
Tuning FreeBSD for routing and firewalling
Olivier Cochard-Labbé, olivier@FreeBSD.org

AsiaBSDCon 2018

ABSTRACT

FreeBSD1 is often used as a router or a firewall, but the
vast majority of tuning guides available for this use
case doesn’t explain in detail how to calculate each
value to be tuned. This study, after describing how to
bench a router and the most important basic concepts
to understand, demonstrate the benefit of tuning major
parameters to obtain the best routing and firewalling
performance with FreeBSD 11.1-RELEASE. This study
is written by system administrators for system
administrators audience: Optimisation will be done by
configuration changes and using existing patches only.
No kernel coding skills are needed.

I. BASIC CONCEPTS

A) Benchmarking a router

The two main functions of a router are:
• Forwarding packets between its interfaces;
• Maintaining routing table using some routing

protocols.
This study focuses only on optimising the forwarding
rate: Maintaining the routing table belongs to the user-
land daemons and is excluded from this study.
The only metric measured for all this study will be the
packet forwarding speed using packets-per-second (pps)
unit.

B) Differences with RFC 2544

RFC 25442, Benchmarking Methodology for Network
Interconnect Devices, is a well-known reference, but
this study will not follow all recommendations given by
this RFC for a simplest and faster methodology.
Here are some main divergences:

• Multiple frame size: In this paper, only the
worst case matters, which is using the smallest
Ethernet frame size. In this document one
frame = one packet and unit fps=pps.

• Throughput is defined as the maximum frame
rate supported by the DUT (device under test)
without any drop: In this document the
throughput is the outgoing forwarded frame
rate when receiving at the maximum line rate.

• Bidirectional traffic: To simplify methodology,
the bench labs described here generates only
unidirectional traffic.

C) Ethernet line rate references

The first reference to know is the maximum Ethernet
line rate 3 (implying smallest frame size):

• Gigabit: 1.48 Mfps (frame-per-second)
• 10 Gigabit: 14.8 Mfps

With these first values and the fact that Ethernet is a
full-duplex media, able to receive and transmit at the
same time, this means a line-rate router must be able to
forward at:

• 3 Mpps = Gigabit line-rate router
• 30 Mpps = 10 Gigabit line-rate router

D) Throughput to bandwidth

In real use cases there is no need of these line-rate
routers because Internet traffic is not comprise of only
small size packets but a mix of multiple sizes. This
packet size distribution evolves with time but there is a
fixed-in-time reference, called Simple Internet Mix
(IMIX)4, which uses this distribution:

• 1 large (1500 Bytes) packet: 37%
• 4 medium (576 Bytes) packets: 56%
• 7 small (40 Bytes) packets: 7%

Using Simple IMIX distribution it’s now possible to
convert the reference packets-per-second to a more
common value which is the bandwidth in bits per
second (bps).

bps at the IP layer=PPS⋅(7⋅40+4⋅576+1500
12

)⋅8

Or the bandwidth at the Ethernet layer (need to add 14
Bytes for Ethernet headers), as seen by switch counters:

bps at the Ethernet layer =PPS⋅(7⋅54+4⋅590+1514
12

)⋅8

For real life use cases, the interesting question is now:
“Using a simple IMIX distribution size, what is the
corresponding throughput for filling link capacity?”
These are the values that will be used for a new
definition of a Full-duplex IMIX link-speed router and
the minimum objectives to reach are:

• 700K pps = Gigabit IMIX router
• 7M pps = 10 Gigabit IMIX router

E) Benchmarking lab

A simple benchmarking lab can be set up with only 2
servers like here:

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 1/16

mailto:olivier@FreeBSD.org

Illustration 1: Simplest benchmarking lab

• The first server with dual port Network
Interface Card (NIC) is used as a packet
generator and receiver (using netmap’s pkt-
gen5).

• The second server is the Device Under Test
(DUT) running FreeBSD that will be tuned.

The purpose is to measure throughput (number of
packets per second) forwarded by the DUT under the
worst case: Receiving only smallest packet size at
media line rate on one interface and forward to the
packet receiver using its other interface.

