
SSH Performance
Allan Jude, ScaleEngine Inc. allanjude@freebsd.org

Abstract
The author describes ongoing development and
tuning work to maximize performance of bulk
data transfer over SSH. Development includes
improvements to the HPN patch sets to resolve
problems with dynamic window scaling (both
TCP and SSH windows), new functionality to
manually specify a larger remote send/receive
socket buffer for high latency networks, and
development of the new NONEMAC feature. The
author also presents detailed benchmarks on the
performance tuning required to maximize transfer
rates over both local and long-haul networks. A
comparative analysis of the performance of
various ciphers on modern amd64 hardware is
also presented.

Motivation
ScaleEngine uses SSH for bulk data transfer
because it is the most convenient way to
orchestrate the remote server receiving the data.
ScaleEngine has three primary use cases for bulk
data transfer:

1. ZFS Replication over LAN and MAN
connections. This is used to backup
customer data between servers in a data
center, and to offsite locations. Data is
usually “pulled” by the receiver.

2. ZFS Replication over the Internet. This is
used to publish specific datasets to remote
servers, such as the TrueOS package
repositories. Again, data is “pulled” by
the receiver.

3. Rsync. Recordings of customers’ live
streams are recorded locally at various
ingest servers around the world, then
transferred to the central storage servers.

This data is “pushed” from the recording
servers to the storage servers.

4. SFTP. Customers upload original copies
of their video content to us via
SFTP/SCP, and we want to offer the best
possible upload speeds without requiring
the customer to use a modified version of
SSH.

Since 2011 ScaleEngine has made use of the HPN
and NONE Cipher patches for SSH to accelerate
ZFS replication, especially over LAN. Removing
encryption and decryption from the pipeline made
it possible to saturate 1 gbps interfaces with a
modest CPU. The HPN patches improved
performance of SSH over the Internet by using a
larger sliding window. We found the best
performance came from setting the TcpRcvBuf
option at runtime, to compensate for the
bandwidth-delay product.

However, for rsync over SSH, the HPN patches
provided only a modest improvement, as the fixed
SSH window of 2 MB meant that the bandwidth-
delay product allowed for only 250 mbps at 60 ms
of latency.

Recently the LAN connections between our
storage servers were upgraded to 10 gbps, and we
noticed a new problem; even with the NONE
cipher, performance was limited by the speed of
the MAC (Message Authentication Code) used by
SSH. With assistance from AES-NI most higher
end CPUs can achieve greater speed by using
AES128-GCM, an AEAD (Authenticated
Encryption with Associated Data) cipher that
provides both encryption and authentication in a
single pass, compared with no encryption and just
an authentication algorithm.

Background
The test environment consisted of Mercat5 and
Mercat6 from the FreeBSD Test Cluster hosted by
Sentex:

● Intel(R) Xeon(R) CPU E5-1650 v3 @
3.50GHz

● 6 Cores + Hyperthreading (Turboboost
Disabled)

● 32 GB RAM
● Chelsio T580-LP-CR 40 Gigabit NICs

(connected back-to-back)
● FreeBSD 11.0-RELEASE-p1
● Base OpenSSH (default):

OpenSSH_7.2p2, OpenSSL 1.0.2j-freebsd
26 Sep 2016

● HPN OpenSSH (hpn): OpenSSH_7.3p1,
OpenSSL 1.0.2j-freebsd 26 Sep 2016

● Patched OpenSSH (fixed):
OpenSSH_7.3p1, OpenSSL 1.0.2j-freebsd
26 Sep 2016

HPN - High Performance
Networking

The HPN patches for OpenSSH were first
developed in 20041 to address the issue of bulk
data transfer over SSH. The default SSH window
size was 64 - 128 KB, which worked well for
interactive sessions, but was severely limiting for
bulk transfer in high bandwidth-delay product
situations. The first patch in the series enabled a
dynamic window, allowing standard TCP window
scaling to happen, and offered much better
transfer speeds over high latency links. The
dynamic window feature only worked on HPN-to-
HPN connections, so in the case for HPN-to-
NonHPN connections, the HPN patches increased
the default window size to a configuration setting
that defaulted to 2 MB.

The HPN patches also added a client side
configuration option, TcpRcvBuf, that allowed the

1: The first HPN patch was for OpenSSH-3.8.1p1
in July of 2004

user to manually specify a receive socket buffer
size via the setsockopt() SO_RCVBUF. This
greatly increased transfer speeds when a client is
receiving from a server. Performance for pushing
data from a client to a server was still limited by
the defined HPNBufferSize option, often
suboptimal.

