
BSD Systems Management with Ansible

Transforming your Sysadmin Shell Scripts to Ansible

Benedict Reuschling
bcr@FreeBSD.org

September 9, 2017

vBSDcon 2017

Table of contents

1. Introduction

2. Problems with Shell Scripts. . .

3. Things Ansible does for you

4. Conclusion

1

Introduction

About me

. . . and why this is relevant to my talk:

• Big Data Lab Engineer (sysadmin) without
a Lab at a University is my dayjob

• Main purpose: Labs, research, and thesis
work with and around NoSQL databases
and Big Data

• Took over 28 machines (Dell C6220) plus
central file server from a colleague, all
running Ubuntu

• Central fileserver with NFS mounts for
/home dirs of the nodes

• 40 nodes now, mixed FreeBSD/Ubuntu
environment (gradually subverting
migrating to FreeBSD)

2

About me

. . . and why this is relevant to my talk:

• Big Data Lab Engineer (sysadmin) without
a Lab at a University is my dayjob

• Main purpose: Labs, research, and thesis
work with and around NoSQL databases
and Big Data

• Took over 28 machines (Dell C6220) plus
central file server from a colleague, all
running Ubuntu

• Central fileserver with NFS mounts for
/home dirs of the nodes

• 40 nodes now, mixed FreeBSD/Ubuntu
environment (gradually subverting
migrating to FreeBSD)

2

About me

. . . and why this is relevant to my talk:

• Big Data Lab Engineer (sysadmin) without
a Lab at a University is my dayjob

• Main purpose: Labs, research, and thesis
work with and around NoSQL databases
and Big Data

• Took over 28 machines (Dell C6220) plus
central file server from a colleague, all
running Ubuntu

• Central fileserver with NFS mounts for
/home dirs of the nodes

• 40 nodes now, mixed FreeBSD/Ubuntu
environment (gradually subverting
migrating to FreeBSD)

2

About me

. . . and why this is relevant to my talk:

• Big Data Lab Engineer (sysadmin) without
a Lab at a University is my dayjob

• Main purpose: Labs, research, and thesis
work with and around NoSQL databases
and Big Data

• Took over 28 machines (Dell C6220) plus
central file server from a colleague, all
running Ubuntu

• Central fileserver with NFS mounts for
/home dirs of the nodes

• 40 nodes now, mixed FreeBSD/Ubuntu
environment (gradually subverting
migrating to FreeBSD)

2

About me

. . . and why this is relevant to my talk:

• Big Data Lab Engineer (sysadmin) without
a Lab at a University is my dayjob

• Main purpose: Labs, research, and thesis
work with and around NoSQL databases
and Big Data

• Took over 28 machines (Dell C6220) plus
central file server from a colleague, all
running Ubuntu

• Central fileserver with NFS mounts for
/home dirs of the nodes

• 40 nodes now, mixed FreeBSD/Ubuntu
environment (gradually subverting
migrating to FreeBSD)

2

How did I get involved with Ansible?

Cluster machines needed too long to install (25 min). Which year is this again?

It turns out, it’s the same image for regular lab machines provided by our IT department:

• graphics drivers, CUPS, GUI tools
• Preinstalled NoSQL databases in my case

. . . for a server?

Stripped it down to bare minimum with custom Ubuntu/FreeBSD ISO, only doing:

• Partitioning
• Installing the base OS
• Setup Networking
• Reboot

Result of that: Managed to drop install time by less than half.

For FreeBSD, custom base install shell script takes barely 3 minutes.

Refining, tweaking, and optimizing is an ongoing process

3

How did I get involved with Ansible?

Cluster machines needed too long to install (25 min). Which year is this again?

It turns out, it’s the same image for regular lab machines provided by our IT department:

• graphics drivers, CUPS, GUI tools
• Preinstalled NoSQL databases in my case

. . . for a server?

Stripped it down to bare minimum with custom Ubuntu/FreeBSD ISO, only doing:

• Partitioning
• Installing the base OS
• Setup Networking
• Reboot

Result of that: Managed to drop install time by less than half.

For FreeBSD, custom base install shell script takes barely 3 minutes.

Refining, tweaking, and optimizing is an ongoing process

3

How did I get involved with Ansible?

Cluster machines needed too long to install (25 min). Which year is this again?

It turns out, it’s the same image for regular lab machines provided by our IT department:

• graphics drivers, CUPS, GUI tools
• Preinstalled NoSQL databases in my case

. . . for a server?

Stripped it down to bare minimum with custom Ubuntu/FreeBSD ISO, only doing:

• Partitioning
• Installing the base OS
• Setup Networking
• Reboot

Result of that: Managed to drop install time by less than half.

For FreeBSD, custom base install shell script takes barely 3 minutes.

Refining, tweaking, and optimizing is an ongoing process 3

How did I get involved with Ansible?

Cluster machines needed too long to install (25 min). Which year is this again?

