
Memory Management in FreeBSD 12.0

Mark Johnston

BSDTW 2017

Introduction

I Mark Johnston, markj@FreeBSD.org

I OS Team at Dell EMC Isilon

I FreeBSD user since 2010, committer since December 2012

I sys/vm neophyte since 2015

Responsibilities

I Implementing the virtual memory abstraction

I Syscalls: mmap, madvise, mprotect, minherit,
mincore, msync, mlock, mlockall, munmap,
munlock, munlockall

I More syscalls: fork, vfork, execve, read, write,
sendfile, ptrace, ...

I Page fault handling

Enforcing memory protection
Copy-on-write
Tracking page dirty state
Page-in from swap, or a filesystem, or device memory

Responsibilities, cont’d
I Handling memory pressure

Reclaiming pages, approximating LRU
Page queue maintenance
Laundering dirty pages

I Kernel memory allocation
malloc(9), free(9)
Slab allocation (uma(9))
KVA allocation (vmem(9))
Physically contiguous allocations
Physical address constraints (e.g., ISA DMA)

I Miscellaneous tightly coupled subsystems
FS buffer cache
pmap(9)
tmpfs(5), md(4)
vmm(4), Linux drm drivers
SYSV and POSIX shared memory
Scalability w.r.t. CPU count and RAM size
Good single-threaded performance

VM Factoids

I The VM is not a virtual machine

I Originated from Mach, since 4.4BSD

I Heavily reworked in the 1990s, dg@, dyson@, dillon@,
alc@

Kernel Path Comments Code

OpenBSD sys/uvm/ 7,716 13,853

FreeBSD sys/vm/ 9,246 21,468

illumos uts/common/vm/ 14,352 34,100

XNU osfmk/vm/ 17,007 52,400

Linux mm/ 28,476 78,260

Implications

I The VM is complicated

I Old foundations

I Consistency and conceptual integrity are important
I Some workloads are more important - can’t catch ’em all

I Think carefully about tradeoffs
I Good ”Pareto optimizations” are nice
I Pathological behaviour is not OK

I It’s easy to write code that seems to work
I Simple tests aren’t going to find your race conditions, but your

users probably will
I CVE-2013-2171, CVE-2016-5195
I It’s easy to silently break optimizations

I Think twice, commit once

vm page t

I One per page of physical RAM

I vm page array

I vm phys.c buddy allocator
I Wire a page to make it unreclaimable

I Removes page from paging queue
I Unwire queues page at the tail of a paging queue
I Used to implement mlock(2), buffer cache, ZFS ARC, etc.

I Managed pages keep track of their mappings (PV entries)

I 104 bytes(!) on amd64
I Locking

I Physical address locks (mtx)
I Per-page busy lock
I Object lock

vm map t, vm map entry t

I Organize memory layout for userland processes

I Contiguous regions described by vm map entry t’s

I Provide O(log(n)) address space allocation

I Organize map entries in a sorted list and splay tree

I Special handling for userland stacks
I Locking

I Per-map reader-writer lock (sx)

procstat -v 1
PID START END PRT RES PRES REF SHD FLAG TP PATH

1 0x400000 0x51a000 r-x 210 224 2 1 CN-- vn /sbin/init
1 0x71a000 0x71f000 rw- 5 0 1 0 CN-- vn /sbin/init
1 0x71f000 0x952000 rw- 16 16 1 0 CN-- df
1 0x80071a000 0x80091a000 rw- 7 7 1 0 CN-- df
1 0x80091a000 0x80091b000 r-- 1 1 43 0 ---- dv
1 0x80091b000 0x800d2d000 rw- 14 14 1 0 CN-- df
1 0x800d2d000 0x800d55000 rw- 17 17 1 0 C--- df
1 0x800d55000 0x800d58000 rw- 1 1 1 0 C--- df
1 0x7fffdffff000 0x7ffffffdf000 --- 0 0 0 0 ---- --
1 0x7ffffffdf000 0x7ffffffff000 rw- 2 2 1 0 C--D df
1 0x7ffffffff000 0x800000000000 r-x 1 1 44 0 ---- ph

vm object t

I Acts as a generic ”source” of pages

I Integrated with pager methods
I 7 different object types (OBJT *)

I OBJT DEFAULT converted to OBJT SWAP upon first pageout
I Object type selects pager methods