The HPN patches included a number of other
features, including a threaded implementation of
AES-CTR2, and the NONE cipher. The NONE
cipher feature allowed a standard SSH session to
be established, with encryption, then once the
login process is finished, and the data transfer
begins, the encryption was switched to a null
cipher.

OpenSSH later increased the default SSH window
size to 2 MB with the release of version 4.73 in
2007.

None Cipher
One of the early features of the HPN patch set
was the none cipher. Skipping the encryption
process can greatly increase the transfer speed of
bulk data where confidentiality is not required. In
order to preserve the advantages of using SSH
instead of a plain TCP connection, the None
Cipher does not engage until the login process
completes. The connection starts the same as a
regular SSH session, and after the key exchange,
the user’s login credentials are exchanged,
encrypted as normal. At this point, if the
NoneSwitch command line option is present, and
the session does not have a TTY allocated, the
session is rekeyed with NULL encryption. The
NONE cipher feature contains a number of
protections to ensure it cannot be used for an
interactive session, and can never spawn a shell.
If the -T switch (manually requesting no TTY) is

2: Multi-Threaded AES-CTR was released as part
of HPN13v1 in January 2008
3: https://github.com/openssh/openssh-
portable/commit/395ecc2bdeefd86a31562dd4145
f370b816814bd

https://github.com/openssh/openssh-portable/commit/395ecc2bdeefd86a31562dd4145f370b816814bd
https://github.com/openssh/openssh-portable/commit/395ecc2bdeefd86a31562dd4145f370b816814bd
https://github.com/openssh/openssh-portable/commit/395ecc2bdeefd86a31562dd4145f370b816814bd

present, the NoneSwitch is automatically
disabled. These checks ensure an interactive
session is never transmitted in the clear. Even
when the NONE cipher is used, a MAC is still
applied, so the authenticity of the data is still
ensured.

None MAC
With modern hardware support for AES-NI, using
the AES-GCM cipher is often faster than using
the none cipher. When the none cipher is used
data is not encrypted, but a MAC is still applied,
to detect modification of the data in transit.
Whereas AES-GCM is an authenticated cipher
and obviates the need to calculate a MAC as a
separate pass. The fasted available MAC in
OpenSSH is UMAC-64. On our test system, this
limited the throughput of the none cipher to
approximately 6,000 mbps, while AES128-GCM
reached 8,500mbps. By switching to OpenSSL's
null MAC, throughput in excess of 15,000 mbps
was achieved, and the MAC was no longer the
bottleneck. The same safeguards used for the
none cipher are also applied to the none MAC. It
cannot be used during an interactive session, or
when a TTY is allocated.

Figure 1 shows a comparison of the performance
of the various ciphers on the test system. Using
the NONEMAC test, no encryption, and no MAC,
the patched version of OpenSSH was able to
reach more than 80% of the performance of the
netcat control transfer, while the NONE cipher
was limited by the performance of UMAC64, and
fell short of AES-GCM. AES-CTR was only
~10% slower than the NONE cipher, as both were
constrained by the calculation of the MAC. The
tests for AES-CBC and AES-CTR were then
repeated with the NONEMAC. CBC mode saw
40% improvement for 128 bit, and 30% for 256
bit, while CTR mode results were improved by
90% and 80% respectively. The multi-threaded
implementation of AES-CTR performed quite

poorly; this has been reported4 to the maintainer
of the HPN patchset, and is being investigated.
Increasing the number of threads from 2 to 4
made only a modest improvement.

Broken Windows
ScaleEngine found it was necessary to use the
HPN TcpRcvBuf settings to get acceptable
transfer speeds. Recently when this was
investigated, it was determined to be because the
dynamic window scaling feature of the HPN
patches was not working. During both HPN and
non-HPN bulk data transfers it was observed that
the TCP window rarely grew beyond 256 KB.
When investigating, it was determined that the
channel_check_window() function slides the SSH
window forward each time half of the window has
been consumed. In version 4.75 an additional
check was added, and the window is slid forward
if the consumed portion of the window exceeds 3
times the maximum packet size (32 KB in
OpenSSH 7.2). We found that this pattern causes
the TCP window to never increase much beyond
that size, 128 KB.

One of our initial patches changed the condition
to: if (session_is_interactive && consumed >
3*max_packet) || remaining < max_window/2

This kept the window small for interactive
sessions, but allowed it to grow for bulk data
transfer. At this point it was observed that the TCP
window would increase until it reached just more
than half of the maximum window size.
Experimentation revealed that this behaviour
remained the same while the amount the window
was slid forward was adjusted.

