
© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

A Deep Dive into
FreeBSD’s Kernel
RNG
W. DEAN FREEMAN AND JOHN-MARK GURNEY

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Who We Are
 W. Dean Freeman, CISSP CSSLP GCIH
◦ Sr. Test Engineer @ NSS Labs

 John-Mark Gurney
◦ Principal Security Architect @ New Context
◦ Twitter: @encthenet

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

xkcd

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Risks of a bad RNG
◦ Real world issue
◦ Digital Signature Scheme’s (DSS) nonce must be unique (PS3 signing key

leak)
◦ Debian SSH Key Issue (2006-2008): Everything using OpenSSL was broken
◦ Dual_EC Deterministic Random Bit Generator (DRBG) back doored (?):

RSA BSafe and Juniper
◦ RSA Weak Public Keys available on the Internet paper

◦ Algorithm requirements
◦ Nonce must be unique (AES-CTR and AES-GCM leaks message difference)
◦ RSA padding must be random (RSA-PSS recommended)

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Background
◦ Dean approached from the point of view of entropy assessment for

Common Criteria and FIPS 140-2 appliances and as part of the NIAP
technical community
◦ How good is the entropy source seeding FreeBSD in a general purpose

situation?
◦ What changes would be needed to be compliant and certifiable?

◦ John-Mark had previously looked at FreeBSD’s RNG code for improvement

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

RNG Overview
◦ TRNG - True Random Number Generator
◦ Often very slow
◦ Uses environmental artifacts to generate randomness
◦ Reverse biased diode
◦ Meta-stable state of transistors
◦ Thermal Noise (ADC, etc)
◦ Lava Lamps

◦ Pseudo Random Number Generator - PRNG
◦ Uses a seed
◦ Is able to generate a large amount of random data

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Install-time seeding
◦ In the begging was the first install
◦ bsdinstall populates disk files with output from /dev/random, creating
◦ /entropy
◦ /boot/entropy

◦ usr.sbin/bsdinstall/script/entropy handles this function
◦ Script is called for auto, jail and script installations

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Boot-time loading
◦ Early loading of entropy added starting in 10.0-R
◦ Provides seeding of DRBG before file systems are loaded
◦ Loaded from file on boot device (Default /boot/entropy)
◦ After mixing, original seed is zeroed out in memory

◦ File on disk is overwritten with output from /dev/random after read
◦ On UFS file systems, the blocks are overwritten but artifacts may

remain, depending on the properties of the underlying disk device
◦ ZFS is copy-on-write (COW), so the file is never really destroyed
◦ Clones and snapshots may cause copies to persist indefinitely

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

RC Time Loading
◦ The random rc script handles seeding as well as setting the entropy source

mask
◦ Mask values control which entropy sources are leveraged at runtime
◦ Writes out new entropy file when shutting down

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Runtime Entropy Collection - Sources
◦ FreeBSD has a pluggable framework for both PRNG implementations and entropy sources
◦ Environmental and platform-provided sources supported in GENERIC
◦ Full list of entropy sources can be found in usr/src/sys/random.h and include:

CACHED
ATTACH
KEYBOARD
MOUSE
NET_TUN
NET_ETHER
NET_NG
INTERRUPT
SWI
FS_ATIME
UMA

PURE_OCTEON
PURE_SAFE
PURE_GLXSB
PURE_UBSEC
PURE_HIFN  
PURE_RDRND
PURE_NEHMEIAH
PURE_RNDTEST
PURE_BROADCOM

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Runtime Entropy Collection - Methods
◦ Three main methods for seeding the DRBG
◦ random_harvest_direct()
◦ Used by RANDOM_ATTACH when new hardware is attached
◦ Used to collect from registered, “pure,” entropy sources, such as

RDRND
◦ random_harvest_fast()
◦ Only used if the kernel is built with RANDOM_ENABLE_UMA

◦ random_harvest_queue()
◦ Everything else goes in via random_harvest_queue()
◦ Currently, this includes RANDOM_PURE_BROADCOM and

RANDOM_PURE_OCTEON, which should probably go through
random_harvest_direct()

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Mixing and Feeding
YARROW, FORTUNA AND ARC4RANDOM

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Yarrow
◦ FreeBSD’s PRNG before 11.0-R was based on Yarrow
◦ Designed by Bruce Schneier, John Kelsey and Niels Ferguson
◦ Fast and slow accumulator pools
◦ Entropy is collected and then initially whitened with SHA-256
◦ When a request for random bytes is made, CTR-mode AES further whitens

as the pools are drained

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Fortuna
◦ Default DRBG implementation in FreeBSD since 11.0-R
◦ Designed by Bruce Schneier, Niels Ferguson and Tadayoshi Kohno
◦ Designed to withstand concerted cryptanalytic attack
◦ Successor to the Yarrow algorithm

◦ Features 32 entropy accumulator pools
◦ Raw entropy is collected and distributed over the pools
◦ Uses SHA-256 to effectively create an infinitely long string of entropy