The throughput is measured at the packet receiver side:
Using a switch, with advanced monitoring counters for
each port, can be useful to double cross-check its
counters versus pkt-gen and Ethernet drivers counters.

Full list of hardware setups (CPU and NIC) used for
this study is detailed here:

Illustration 2: Hardware inventory

II. TUNING FORWARDING
PERFORMANCE

A) Multi-queue NIC & RSS

Current NIC chipset & drivers behaviour:

1. NIC’s drivers create one queue per direction
(transmit and receive) and per core detected

with a maximum number of queues which is
drivers dependant: 16 receiving (RX) queues
for mlx4en, 8 RX queues for cxgbe and ixgbe
as examples.

2. NIC’s chipsets use a Toeplitz hash to balance
received packets across each RX queues: All 4
tuples of the packets (source IP, destination IP,
source port and destination port) are used.

To being able to load-balance IP flows between cores,
IP traffic must include multiple flows for being hashed:
Using tunnelling features like IPSec, GRE or PPPoE
prevents this distribution.

B) Checking flow distribution between each
queue

The first step is to check packets are correctly
distributed among all NIC’s receiving queues. NIC
drivers give statistical usage of all their queues but a
simple script can be useful for a better view 6, giving
output like in Illustration 4: Example of script output
displaying each RX queue usage in pps.

This example, by displaying equivalent throughput for
all 8 queues, shows a correct distribution between all
RX queues.

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 2/16

Hash of packets’ 4 tuples used
For selecting MSI queues

CPU CPU CPU CPU

Input packets

Illustration 3: Toeplitz hash

Servers CPU cores GHz Network card (driver name)

Dell
PowerEdge
R630

Intel E5-2650 v4 2x12x2 2.2 10G Intel 82599ES (ixgbe)
10G Chelsio T520-CR (cxgbe)
10G Mellanox ConnectX-3 Pro (mlx4en)
10-50G Mellanox ConnectX-4 LX (mlx5en)

HP ProLiant
DL360p Gen8

Intel E5-2650 v2 8x2 2.6 10G Chelsio T540-CR (cxgbe)
10G Emulex OneConnect be3 (oce)

SuperMicro
5018A-FTN4

Intel Atom C2758 8 2.4 10G Chelsio T540-CR (cxgbe)

SuperMicro
5018A-FTN4

Intel Atom C2758 8 2.4 10G Intel 82599 (ixgbe)

Netgate
RCC-VE 4860

Intel Atom C2558 4 2.4 Gigabit Intel i350 (igb)

PC Engines
APU2

AMD GX-412TC 4 1 Gigabit Intel i210AT (igb)

C) Hyper-threading

Load balancing packets between multiple core allows to
load-balance IRQ among the cores. But does hyper-
threading (HT) technology help regarding IRQ
management ?

Testing this impact can be done by benching 3
configurations sets on an 8-core (16 threads) single
socket CPU with a Chelsio T540 NIC:

• HT enabled (16 threads) and default cxgbe
drivers behaviour creating 8 receiving queue.
Notice that cxgbe drivers didn’t bind queue to a
thread.

• HT enabled (16 threads) and forcing cxgbe
drivers to use 16 receiving queues: one for each
thread.

• HT disabled (8 cores) and default cxgbe drivers
creating 8 receiving queues: one for each core.

Each configuration set is run 5 times (with a reboot
between them). Then ministat (statistical tool embedded
with FreeBSD) is used on these 3 data sets:

Illustration 5: Hyperthreading impact on forwarding
performance

Between the 2 setups using 8 receiving queues, there is
about 24% more PPS forwarded (from 4.65Mpps to
5.85Mpps) with hyper-threading disabled: This
confirms that threads didn’t help on a forwarding use
case, and even decreased the performance because the
scheduler didn’t make any difference between threads

and cores. Hyper-theading will be disabled now for all
the rest of this study.