The HPN patch dynamic window feature
increases the maximum SSH window to 1.5 times

4: https://github.com/rapier1/openssh-
portable/issues/13
5: https://github.com/openssh/openssh-
portable/commit/3191a8e8ba454c0cc27fa8a24a9e
ed87cd111e4b

https://github.com/openssh/openssh-portable/commit/3191a8e8ba454c0cc27fa8a24a9eed87cd111e4b
https://github.com/openssh/openssh-portable/commit/3191a8e8ba454c0cc27fa8a24a9eed87cd111e4b
https://github.com/openssh/openssh-portable/commit/3191a8e8ba454c0cc27fa8a24a9eed87cd111e4b
https://github.com/rapier1/openssh-portable/issues/13
https://github.com/rapier1/openssh-portable/issues/13

the difference between the socket buffer and the
maximum SSH window, but only if the socket
buffer exceeds the maximum window size. Since
this condition is never met, and the SSH window
never grows, the TCP window never grows
beyond half of that size.

Our patch changed this behaviour to grow the
SSH maximum window by 1.5 times the
difference between the socket buffer and the
unconsumed portion of the SSH window. This
condition is now met once the TCP window
grows to half of the maximum window, and then
the maximum window is increased. The TCP
window will grow further, to half of the new
maximum. This process continues until the TCP
buffer no longer needs to grow to maximize
bandwidth, or the maximum size of the socket
buffer imposed by the operating system is
reached.

Manual Buffer Sizing
The HPN patch set includes a client side
configuration option, TcpRcvBuf, to set the local
TCP receive socket buffer. This skips the OS
auto-tuning and allows the user to specify a larger
receive buffer to get better performance.

We have extended this concept with a second
client side option, to request a larger TCP receive
socket buffer on the remote server, to attain
maximum throughput when the client is
uploading to the server. This was done by creating
a new SSH protocol message, in the
SSH2_MSG_LOCAL local modifications range.
When this message is received by the server, it
performs the required setsockopt() to set the
buffer size. The buffer size is capped to a new
server-side setting, MaxSockBuf, that defaults to
SSHBUF_SIZE_MAX. This allows the server
administrator to limit the amount of memory that
can be consumed by each connection. The Match
user directives can be used to limit the large
receive buffer feature to only specific users. This

limits the risk of the receive buffer being used to
exhaust the server’s memory resulting in a DDoS.

Socket Buffer Sizing
There are a number of variables that control the
sizing of TCP socket buffers on FreeBSD:

● net.inet.tcp.{send,recv}space - Controls
the initial size of the TCP socket buffer

● net.inet.tcp.{send,recv}buf_max -
Controls the maximum size for auto-
scaling the socket buffer

● net.inet.tcp.{send,recv}buf_inc - Controls
the size of each increment of the socket
buffer

● net.inet.tcp.{send,recv}buf_auto - Enable
auto-scaling of the socket buffer

● kern.ipc.maxsockbuf - The maximum size
of any socket buffer

There is some danger of memory exhaustion if
socket buffers are allow to grow unbounded. If a
server is serving many clients concurrently, a
smaller maximum socket buffer is likely
warranted. Some applications like nginx allow the
administrator to specify a send and receive socket
buffer size, which is set with setsockopt(), and
bypasses the operating system auto-scaling.

For the case of SSH bulk transfer, it is desirable to
avoid increasing the maximum size of the auto-
scaling socket buffer, as this will impact all
sockets on the system. The TcpRcvBuf feature,
and its remote counterpart RemoteRcvBuf, allow
the user to manually specify a larger static buffer.
This size is bounded by kern.ipc.maxsockbuf.
This value is the maximum amount of memory
that can be consumed by the buffer, not the
maximum size of the buffer. 2048 bytes of buffer
consumes 2048 bytes plus 256 bytes of overhead,
so to support a 64 MB socket buffer, the
maxsockbuf must be set to 72 MB. You can tune
the maxsockbuf to a very large value, allowing for
extremely high bandwidth-delay products, while
keeping the auto-scaling buffer at a reasonable

size, to avoid consuming excess memory on a
server that also serves many concurrent clients.

In a high latency environment, such as
transporting data intercontinentally, a sufficiently
large socket buffer is required to overcome the
bandwidth-delay product (BDP). Figures 3
through 6 show appropriate socket buffer sizing,
and the impact of the lack of dynamic window
scaling in unmodified SSH. Each graph is paired
with a log scale version of the same data, because
the disparity between the numbers is so drastic.