I Resident pages stored in a sorted queue and a radix tree
I Addressed by 64-bit virtual pindex (vm pindex t)
I A vm page t belongs to at most one object

I Objects don’t contain information about their mappings
I Often mapped into multiple address spaces
I Object hierarchy used to implement COW

I Locking
I VM object lock (rwlock)
I vnode lock, for OBJT VNODE objects

vm reserv t

I Support speculative allocation of physically contiguous pages

I Integrated with pmap(9) to allow transparent creation of
large mappings (e.g., 2MB instead of 4KB on x86)

I Locking
I Free page queue lock (mtx)

pmap enter(psind=1)

I r321386 by alc, review D11556

I Immediately promote mapping if reservation is fully populated

I Eliminates many page faults on vnodes and shmem

dtrace -n
’fbt::pmap_enter:entry /args[5]/{printf("%s", execname);}’

pmap enter(psind=1), cont’d

if ((m->flags & PG_FICTITIOUS) == 0 &&
(m_super = vm_reserv_to_superpage(m)) != NULL &&
rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
(vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
(pagesizes[m_super->psind] - 1)) && pmap_ps_enabled(fs->map->pmap)) {

flags = PS_ALL_VALID;
if ((prot & VM_PROT_WRITE) != 0) {

/*
* Create a superpage mapping allowing write access

* only if none of the constituent pages are busy and

* all of them are already dirty (except possibly for

* the page that was faulted on).

*/
flags |= PS_NONE_BUSY;
if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)

flags |= PS_ALL_DIRTY;
}
if (vm_page_ps_test(m_super, flags, m)) {

m_map = m_super;
psind = m_super->psind;
vaddr = rounddown2(vaddr, pagesizes[psind]);
/* Preset the modified bit for dirty superpages. */
if ((flags & PS_ALL_DIRTY) != 0)

fault_type |= VM_PROT_WRITE;
}

}
rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |

PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);

From PostgreSQL/FreeBSD performance and scalability on a
40-core machine

PQ LAUNDRY

I r308474 by alc

I When and how much do we swap?

I Dirty pages must be laundered before they can be freed

I Old algorithm: scan PQ INACTIVE for clean pages, and
launder a a few dirty ones. If we don’t find enough clean
pages, scan again and launder as many pages as possible.

I New algorithm: PQ INACTIVE scans move dirty pages to the
laundry (PQ LAUNDRY). A dedicated thread launders pages
depending on:

I how quickly clean pages are being freed
I `(PQ LAUNDRY)/`(PQ INACTIVE)

I Dedicated thread makes it harder to hit low-memory deadlocks

Avoiding TLB shootdows in execve(2)

I r311346 and r313756 by markj, D8921, D9586
I Massive overhead observed on 128-vCPU EC2 instances

I make -j128 buildkernel

I Silly KVA management caused excessive IPIs

I Solution: cache execve(2) argument KVA and use
madvise(MADV FREE) to release backing pages when
under memory pressure

commit 18b3f4573dd73f98b9b9716883eda65014196d59
Author: Matthew Dillon <dillon@dragonflybsd.org>

Date: Thu Jun 7 23:14:29 2007 +0000

Entirely remove exec_map from the kernel. ...

Global Lock Removals

I r299788 by kib, removed pvh global lock on amd64

I Replaced with ”delayed invalidation” blocks

I Improves pmap(9) scalability (on amd64)

I r322913 by kib, removed swhash mtx

I Global hash table for (obj,pindex) → swblk mappings

I Replaced with per-object trie, protected by the object lock

I Many VM operations required swap hash lookups

MAP GUARD

I r320317 by kib, plus followups

I New mmap(2) flag added partly in response to Stack Clash

I Allows the creation of reservations in the virtual address space

I Access of a guard region raises SIGSEGV

I mmap(2) will not return a mapping in the region unless
MAP FIXED is used

Planned changes

I D11943 by markj: Avoid dequeuing pages in
vm page wire()

I Frequent wiring and unwiring causes page queue lock
contention

I Partial solution: lazily dequeue wired pages to reduce number
of queue ops

I D13014 by jeff: NUMA awareness in the page allocator

I Takes us closer to fine-grained locking in the page allocator

Acknowledgements

Alan Cox (alc@FreeBSD.org)
Konstantin Belousov (kib@FreeBSD.org)