D) Relation between the number of cores and
throughput

NIC drivers often allow to configure the number of
received (RX) and transmit (TX) queues. Each queue
has its own MSI-X IRQ assigned.

A new bench is configured on the same hardware as the
previous bench. Multiple configuration sets, forcing the
NIC drivers to use from 1 to 8 queues on this 8 core
single-socket CPU server give the relation between
queue/forwarding performance.

Locking problem?

Illustration 6: Number of queues vs forwarding
performance

The results show a non-linear performance scale. This
kind of problem is often created by lock contention
problems on the kernel network path.

Troubleshooting where the kernel spend its time is done
in 2 steps:

1. First step is to collect Hardware Performance
Monitoring Counter during the bench

kldload hwpmc
pmcstat -S CPU_CLK_UNHALTED_CORE -l 20 -O
data.out
stackcollapse-pmc.pl data.out > data.stack
flamegraph.pl data.stack > data.svg

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 3/16

[root@hp]~# nic-queue-usage cxl0
[Q0 856K/s] [Q1 862K/s] [Q2 846K/s] [Q3 843K/s] [Q4 843K/s] [Q5 843K/s] [Q6 861K/s] [Q7 854K/s] [QT 6811K/s 16440K/s -> 13K/s]
[Q0 864K/s] [Q1 871K/s] [Q2 853K/s] [Q3 857K/s] [Q4 856K/s] [Q5 855K/s] [Q6 871K/s] [Q7 859K/s] [QT 6889K/s 16670K/s -> 13K/s]
[Q0 843K/s] [Q1 851K/s] [Q2 834K/s] [Q3 835K/s] [Q4 836K/s] [Q5 836K/s] [Q6 858K/s] [Q7 854K/s] [QT 6750K/s 16238K/s -> 13K/s]
[Q0 844K/s] [Q1 846K/s] [Q2 826K/s] [Q3 824K/s] [Q4 825K/s] [Q5 823K/s] [Q6 843K/s] [Q7 837K/s] [QT 6671K/s 16168K/s -> 12K/s]
[Q0 832K/s] [Q1 847K/s] [Q2 828K/s] [Q3 829K/s] [Q4 830K/s] [Q5 832K/s] [Q6 849K/s] [Q7 842K/s] [QT 6692K/s 16105K/s -> 13K/s]
[Q0 867K/s] [Q1 874K/s] [Q2 855K/s] [Q3 855K/s] [Q4 854K/s] [Q5 853K/s] [Q6 869K/s] [Q7 855K/s] [QT 6885K/s 16609K/s -> 13K/s]
[Q0 826K/s] [Q1 831K/s] [Q2 814K/s] [Q3 811K/s] [Q4 814K/s] [Q5 813K/s] [Q6 832K/s] [Q7 833K/s] [QT 6578K/s 15831K/s -> 12K/s]

Global NIC
TX counter

Global NIC
RX counter

Summary of all queues

Illustration 4: Example of script output displaying each RX queue usage in pps

x Xeon E5-2650-cxgbe, HT-enabled & 8rxq(default): inet4 packets-per-second
+ Xeon E5-2650-cxgbe, HT-enabled & 16rxq: inet4 packets-per-second
* Xeon E5-2650-cxgbe, HT-disabled & 8rxq: inet4 packets-per-second
+--+
| **|
|x xx x + + + + + ***|
| |____A_____| |
| |_____AM____| |
| |A||
+--+
 N Min Max Median Avg Stddev
x 5 4500078 4735822 4648451 4648293.8 94545.404
+ 5 4925106 5198632 5104512 5088362.1 102920.87
Difference at 95.0% confidence
 440068 +/- 144126
 9.46731% +/- 3.23827%
 (Student's t, pooled s = 98821.9)
* 5 5765684 5801231.5 5783115 5785004.7 13724.265
Difference at 95.0% confidence
 1.13671e+06 +/- 98524.2
 24.4544% +/- 2.62824%
 (Student's t, pooled s = 67554.4)

2. Second step is to convert this data into Brendan
D. Gregg’s flamegraph

Flame Graph analysis shows some interesting hot points
in 3 functions:

• arpresolve()

• ip_findroute()

• random_harvest_queue()

The first 2 functions are directly related to the kernel
network stack. Some simple configuration tunings were
tested to limit these lock contentions:

• static arp entries for arpresolve()

• minimal numbers of static routes for
ip_findroute()

But none of these mitigates the lock contention. To
solve these two problems the network stack needs to be
fixed.