◦ When random bytes are requested, selected pools are drained, such that
later pools are used less frequently
◦ On drain, the bytes in the pool are fed through a CTR-MODE AES

implementation

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

arc4random
◦ Developed by OpenBSD and import in 1999
◦ Originally contained an rc4 implementation (hence the name), but HEAD

now uses ChaCha20
◦ ChaCha20 leverages 256-bit keys and provides AES-like strength with the

benefit of greater speed on hardware which lacks acceleration for AES
◦ Even on hardware w/ AES-NI, FPU restrictions would likely prevent it’s

use
◦ The arc4random DRBG is seeded with the output of the mixer

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Device Nodes
◦ Two device nodes provided: /dev/random and /dev/urandom
◦ On FreeBSD, the latter is a symlink to the former, unlike other

implementations (e.g., Linux)
◦ Both will block until seeded
◦ Combined when Yarrow was added in 2000

◦ Device can be read from to provide whitened output from the in-use DRBG
(i.e., Fortuna)

◦ Device can be written to
◦ Anything written from userland is whitened the same way as any system

entropy collected by the kernel
◦ This is how the random script updates the seed with the stored entropy

files

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Entropy Analysis

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Evaluating Entropy - Overview
◦ An Entropy Assessment Review (EAR) is required as a first step for Common Criteria

evaluations
◦ Reviews done by the Information Assurance Directorate (IAD) at the National

Security Agency
◦ Sufficient initial seed values for the entropy device are required to be accepted for

evaluation and approval for government use
◦ NIST SP800-90B, “Recommendation for the Entropy Sources Used for Random Bit

Generation (Second Draft)”
◦ Published December 2016
◦ Provides guidance for assessing strength of the entropy used to seed a DRBG

◦ Two general tracks for assessing entropy
◦ Independent, identically-distributed (IID)
◦ Non-IID

◦ FreeBSD’s entropy sources were evaluated as non-IID
◦ An appliance vendor with a custom hardware entropy source may qualify for the IID

track, but in a GP OS on commodity hardware this is not the case

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Non-IID Track Estimation - Tests
◦ SP800-90B provides for a battery of statistical tests for estimating min-entropy

value for non-IID sources
◦ Most Common Value Estimate
◦ Collision Estimate
◦ Markov Estimate
◦ Compression Estimate
◦ T-Tuple Estimate
◦ Longest Repeated Substring (LRS)
◦ Multi Most Common in Window Prediction Estimate
◦ Lag Prediction Estimate
◦ Multi-MMC Prediction
◦ LZ78Y Prediction Estimate

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Collection of Entropy
◦ Need to collect non-whitened entropy for evaluation
◦ Last place all seed data is available prior to any whitening is

randomdev_hash_iterate()
◦ How to collect?
◦ Could patch the kernel and provide a way to dump the data
◦ Could use DTrace

◦ For expedience, DTrace was used to collect the data
◦ tracemem() used to dump raw bytes

◦ Patch developed to print entropy so early boot collection could be
evaluated

◦ DTrace output collected to a file then parsed with a Perl script to create a
binary file

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Evaluation of Entropy
◦ NIST provides a Python script to evaluate an input file against either IID or

the non-IID track
◦ We are looking at the non-IID track, so noniid_main.py is used
◦ The worst-case value provided by all analysis formulas is taken as “min-

entropy”
◦ Min-entropy value is the key number for EARs specifically, as assuming

things are as bad as they possibly could be is the most prudent course
◦ Typically, we want to see a min-entropy between 4-6
◦ Less than 4 would require additional scrutiny

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Evaluating a Control Sample

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Evaluating a Sample From FreeBSD

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

FreeBSD’s Min-Entropy is a Little Grim
◦ Several measurement samples taken
◦ Both virtual and bare metal
◦ Xeon and i7 processors with RDRND, AES-NI etc.

◦ Attempted to make boxes as busy as possible
◦ Generate network traffic, build ports, etc.

◦ None got a min-entropy of even 1 bit per byte
◦ Why?
◦ Raw data contains lots of repeat values, null bytes, and predictable values
◦ Best source of high-value entropy is RDRND*, but wasn’t mixed in
◦ Mixers use SHA-256 hash compression to make this less of an issue

◦ Linux isn’t really any better
◦ Vanilla entropy sources in Linux are rather weak
◦ Typically, jitter rng patches, havaged, or rng-tools (or some combination of

all three) with additional hardware are needed to get suitable entropy values

© 2017, W. DEAN FREEMAN AND JOHN-MARK GURNEY. INITIALLY PRESENTED AT VBSDCON
2017

Sample Captured Entropy

Conclusion
 Min-entropy of the data itself is lacking, but the volume makes up for this.

 The DRBG is of a strong design, and can deal w/ large amounts of low min-
entropy data

 To help prevent attacks, add a quota system that limits the rate at which a
user can request data (such that other users are not impacted)

 Code needs some clean up with some questionable practices

 Improvements can be made to seeding

Q&A
 Scripts used for evaluation:

 https://github.com/badfilemagic/fbsd-entropy

 NIST SP800-90B tools:

 https://github.com/usnistgov/SP800-90B_EntropyAssessment

 bsd-rngd in progress:

 https://github.com/badfilemagic/bsd-rngd

https://github.com/badfilemagic/fbsd-entropy
https://github.com/usnistgov/SP800-90B_EntropyAssessment
https://github.com/badfilemagic/bsd-rngd

