed87cd111e4b
https://github.com/openssh/openssh-portable/commit/3191a8e8ba454c0cc27fa8a24a9eed87cd111e4b
https://github.com/rapier1/openssh-portable/issues/13
https://github.com/rapier1/openssh-portable/issues/13


the difference between the socket buffer and the 
maximum SSH window, but only if the socket 
buffer exceeds the maximum window size. Since 
this condition is never met, and the SSH window 
never grows, the TCP window never grows 
beyond half of that size.

Our patch changed this behaviour to grow the 
SSH maximum window by 1.5 times the 
difference between the socket buffer and the 
unconsumed portion of the SSH window. This 
condition is now met once the TCP window 
grows to half of the maximum window, and then 
the maximum window is increased. The TCP 
window will grow further, to half of the new 
maximum. This process continues until the TCP 
buffer no longer needs to grow to maximize 
bandwidth, or the maximum size of the socket 
buffer imposed by the operating system is 
reached.

Manual Buffer Sizing
The HPN patch set includes a client side 
configuration option, TcpRcvBuf, to set the local 
TCP receive socket buffer. This skips the OS 
auto-tuning and allows the user to specify a larger 
receive buffer to get better performance.

We have extended this concept with a second 
client side option, to request a larger TCP receive 
socket buffer on the remote server, to attain 
maximum throughput when the client is 
uploading to the server. This was done by creating 
a new SSH protocol message, in the 
SSH2_MSG_LOCAL local modifications range. 
When this message is received by the server, it 
performs the required setsockopt() to set the 
buffer size. The buffer size is capped to a new 
server-side setting, MaxSockBuf, that defaults to 
SSHBUF_SIZE_MAX. This allows the server 
administrator to limit the amount of memory that 
can be consumed by each connection. The Match 
user directives can be used to limit the large 
receive buffer feature to only specific users. This 

limits the risk of the receive buffer being used to 
exhaust the server’s memory resulting in a DDoS.

Socket Buffer Sizing
There are a number of variables that control the 
sizing of TCP socket buffers on FreeBSD:

● net.inet.tcp.{send,recv}space - Controls 
the initial size of the TCP socket buffer

● net.inet.tcp.{send,recv}buf_max - 
Controls the maximum size for auto-
scaling the socket buffer

● net.inet.tcp.{send,recv}buf_inc - Controls 
the size of each increment of the socket 
buffer

● net.inet.tcp.{send,recv}buf_auto - Enable 
auto-scaling of the socket buffer

● kern.ipc.maxsockbuf - The maximum size 
of any socket buffer

There is some danger of memory exhaustion if 
socket buffers are allow to grow unbounded. If a 
server is serving many clients concurrently, a 
smaller maximum socket buffer is likely 
warranted. Some applications like nginx allow the 
administrator to specify a send and receive socket 
buffer size, which is set with setsockopt(), and 
bypasses the operating system auto-scaling.

For the case of SSH bulk transfer, it is desirable to 
avoid increasing the maximum size of the auto-
scaling socket buffer, as this will impact all 
sockets on the system. The TcpRcvBuf feature, 
and its remote counterpart RemoteRcvBuf, allow 
the user to manually specify a larger static buffer. 
This size is bounded by kern.ipc.maxsockbuf. 
This value is the maximum amount of memory 
that can be consumed by the buffer, not the 
maximum size of the buffer. 2048 bytes of buffer 
consumes 2048 bytes plus 256 bytes of overhead, 
so to support a 64 MB socket buffer, the 
maxsockbuf must be set to 72 MB. You can tune 
the maxsockbuf to a very large value, allowing for 
extremely high bandwidth-delay products, while 
keeping the auto-scaling buffer at a reasonable 



size, to avoid consuming excess memory on a 
server that also serves many concurrent clients.

In a high latency environment, such as 
transporting data intercontinentally, a sufficiently 
large socket buffer is required to overcome the 
bandwidth-delay product (BDP). Figures 3 
through 6 show appropriate socket buffer sizing, 
and the impact of the lack of dynamic window 
scaling in unmodified SSH. Each graph is paired 
with a log scale version of the same data, because 
the disparity between the numbers is so drastic.

Limits of Tuning
At this point, this work has reached the limits of 
what can be achieved with minor patching and OS 
tuning. DTrace flame graphs (6 and 7) show that 
almost all CPU time is now spent in libc 
(memcpy, memset, realloc, etc). In order to get 
more performance, it would likely be necessary to 
make architectural changes to OpenSSH, and this 
seems excessive considering the tool is already 
being abused much beyond its intended purpose.

Figure 2 shows that performances across all 
ciphers scales linearly with CPU clock frequency. 
Sadly this means that most Intel Xeon E5-26xx 
processors cannot yet saturate 10gbps network 
links, because of their lower relative clock speed 
compared to the E5-16xx processors used in the 
benchmarks.

Conclusions
With the dynamic window scaling feature fixed, 
and some minor OS level tuning to grow the 
socket buffer more rapidly to maximize 
throughput even across Long-Fat Networks, 
increased performance can be had with only 

6: Client flame graph: 
http://www.allanjude.com/bsd/ssh.svg
7: Server flame graph: 
http://www.allanjude.com/bsd/sshd.svg

server-side modifications. With the TcpRcvBuf 
feature, "pull" type workloads can skip OS auto-
tuning and manually specify a socket buffer size 
to reach peak transfer rates more rapidly. With a 
slight modification to the SSH protocol, the client 
can request that the server set a larger receive 
buffer, allowing "push" type workloads to reach 
their potential bandwidth more quickly. The 
introduction of the none MAC feature, in 
conjunction with the existing none cipher, avoids 
SSH becoming CPU bound by  encryption or 
authentication processes. In cases where 
confidentiality is not required, and authentication 
is provided by other means (ZFS replication 
checksums), the performance limit becomes how 
quickly a single CPU thread can shuffle bytes 
around in memory. For most users, AES-GCM is 
likely the best choice, as it offers high 
performance while still providing both 
confidentiality and authentication.

http://www.allanjude.com/bsd/sshd.svg
http://www.allanjude.com/bsd/ssh.svg
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Figure 2: Performance by Cipher vs CPU Frequency

tcpwin=16m time=60s

1200 1500 2000 2500 3000 3500 3501

M
e

g
a

b
its

 p
e

r 
S

e
co

n
d

blowfish-cbc

aes256-ctr MT

chacha20-poly1305*

aes128-ctr MT

aes256-cbc

aes128-cbc

arcfour

aes256-cbc+nonemac*

aes128-cbc+nonemac*

aes256-ctr

aes128-ctr

nonecipher

aes256-gcm*

aes128-gcm*

aes256-ctr+nonemac*

aes128-ctr+nonemac*

nonemac*

netcat*

0 2000 4000 6000 8000 10000 12000 14000 16000

Figure 1: Bandwidth by Cipher
tcpwin=16m time=60s cpufreq=3500 mac=umac-64-etm

Send Recv

Megabits per Second

C
ip

h
e

r
* 

=
 N

O
 M

A
C



4m 8m 16m 32m 64m
20

200

2000

20000

Figure 4: Socket Buffer vs Latency (Log Scale)
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Figure 3: Socket Buffer vs Latency
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Figure 5: Socket Buffer vs Latency
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Figure 6: Socket Buffer vs Latency (Log Scale)
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