E) Random Harvest Sources

The third lock contention is due to
random_harvest_queue() collecting first 2 bytes of each
frame under a single mutex. This problem is easily fixed
with a simple configuration change: By excluding
Ethernet frames and interrupts to be used as entropy
sources we can mitigate this problem.

~# sysctl kern.random.harvest
kern.random.harvest.mask_symbolic: [UMA],
[FS_ATIME],SWI,INTERRUPT,NET_NG,NET_ETHER,NET_TUN,MOUSE,KEYBOARD,
ATTACH,CACHED
kern.random.harvest.mask_bin: 00111111111
kern.random.harvest.mask: 511

Illustration 8: Default random harverst mask

2 new configuration sets are benched:

1. First one using default random harvest mask
value of 511

2. Second with mask value reduced to 351

Illustration 9: Result of reducing random harvest mask

This first full lab results shows we are far from our
objective regarding 10 Gigabit IMIX router:

• Both Gigabit routers (Netgate RCC-VE 4860
and PC Engines APU2) are able to reach the
expected throughput with default FreeBSD
11.1 parameters.

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 4/16

Flame Graph Search

__mtx_u..

random_h..
ip_..

t4_eth_rx

i..

h..

e..

netisr_dispatch_src

service_iq

mp_ring_enqu..

p..

uma_..

service_iq

b.. ether_output

eth..

eth..
eth..

ithread_loop

mp_..
arpresolve

t..

cxgbe_transmit

t4_intr

net..

ether_nh_input e..

__rw_rlock

i..

ip_tryforward

et..

t..

netisr_dispa..

m..
rn_ma..__rw_rlock

i..

ip_..

fib4_lookup_nh_basic

int..

ether_input

e..

l..

netisr_dispa..

ip_input

drain_ring

net..

c..

intr_event_execute_handlers

ether_output

_rw_runlock..
dra..

ether_input

h..

t4_intr

ether_demux
get_scatt..

n..

i..

s..

eth_tx

ip_tryforward

ether_nh_input

t4_..

n..
netisr_dispatch_src

cxg..

ser..

p..

t4_..
t..

ip_findroute

m..

l..

t4_eth_rx

e..

eth..

cxg..

fork_exit

_rw_r..

ip_input

p..

bcmpether_demux
_mt..

random_harvest_queue
rlock on ip_findrouterlock on arpreslove NIC drivers

& Ethernet path

Illustration 7: Forwarding path flamegraph

Setup
CPU (cores) & NIC

511 (default)
Median of 5

351
Median of 5

ministat

E5-2650v4 (2x12) & ixgbe
Xeon & Intel 82599ES

3.74 Mpps 3.78 Mpps No diff. proven at 95.0% confidence

E5-2650v4 (2x12) & cxgbe
Xeon & Chelsio T520

4.82 Mpps 4.87 Mpps No diff. proven at 95.0% confidence

E5-2650v4 (2x12) & ml4en
Xeon & Mellanox ConnectX-3 Pro

3.49 Mpps 3.92 Mpps 11.66% +/- 8.15%

E5-2650v4 (2x12) & ml5en
Xeon & Mellanox ConnectX-4 Lx

0 Mpps 0 Mpps System Overloaded

E5-2650v2 (8) & cxgbe
Xeon & Chelsio T540

5.76 Mpps 5.79 Mpps No diff. proven at 95.0% confidence

E5-2650v2 (8) & oce
Xeon & Emulex be3

1.33 Mpps 1.33 Mpps No diff. proven at 95.0% confidence

C2758 (8) & cxgbe
Atom & Chelsio T540

2.83 Mpps 3.17 Mpps 12.52% +/- 1.82%

C2758 (8) & ixgbe
Atom & Intel 82599ES

2.3 Mpps 2.43 Mpps 6.14% +/- 1.84%

C2558 (4) & igb
Atom & Intel I354

951 Kpps 1 Mpps 4.75% +/- 1.08%

GX412 (4) & igb
AMD & Intel I210

726 Kpps 749 Kpps 3.14% +/- 0.70%

• None of the 10 Gigabit routers was able to
reach the minimum 7Mpps.