Limits of Tuning
At this point, this work has reached the limits of
what can be achieved with minor patching and OS
tuning. DTrace flame graphs (6 and 7) show that
almost all CPU time is now spent in libc
(memcpy, memset, realloc, etc). In order to get
more performance, it would likely be necessary to
make architectural changes to OpenSSH, and this
seems excessive considering the tool is already
being abused much beyond its intended purpose.

Figure 2 shows that performances across all
ciphers scales linearly with CPU clock frequency.
Sadly this means that most Intel Xeon E5-26xx
processors cannot yet saturate 10gbps network
links, because of their lower relative clock speed
compared to the E5-16xx processors used in the
benchmarks.

Conclusions
With the dynamic window scaling feature fixed,
and some minor OS level tuning to grow the
socket buffer more rapidly to maximize
throughput even across Long-Fat Networks,
increased performance can be had with only

6: Client flame graph:
http://www.allanjude.com/bsd/ssh.svg
7: Server flame graph:
http://www.allanjude.com/bsd/sshd.svg

server-side modifications. With the TcpRcvBuf
feature, "pull" type workloads can skip OS auto-
tuning and manually specify a socket buffer size
to reach peak transfer rates more rapidly. With a
slight modification to the SSH protocol, the client
can request that the server set a larger receive
buffer, allowing "push" type workloads to reach
their potential bandwidth more quickly. The
introduction of the none MAC feature, in
conjunction with the existing none cipher, avoids
SSH becoming CPU bound by encryption or
authentication processes. In cases where
confidentiality is not required, and authentication
is provided by other means (ZFS replication
checksums), the performance limit becomes how
quickly a single CPU thread can shuffle bytes
around in memory. For most users, AES-GCM is
likely the best choice, as it offers high
performance while still providing both
confidentiality and authentication.

http://www.allanjude.com/bsd/sshd.svg
http://www.allanjude.com/bsd/ssh.svg

nonecipher aes128-gcm nonemac netcat
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Figure 2: Performance by Cipher vs CPU Frequency

tcpwin=16m time=60s

1200 1500 2000 2500 3000 3500 3501

M
e

g
a

b
its

 p
e

r
S

e
co

n
d

blowfish-cbc

aes256-ctr MT

chacha20-poly1305*

aes128-ctr MT

aes256-cbc

aes128-cbc

arcfour

aes256-cbc+nonemac*

aes128-cbc+nonemac*

aes256-ctr

aes128-ctr

nonecipher

aes256-gcm*

aes128-gcm*

aes256-ctr+nonemac*

aes128-ctr+nonemac*

nonemac*

netcat*

0 2000 4000 6000 8000 10000 12000 14000 16000

Figure 1: Bandwidth by Cipher
tcpwin=16m time=60s cpufreq=3500 mac=umac-64-etm

Send Recv

Megabits per Second

C
ip

h
e

r
*

=
 N

O
 M

A
C

4m 8m 16m 32m 64m
20

200

2000

20000

Figure 4: Socket Buffer vs Latency (Log Scale)

delay=25ms time=120s cpufreq=3500

default-send

default-recv

hpn-send

hpn-recv

fixed-recv

fixed-send

netcat-send

BDP

Socket Buffer Size

M
e

g
a

b
its

 p
e

r
S

e
co

n
d

4m 8m 16m 32m 64m
0

2000

4000

6000

8000

10000

12000

14000

16000

Figure 3: Socket Buffer vs Latency

delay=25ms time=120s cpufreq=3500

default-send

default-recv

hpn-send

hpn-recv

fixed-recv

fixed-send

netcat-send

BDP

Socket Buffer Size

M
e

g
a

b
its

 p
e

r
S

e
co

n
d

4m 8m 16m 32m 64m
0

1000

2000

3000

4000

5000

6000

Figure 5: Socket Buffer vs Latency

delay=100ms time=120s cpufreq=3500

default-send

default-recv

hpn-send

hpn-recv

fixed-send

fixed-recv

netcat-send

BDP

Socket Buffer Size

M
e

g
a

b
its

 p
e

r
S

e
co

n
d

4m 8m 16m 32m 64m
0.5

5

50

500

5000

Figure 6: Socket Buffer vs Latency (Log Scale)

delay=100ms time=120s cpufreq=3500

default-send

default-recv

hpn-send

hpn-recv

fixed-send

fixed-recv

netcat-send

BDP

Socket Buffer Size

M
e

g
a

b
its

 p
e

r
S

e
co

n
d

