
Configuring build base on FreeBSD
Making things easy for the user

FreeBSD has some knobs to set in order to
build the base system or to avoid building some
parts of the system. This way the build process
could be optimized to avoid wasting time.

The current way of doing this is to edit the files
src.conf(5) and src-env.conf(5), and the man
pages provide information about how to do
that. They also provide information about the
dependencies of each of the knobs.

This aproach is not thought for a person that
just jumped into FreeBSD, and trying to
understand everything could be quite
complicated. The main point of this paper is to
allow a beginner in FreeBSD to configure the
build process of the base system using a user-
friendly interface based on dialog(1) and check
the dependencies of the selected knobs in order
to avoid the user wasting time in building
something with some non-desired or without
some desired components.

Design of the interface
At first, I made the same mistake that most of
new developer do, try to do things fast and not
taking care of the design, aiming it for next
iterations. Due to personal duties, I could not
properly finish it and when I retook it, it did not
work (what a surprise!). So I design it from the
beginning and avoid wasting too much time in
the future.

We start by saying that we only allow one
configuration for a src.conf(5) file at the same
time, therefore, we have a mutex.

I have made it simple but working, so the
presented algorithm displayed on Figure 1,
shows how it was designed.

We take a mutex, we present the first message
to the user, and she choose which category of
knobs she would like to configure. Once she
has finished selecting the options to configure,
the dependencies of the selected knobs are
checked.

If the user has selected a combination of knobs
that has some dependencies which have not
been selected, the user will be warned and she
will stay at the current screen until she choose a
valid configuration. Otherwise, she will get into
the first dialog.

Once she has finished configuring all the knobs
desired for her system, she can choose to save
the current configuration or revert it.

Figure 1: Algorithm

Take the Mutex

Configure the category

Print Categories

Check dependencies

Is the conf
correct?

No

Save the configuration

Implementation of the
algorithm
We have talked about the design, but without
an implementation, it will be useless.

The first thing to do is define which are the
options that we should present the user to
choose. So I came with the following
categories: admin, devel, docs, drivers,
emulation, network, other, programs and
security.

Under admin will be put all the programs that
can be used to administrate a system like
bsdinstall(8).

Under devel will be presented all the options
that are usefull for the build or develop process
of the machine, like which compiler should be
used to build the new system.

The network category allows the user to
configure the connectivity of the machine, for
instance, if there should be support for Ipv6 in
the final machine or if ipfw(8) should be
installed on the machine.

Emulation is the simplest one, whether
bhyve(8) or NDIS support should be integrated
on the system.

Under programs, the options allows to choose
which version of programs do we want in our
own system, like GNU grep(1) instead of BSD
grep(1).

The favorite of everyone, security, includes the
cryptographic interface on OpenSSH, OpenSSL
and the Capability system in FreeBSD
(CAPSICUM).

The divers section collects the driver build for
FreeBSD such as the floppy support (is it
usefull nowadays to be active by default?) or
the ZFS module.

Under others, we put everything that do not
match in any of the other categories. It could be

the boot loader type to use (UEFI) or if we
want or system with forth.

And at last, but not least, the docs category
compiles all the knobs that have something to
do with the documentation of the project.

All this categories and descriptions and so on
are been put under share/mk/src.opts.desc.mk,
so they will be easily collected by the main
Makefile (Makefile.config) and presented to
the user.

Inside this file, Makefile.config, we define one
config-${CATEGORY} target for each of the
categories, allowing the user to configure it
manually. Beside this, there are also some other
targets, like check-config or config-save, but
the most important ones are the following
three: config-before, config-current and config-
default.

The first one is a collection of the situation
before the script, the second is the
configuration on the current status and the last
is the configuration without no knob defined.

This final one avoid the writing of default
knobs on the src.conf(5) file, saving some
space in case that it will be needed (doubt it).

The dependency check is controlled by the
difference between config-before and config-
current, and when they do not match the knobs
that will be forced to some value are presented
to the user as a dialog message, so she can
change the right option and it will be checked
again.

There is also the posibility of removing a
current configuration with the rmconfig target,
and this will revert the configuration to the
default one.

Future work
The future work includes the revision of the
description for the knobs, which right now it is
inexistent and the posibility of configure the
options and devices of the kernel though a
similar interface. And checking if the kernel
could be built before going into the whole
compilation process.

A better documentation for each of the knobs
can be written directly on the code, so the user
gets more information about how it works.

A possible future work in this aspect could be
to add in dialog(1) the possibility to display
dependant lists of options and select directly
live, the dependant options for each knob.

	Design of the interface
	Implementation of the algorithm
	Future work