• ml5en driver uses aggressive default
parameters that overload the kernel

The 2 network stack lock contention problems
(arpresolve and ip_findroute) need to be fixed.

F) arpresolve & ip_findroute

These 2 problems were already analysed and fixed a
few years ago by Yandex’s team: Alexander V.
Chernikov (melifaro@) and Andrey V. Elsukov (ae@)
and referenced into FreeBSD’s wiki7. Their work is
stored into the experimental projects/routing8. Andrey V.
Elsukov has refreshed patches related to arpreslove9 and
ip_findroute10 to FreeBSD -current. And they were
adapted to FreeBSD 11.1 for this study11

Illustration 11: Result of removing arpresolve &
ip_findroude locks

This second bench result shows huge performance
improvement allowing almost all 10Gigabit setup to
reach the minimal target of 7Mpps with the exception of
the Atom based servers and the Intel 82599ES.

Some remarks:

• Notice the very bad performance of Emulex
OneConnect (be3): This 10Gigabit NIC is not
able to reach the throughput of a simple gigabit
NIC (1.44Mpps) and there is no possibility to
configure the number of receiving and
transmitting queues too (hard-coded at 4)

• Notice the difference on the 24-core server
between Mellanox ConnectX-4 versus Chelsio
T520 & Intel 82599ES: This will be analysed

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 5/16

Illustration 10: Number of queues vs forwarding performance on patched FreeBSD 11.1

setup 11.1 11.1-Yandex ministat

E5-2650v4 (2x12) & ixgbe
Xeon & Intel 82599ES

3.78 Mpps 6.46 Mpps 73.58% +/- 7.3%

E5-2650v4 (2x12) & cxgbe
Xeon & Chelsio T520

4.87 Mpps 9.60 Mpps 95.36% +/- 3.8%

E5-2650v4 (2x12) & mlx4en
Xeon & Mellanox ConnectX-3 Pro

3.92 Mpps 8.01 Mpps 100.5% +/- 15.6%

E5-2650v4 (2x12) & mlx5en
Xeon & Mellanox ConnectX-4 Lx

0 Mpps 14.64 Mpps NA

E5-2650v2 (8) & cxgbe
Xeon & Chelsio T540

5.75 Mpps 10.9 Mpps 90.56% +/- 1.24

E5-2650v2 (8) & oce
Xeon & Emulex be3

1.33 Mpps 1.33 Mpps No diff. proven at 95.0% confidence

C2758 (8) & cxgbe
Atom & Chelsio T540

3.15 Mpps 4.2 Mpps 34.4% +/- 2.9%

C2758 (8) & ixgbe
Atom & Intel 82599ES

2.43 Mpps 3.08 Mpps 26% +/- 1.18

C2558 (4) & igb
Atom & Intel I354

1 Mpps 1.2 Mpps 20.17% +/- 2.56%

GX412 (4) & igb
AMD & Intel I210

747 Kpps 729 Kpps -2.37% +/- 0.58%

later in chapter Increasing default number of
NIC’s queue.

G) Forwarding performance scale on 8 core
single socket with AFDATA and RADIX patches

The bench measuring impact of the number of queues
vs throughput is run another time but with a Yandex
patched 11.1 in Illustration 10: Number of queues vs
forwarding performance on patched FreeBSD 11.1.

This graph shows a linear progression, but only if the
number of queues is a power-of-two: This can be
explained by a Chelsio’s RSS hash size optimized for a
power of two number of queue. During bootup, cxgbe
driver displays this warning if a non-optimum number
of queues is detected:

cxl0: nrxq (6), hw RSS table size (64); expect
uneven traffic distribution.
cxl1: nrxq (6), hw RSS table size (64); expect
uneven traffic distribution.