It turns out, it’s the same image for regular lab machines provided by our IT department:

• graphics drivers, CUPS, GUI tools
• Preinstalled NoSQL databases in my case

. . . for a server?

Stripped it down to bare minimum with custom Ubuntu/FreeBSD ISO, only doing:

• Partitioning
• Installing the base OS
• Setup Networking
• Reboot

Result of that: Managed to drop install time by less than half.

For FreeBSD, custom base install shell script takes barely 3 minutes.

Refining, tweaking, and optimizing is an ongoing process 3

Ansible for all the rest

Once a node is in multi-user mode, Ansible scripts run for final setup tasks depending on usage

Allows us a much more flexible machine use, quicker provisioning for end-users

Previously, shell scripts were doing the work of setting up NoSQL databases:

• MongoDB

• Couchbase

• Hadoop (Java)

• Pig

Generally works well, encourages further use

Before, when using shell scripts, we ran into some interesting scenarios. . .

4

Problems with Shell Scripts. . .

4

Oops, I did it again...

Have you ever accidentally ran your shell setup script twice? Rolled out into production?

- Config files have the same lines in it twice, where each one must not appear more than once

- Now I need a lot of extra code to check for and prevent duplication

- A simple script becomes a big if-this-then-that-take-care-of-all-eventualities mess

- Undoing is even worse, probably resulting in yet another script. . .

- Different scripts for different environments, OSes, package managers, heterogenous networks

- Sometimes not even clear what operating system is running on the (reinstalled) remote
machine

5

Introduction to Ansible

Ansible is a lightweight way of automating, provisioning and configuration management

It can run in ad-hoc mode (commandline) and more complex scripts called playbooks

Defines a control machine to send commands to multiple target machines in parallel

Target machines retrieve them via SSH and executes these instructions in idempotent fashion

No need for a client running on target host other than SSH and python environment

Abstracts concrete commands/OS specifics away into modules like package, copy, fetch,
lineinfile, etc.

6

Bootstrapping Ansible: BSD specifics

- Install the sysutils/ansible port/package on the control machine

- Create an inventory file with hosts to manage:

[freebsd:vars]
ansible_python_interpreter =/usr/local/bin/python2 .7

[mygroup]
bsdhost1

- Install Python 2.7 on the remote machines:

ansible -m raw -a "pkg install -y python27" bsdhost1

7

Example Playbook

$ cat ssh -access.yml
- name: "Allow {{ user_id }} to log in via SSH"

gather_facts: false
hosts: '{{ host }}'
tasks:

- name: Adding the user {{ user_id }} to the AllowUsers line in sshd_config
replace:

backup: no
dest: /etc/ssh/sshd_config
regexp: '^(AllowUsers (?!.*\b{{ user_id }}\b).*)$'
replace: '\1 {{ user_id }}'

- name: Restarting SSH service
service:

name: sshd
state: restarted

Execute with:

$ ansible -playbook -Kb ssh -access.yml -e 'host=bsdhost1 user_id=joe ' 8

Example Playbook

$ cat ssh -access.yml
- name: "Allow {{ user_id }} to log in via SSH"

gather_facts: false
hosts: '{{ host }}'
tasks:

- name: Adding the user {{ user_id }} to the AllowUsers line in sshd_config
replace:

backup: no
dest: /etc/ssh/sshd_config
regexp: '^(AllowUsers (?!.*\b{{ user_id }}\b).*)$'
replace: '\1 {{ user_id }}'

- name: Restarting SSH service
service:

name: sshd
state: restarted

Execute with:

$ ansible -playbook -Kb ssh -access.yml -e 'host=bsdhost1 user_id=joe ' 8

Things Ansible does for you

Things Ansible does for you

- Takes away tedious, repetitive tasks, so you can focus on the important bits.

- Repetitions, iterations, and loops are comparably simple (with_items)

- Obscure options are abstracted away

- Do multiple things at once: create/fetch/copy a file, change owner, and permissions

- Newer versions suggest modules instead of you using command/shell/sed everywhere:

[WARNING]: Consider using template or lineinfile module rather than running
sed

- A setup step collects a lot of info for you and presents it as ready-to-use variables

9

Setup & Variables

- A problem in shell scripts is getting certain machine information other than the one in $ENV

- No central registry or information repository to query in the OS

- Often results in a lot of greping and awking to get what you want

- Ansible can run a setup task that gathers so called facts from a target machine

- Facts: Information stored in JSON format and available as {{variables}} in the playbook

- Includes: Network information, hardware, date & time, partitions, OS distribution and kernel,
environment variables, SSH hostkeys, etc.

