Memory Management in FreeBSD 12.0

Mark Johnston

BSDTW 2017

Introduction

v

Mark Johnston, mark j@FreeBSD.org
OS Team at Dell EMC Isilon

FreeBSD user since 2010, committer since December 2012

v

v

» sys/vm neophyte since 2015

Responsibilities

» Implementing the virtual memory abstraction

» Syscalls: mmap, madvise, mprotect, minherit,
mincore, msync, mlock, mlockall, munmap,
munlock, munlockall

» More syscalls: fork, vfork, execve, read, write,
sendfile, ptrace,

» Page fault handling
Enforcing memory protection
Copy-on-write
Tracking page dirty state
Page-in from swap, or a filesystem, or device memory

Responsibilities, cont'd

» Handling memory pressure
Reclaiming pages, approximating LRU
Page queue maintenance
Laundering dirty pages
» Kernel memory allocation
malloc (9), free (9)
Slab allocation (uma (9))
KVA allocation (vmem (9))
Physically contiguous allocations
Physical address constraints (e.g., ISA DMA)
» Miscellaneous tightly coupled subsystems
FS buffer cache
pmap (9)
tmpfs (5), md(4)
vmm (4), Linux drm drivers
SYSV and POSIX shared memory
Scalability w.r.t. CPU count and RAM size
Good single-threaded performance

VM Factoids

» The VM is not a virtual machine
» Originated from Mach, since 4.4BSD
» Heavily reworked in the 1990s, dg@, dyson@, dillong@,

alcQ
Kernel Path Comments | Code
OpenBSD | sys/uvm/ 7,716 13,853
FreeBSD | sys/vm/ 9,246 21,468
illumos uts/common/vm/ 14,352 34,100
XNU osfmk/vm/ 17,007 52,400
Linux mm/ 28,476 78,260

Implications

» The VM is complicated
» Old foundations
» Consistency and conceptual integrity are important
» Some workloads are more important - can't catch 'em all
» Think carefully about tradeoffs
» Good "Pareto optimizations” are nice
» Pathological behaviour is not OK
> It's easy to write code that seems to work
» Simple tests aren’t going to find your race conditions, but your
users probably will
» CVE-2013-2171, CVE-2016-5195
> It's easy to silently break optimizations
» Think twice, commit once

vm_page_t

» One per page of physical RAM
> vm_page_array

» vm_phys.c buddy allocator
> Wire a page to make it unreclaimable

» Removes page from paging queue
» Unwire queues page at the tail of a paging queue
» Used to implement mlock (2), buffer cache, ZFS ARC, etc.

» Managed pages keep track of their mappings (PV entries)

» 104 bytes(!) on amd64
» Locking

» Physical address locks (mtx)
> Per-page busy lock
» Object lock

vm_map-t, vmmap_entry_t

» Organize memory layout for userland processes

v

Contiguous regions described by vm_map_entry_t's

v

Provide O(log(n)) address space allocation

» Organize map entries in a sorted list and splay tree

v

Special handling for userland stacks

v

Locking
» Per-map reader-writer lock (sx)

procstat -v 1

PID
1

e e R S

START
0x400000
0x71a000
0x71£000

0x80071a000
0x80091a000
0x80091b000
0x800d2d000
0x800d55000
Ox7f££df£££000
Ox7£f£££££dE000
Ox7f£f£EFE£000

END
0x51a000
0x71£000
0x952000

0x80091a000
0x80091b000
0x800d2d000
0x800d55000
0x800d58000
Ox7f£££££df000
OxTEEE£E£££££000
0x800000000000

PRT
r-x
rw—
rw—
rw—

rw—
rw-—
rw-

rw-
r-x

RES PRES REF SHD

210 224 2 1
5 0 1 0
16 16 1 0
7 7 1 0
1 1 43 0
14 14 1 0
17 17 1 0
1 1 1 0
0 0 0 0
2 2 1 0
1 1 44 0

FLAG

TP PATH

vn /sbin/init
vn /sbin/init
df

df

dv

df

df

vm_object_t

v

Acts as a generic "source” of pages

v

Integrated with pager methods
7 different object types (OBJT_)

» OBJT_DEFAULT converted to OBJT_SWAP upon first pageout
» Object type selects pager methods

v

v

Resident pages stored in a sorted queue and a radix tree

» Addressed by 64-bit virtual pindex (vm_pindex_t)
» A vm_page_t belongs to at most one object

v

Objects don't contain information about their mappings

» Often mapped into multiple address spaces
» Object hierarchy used to implement COW

v

Locking

» VM object lock (rwlock)
» vnode lock, for OBJT_VNODE objects

vim_.reserv_t

» Support speculative allocation of physically contiguous pages

> Integrated with pmap (9) to allow transparent creation of
large mappings (e.g., 2MB instead of 4KB on x86)
» Locking