H) Increasing default number of NIC’s queue

Does the performance difference between Mellanox
ConnectX-4 versus Chelsio & Intel is related to the
default number of queues each driver creates? A new
bench forcing all these drivers to use the same number
of queues is started.

Bench result shows that increasing number RX queues
allows to reduce the difference between cxgbe and
mlx5en, and even allows the 10 gigabit Intel setup to
reach the minimum expected 7Mpps.

Illustration 12: Increasing default number of NIC's
queues

Notice that Mellanox ConnectX-3 didn’t allow user to
configure the number of queues.

I) Pining cxgbe queue’s interrupt to CPU

Letting the scheduler dynamically move NIC’s queue
interrupt from one core to another should be avoided.
Some NIC drivers (bxe, ixgbe, ixl, e1000, etc.) bind

queue interrupts to core but the cxgbe driver didn’t do
it: Is there a real benefit to pin cxgbe queue to the core?

A new bench using a simple RC shell script 12that bind
cxgbe queue is used. An example of this shell output:

~# service chelsio_affinity start
Bind t5nex0:0a IRQ 284 to CPU 0
Bind t5nex0:0a IRQ 285 to CPU 1
Bind t5nex0:0a IRQ 286 to CPU 2
Bind t5nex0:0a IRQ 287 to CPU 3
Bind t5nex0:0a IRQ 288 to CPU 4
Bind t5nex0:0a IRQ 289 to CPU 5
Bind t5nex0:0a IRQ 290 to CPU 6
Bind t5nex0:0a IRQ 291 to CPU 7

The bench result shows a very small improvement
(about 2%) on the 8-core setup:

x Xeon E5-2650v2 & cxgbe, default: inet4 packets-per-second
+ Xeon E5-2650v2 & cxgbe, IRQ pinned to CPU: inet4 packets-per-second
+--+
| + |
|xx xx x + + + +|
||___A___| |
| |___A_M_| |
+--+
 N Min Max Median Avg Stddev
x 5 10939210 10969716 10952795 10951860 12056.937
+ 5 11132364 11161395 11151483 11146670 12273.277
Difference at 95.0% confidence
 194810 +/- 17742.8
 1.77878% +/- 0.163429%
 (Student's t, pooled s = 12165.6)

Illustration 13: Pining queue interrupt to CPU

J) NUMA affinity

On the dual-socket server, a dmesg line catches our
attention:

t5nex0: <Chelsio T520-CR> mem 0xc9200000-0xc927ffff,0xc8000000-
0xc8ffffff,0xc9684000-0xc9685fff irq 50 at device 0.4 numa-domain 1 on pci14

Illustration 14: dmesg line about NUMA domain

On this server, the Chelsio card is plugged into a PCIe
bus managed by the second socket (numa-domain 1)
and not the first (numa-domain 0) one as show in the
Intel Xeon architecture diagram:

Intel Xeon Processor E5-2600 v4 Product Family: Platform Brief

numa-domain 1
CPU 12-23

numa-domain 0
CPU 0-11

Illustration 15: Intel Xeon E5-2600 NUMA and PCIe

Does the FreeBSD scheduler or NIC drivers are NUMA
aware and avoid the usage of QPI links?

Answering this question is done by configuring cxgbe
to use 12 queues and checking which cores are assigned
to them during a network performance bench:

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 6/16

Setup
E5-2650v4 (2x12

cores)

8 queues
(default for

ixgbe &
cxgbe)

24 queues
(default for

mlx5en)

ministat

ixgbe
Intel 82599ES

6.72 Mpps 8.07 Mpps 21.34% +/- 4.96%

cxgbe
Chelsio T520

9.59 Mpps 12.40 Mpps 29.45% +/- 0.37%

mlx5en
Mellanox ConnectX-4 Lx

7.26 Mpps 14.64 Mpps

Illustration 16: Default core usage on a NUMA system

FreeBSD 11.1 cxgbe driver is not NUMA aware: The
scheduler didn’t try to avoid assigning remote numa-
domain core to the NIC queue. But does the latency
induced by crossing the QPI link have an impact on the
forwarding network performance ?