10

Do multiple things in one command

In Ansible:

- name: "Create User foo"
user:

name: foo
home: /usr/home/foo
shell: /bin/csh
generate_ssh_key: yes
ssh_key_type: 25519
createhome: yes

In Shell:

$ sudo pw useradd -n foo -s /bin/csh -m
$ sudo -u foo ssh -keygen -t ed25519 \
-f /home/foo/.ssh/ed25519

Other module options:

• ssh_key_bits
• ssh_key_comment
• ssh_key_file
• ssh_key_passphrase

11

Do multiple things in one command

In Ansible:

- name: "Create User foo"
user:

name: foo
home: /usr/home/foo
shell: /bin/csh
generate_ssh_key: yes
ssh_key_type: 25519
createhome: yes

In Shell:

$ sudo pw useradd -n foo -s /bin/csh -m
$ sudo -u foo ssh -keygen -t ed25519 \
-f /home/foo/.ssh/ed25519

Other module options:

• ssh_key_bits
• ssh_key_comment
• ssh_key_file
• ssh_key_passphrase

11

11

Making Playbooks work more like shell scripts

Normal invocation:

$ ansible -playbook myplaybook.yml

Should work more like a shell script with the interpreter in the first line:

$ head -n 1 myplaybook.yml
#!/usr/local/bin/ansible -playbook
$ chmod +x myplaybook.yml
./ myplaybook.yml

12

What does FreeBSD need to work well with Ansible?

- Better setup results (compare to Linux)

- Continued vendor awareness about it’s existence and integration

- Modules for jails, bhyve, geom/geli, other BSD specifics

- The usual: patches, bugfixes, suggestions

- Works surprisingly well despite the above

13

Where FreeBSD Scores in Relation to Automation Software like Ansible

- Reliable network interface names

- Ubuntu 14.04 and 16.04 gave us these on Dell C6320/C6220: enf0s0, eno1, em1, p1p1

• Can be disabled via symlink

• But why this naming in the first place?

• FreeBSD uses driver/manufacturer name + number and does not change it!

- Stable API/ABIs between major versions for programs to attach to and use

- Powerful and easy to use ports/packages system

14

Ansible will not. . .

• Reduce the number of lines you have in a playbook vs. a shell script

• Make writing playbooks easy, you’ll likely swear a lot about YAML syntax when starting
out

• Run as fast without some config tuning for hundreds of hosts
• increase forks setting in ansible.cfg
• experiment with strategy: free to not have hosts wait for each other

• magically convert your scripts into playbooks, rewriting from scratch is more likely

• copy files from target machine to somewhere else on target machine
• Always starts from the control machine, no client on target
• Advantage of Ansible, but also it’s greatest weakness
• The synchronize module helps sometimes

15

Tips for converting your existing shell scripts

- Go over it line by line and look for equivalents in Ansible’s list of all modules1

- Divide it up into functional parts (create users, install software, configuration, etc)

- Start with hard-coded values and replace with variables when working

- Test playbooks repeatedly to see that idempotency is actually enforced and working

- name each step to recognize which one currently executes

- Use loops and with_items often, just like in the shell script

- Make use of the template module to provision your own config files

- Check return codes, just like $?, don’t assume everything magically works

- Don’t gather facts if you don’t use variables in your (mostly short) playbooks

1docs.ansible.com/ansible/latest/list_of_all_modules.html

16

docs.ansible.com/ansible/latest/list_of_all_modules.html

Conclusion

Summary

- Ansible is relatively easy to get started with

- The more tasks you repeatedly execute, the more likely it is you will benefit from Ansible

- No silver bullet, writing playbooks takes time, YAML isn’t that user-friendly

- Once you have them thought, huge time-saver through parallel execution

- Keep in mind the clientless architecture and central deployment machine

17

Special Thanks

Thanks to Verisign, especially Chris Gordon & Vincent (Rick) Miller
The whole organizing team and Program Committee for vBSDcon!

Allan Jude for motivating me to submit in the first place

My university for letting me play work with expensive hardware and
trusting me not to break things

You for listening!

18

Special Thanks

Thanks to Verisign, especially Chris Gordon & Vincent (Rick) Miller
The whole organizing team and Program Committee for vBSDcon!
Allan Jude for motivating me to submit in the first place

My university for letting me play work with expensive hardware and
trusting me not to break things

You for listening!

18

Special Thanks

Thanks to Verisign, especially Chris Gordon & Vincent (Rick) Miller
The whole organizing team and Program Committee for vBSDcon!
Allan Jude for motivating me to submit in the first place

My university for letting me play work with expensive hardware and
trusting me not to break things

You for listening!

18

Special Thanks

Thanks to Verisign, especially Chris Gordon & Vincent (Rick) Miller
The whole organizing team and Program Committee for vBSDcon!
Allan Jude for motivating me to submit in the first place

My university for letting me play work with expensive hardware and
trusting me not to break things

You for listening!

18

Special Thanks

Thanks to Verisign, especially Chris Gordon & Vincent (Rick) Miller
The whole organizing team and Program Committee for vBSDcon!
Allan Jude for motivating me to submit in the first place

My university for letting me play work with expensive hardware and
trusting me not to break things

You for listening!

18

Questions?

18

	Introduction
	Problems with Shell Scripts…
	Things Ansible does for you
	Conclusion