» Free page queue lock (mtx)

pmap_enter (psind=1)

» r321386 by alc, review D11556

» Immediately promote mapping if reservation is fully populated

» Eliminates many page faults on vnodes and shmem

dtrace -n

" fbt::pmap_enter:entry /args([5]/{printf ("%$s", execname);}’

pmap_enter (psind=1), cont'd

if ((m—>flags & PG_FICTITIOUS) == 0 &&
(m_super = vm_reserv_to_superpage (m)) != NULL &&
rounddown2 (vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
roundup?2 (vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&

(vaddr & (pagesizes[m_super->psind] 1)) == (VM_PAGE_TO_PHYS (m) &
(pagesizes[m_super->psind] - 1)) && pmap_ps_enabled(fs->map->pmap)) {
flags = PS_ALL_VALID;
if ((prot & VM_PROT_WRITE) != 0) {
/

* Create a superpage mapping allowing write access

« only if none of the constituent pages are busy and
« all of them are already dirty (except possibly for
* the page that was faulted on).

*/
flags |= PS_NONE_BUSY;
if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
flags |= PS_ALL_DIRTY;
}
if (vm_page_ps_test (m_super, flags, m)) {

m_map = m_super;
psind = m_super->psind;

vaddr = rounddown2 (vaddr, pagesizes[psind]);
/* Preset the modified bit for dirty superpages. */
if ((flags & PS_ALL_DIRTY) != 0)

fault_type |= VM_PROT_WRITE;

}
rv = pmap_enter (fs->map->pmap, vaddr, m_map, prot, fault_type |
PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);

faults

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

Page faults per second during pgbench -5

seconds

T T T T

1y r321386 ——
A r321385 —— -
L) i

‘ (|
I Jo! I“w |
I/ \ i
TU— :
| " :

Mllr“\v.‘
L | BN i
“-
— v -HM"’V_,_\ —
L]]]] i ,lnﬁ =

0 50 100 150 200 250 300

250000

200000

150000

tps

100000

50000

Jata—201h0?13/5¥ock
data-20140713/patched

10

20

30

40 50 60

threads

70

From PostgreSQL/FreeBSD performance and scalability on a

40-core machine

80

PO_LAUNDRY

> 308474 by alc

» When and how much do we swap?

» Dirty pages must be laundered before they can be freed

» Old algorithm: scan PQ_INACTIVE for clean pages, and
launder a a few dirty ones. If we don’t find enough clean
pages, scan again and launder as many pages as possible.

» New algorithm: PQ_INACTIVE scans move dirty pages to the
laundry (PQ_LAUNDRY). A dedicated thread launders pages
depending on:

» how quickly clean pages are being freed
» {(PQ_LAUNDRY)/{(PQ-INACTIVE)

» Dedicated thread makes it harder to hit low-memory deadlocks

Avoiding TLB shootdows in execve (2)

» 311346 and r313756 by markj, D8921, D9586
» Massive overhead observed on 128-vCPU EC2 instances
» make —-3128 buildkernel
» Silly KVA management caused excessive IPls
» Solution: cache execve (2) argument KVA and use
madvise (MADV_FREE) to release backing pages when
under memory pressure

commit 18b3f4573dd73f98b9%09716883eda65014196d59
Author: Matthew Dillon <dillon@dragonflybsd.org>

Date: Thu Jun 7 23:14:29 2007 40000

Entirely remove exec_map from the kernel.

Global Lock Removals

» 1299788 by kib, removed pvh_global_lock on amd64
» Replaced with " delayed invalidation” blocks

» Improves pmap (9) scalability (on amd64)

» 322913 by kib, removed swhash mtx
» Global hash table for (obj,pindex) — swblk mappings
» Replaced with per-object trie, protected by the object lock

» Many VM operations required swap hash lookups

MAP_GUARD

» 320317 by kib, plus followups

» New mmap (2) flag added partly in response to Stack Clash

> Allows the creation of reservations in the virtual address space
» Access of a guard region raises SIGSEGV

» mmap (2) will not return a mapping in the region unless
MAP_FIXED is used

Planned changes

» D11943 by markj: Avoid dequeuing pages in
vm_page_wire ()

» Frequent wiring and unwiring causes page queue lock
contention

» Partial solution: lazily dequeue wired pages to reduce number
of queue ops

» D13014 by jeff: NUMA awareness in the page allocator

» Takes us closer to fine-grained locking in the page allocator

Acknowledgements

Alan Cox (alc@FreeBSD.orgq)
Konstantin Belousov (kib@FreeBSD.org)