Another bench using cxgbe forced to 12 queues with 3
configurations sets is started:

• Configuration 1: Default (no NUMA affinity)

• Configuration 2: All 12 cxgbe queues pined to
core 0 to 11 (remote numa-domain, should give
worse performance)

• Configuration 3: All 12 cxgbe queues pined to
core 12 to 23 (local numa domain, should give
best performance)

The bench result clearly shows an improvement of
about 12% with forced NUMA affinity on the same
numa-domain as the NIC’s PCIe bus:

x Xeon 2xE5-2650v4 & cxgbe, default: inet4 packet-per-seconds
+ Xeon 2xE5-2650v4 & cxgbe, affinity-numa0: inet4 packet-per-seconds
* Xeon 2xE5-2650v4 & cxgbe, affinity-numa1: inet4 packet-per-seconds
+--+
| +x * |
|+ x x + +x+ ** **|
| |____A__M_| |
| |_______A__M____| |
| |MA_||
+--+
 N Min Max Median Avg Stddev
x 5 9351036 9580847 9571249 9510859 98839.328
+ 5 9220385 9603697 9557225 9493098.6 154964.3
No difference proven at 95.0% confidence
* 5 10584085 10670945 10617361 10629374 35170.165
Difference at 95.0% confidence
 1.11851e+06 +/- 108191
 11.7604% +/- 1.25701%
 (Student's t, pooled s = 74182.7)

Illustration 18: NUMA affinity impact on forwarding
performance

K) Forwarding performance scale on 24-core
dual socket

The relation between number of queue on the 2x12 core
dual socket is benched with Chelsio, Mellanox and Intel
NIC:

This result shows the same benefit of keeping numbers
of queue to power of 2 with the cxbge and ixgbe
drivers: mlx5en driver didn’t have this restriction. There
isn’t any benefit to use all 24 queues here but only 16
because there is no more linear scale after 8 queues:
Theoretically this server should be able to reach the line
rate with only 11 queues but it have to use 16 queues
(so 16 cores) to reaching it.

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 7/16

last pid: 1080; load averages: 7.13, 3.04, 1.30
273 processes: 35 running, 125 sleeping, 113 waiting
CPU 0: 0.0% user, 0.0% nice, 0.0% system, 0.4% interrupt, 99.6% idle
CPU 1: 0.0% user, 0.0% nice, 0.0% system, 0.4% interrupt, 99.6% idle
CPU 2: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
CPU 3: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
CPU 4: 0.0% user, 0.0% nice, 0.0% system, 89.8% interrupt, 10.2% idle
CPU 5: 0.0% user, 0.0% nice, 0.0% system, 100% interrupt, 0.0% idle
CPU 6: 0.0% user, 0.0% nice, 0.0% system, 94.9% interrupt, 5.1% idle
CPU 7: 0.0% user, 0.0% nice, 0.0% system, 89.8% interrupt, 10.2% idle
CPU 8: 0.0% user, 0.0% nice, 0.0% system, 84.6% interrupt, 15.4% idle
CPU 9: 0.0% user, 0.0% nice, 0.0% system, 92.1% interrupt, 7.9% idle
CPU 10: 0.0% user, 0.0% nice, 0.0% system, 84.6% interrupt, 15.4% idle
CPU 11: 0.0% user, 0.0% nice, 0.0% system, 83.9% interrupt, 16.1% idle
CPU 12: 0.0% user, 0.0% nice, 0.0% system, 85.8% interrupt, 14.2% idle
CPU 13: 0.0% user, 0.0% nice, 0.0% system, 92.1% interrupt, 7.9% idle
CPU 14: 0.0% user, 0.0% nice, 0.0% system, 85.0% interrupt, 15.0% idle
CPU 15: 0.0% user, 0.0% nice, 0.0% system, 78.0% interrupt, 22.0% idle
CPU 16: 0.0% user, 0.0% nice, 0.4% system, 0.0% interrupt, 99.6% idle
CPU 17: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
CPU 18: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
CPU 19: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
CPU 20: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
CPU 21: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
CPU 22: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
CPU 23: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
Mem: 13M Active, 13M Inact, 1170M Wired, 6393K Buf, 248G Free

Scheduler
or drivers
not NUMA
aware

Numa-
domain 0

Numa-
domain 1

Illustration 17: Number of queues vs forwarding performance on dual-socket

L) NIC drivers tuning

Current NIC’s chipsets include lots of hardware
acceleration features. But server’s NIC are designed for
end-host usage and not a router usage, so some tuning
are required, here are some examples:

• Checksum offload (rxcsum, txcsum): to be kept
enabled.

• VLAN offload (vlanmtu, vlanhwtag,
vlanhwfilter, vlanhwcsum,…): to be kept
enabled too.

• TSO (TCP Segmentation Offload): split large
segments into MTU-sized packets. This feature
MUST be disabled on a router (and is
incompatible with ipfw NAT engine).

• LRO (Large Received Offload): Breaks the
end-to-end principle on a router so MUST be
disabled.

• Hardware resources reservation.

Theoretically the TSO and LRO features are useless of
a router, so a new bench compares these:

• Configuration set 1: LRO and TSO
enabled(default)

ifconfig_cxl0="inet 198.18.0.10/24"
ifconfig_cxl1="inet 198.19.0.10/24"

• Configuration set 2: LRO and TSO disabled

ifconfig_cxl0="inet 198.18.0.10/24 -tso4 -tso6 -
lro -vlanhwtso"
ifconfig_cxl1="inet 198.19.0.10/24 -tso4 -tso6 -
lro -vlanhwtso"

Bench result table in Illustration 19: Impact of disabling
TSO/LRO on forwarding performance.

Illustration 19: Impact of disabling TSO/LRO on forwarding
performance

This result confirms disabling TSO/LRO features do not
degrade forwarding performance.

Notice that on 2 identical servers (8core Atom
Supermicro 5018A-FTN4), the Chelsio NIC is able to
manage 1M pps more than the Intel NIC: 3.06Mpps vs
4.18Mpps.

So some Intel driver parameters were tested to try to
increase its performance:

• disabling adaptive interrupt moderation:
hw.ix.enable_aim

• Increasing maximum interrupts per second:
hw.ix.max_interrupt_rate

• Disabling limit of the maximum number of
received packets to process at a time:
hw.ix.rx_process_limit

And only the last parameter increases throughput:

Illustration 20: Intel drivers rx_process_limit tuning

Disabling the maximum limit for processing received
packets allows to increase the throughput by %22 on the
8-core Atom server. But this Intel NIC has still less 10%
throughput (3.85Mpps vs 4.18Mpps) than the Chelsio
NIC on the same server.

Regarding the Chelsio driver, the man page mention
some sysctl to disallowing (chipset) capabilities
preventing the firmware to not reserve hardware
resources for some features (TOE, RDMA, ISCSI,
FCOE). This is done by adding these line into the /boot/
loader.conf file:

hw.cxgbe.toecaps_allowed="0"
hw.cxgbe.rdmacaps_allowed="0"
hw.cxgbe.iscsicaps_allowed="0"
hw.cxgbe.fcoecaps_allowed="0"

And it gives interesting improvement (almost 20%
improvement):

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 8/16

Server
CPU (cores) & NIC

Enabled
(default)

Disabled ministat

E5-2650v4 (2x12) & ixgbe
Xeon & Intel 82599ES

7.97 Mpps 8.07 Mpps No difference proven at 95.0% confidence

E5-2650v4 (2x12) & cxgbe
Xeon & Chelsio T520

12.40 Mpps 12.40 Mpps No difference proven at 95.0% confidence

E5-2650v4 (2x12) & ml4en
Xeon & Mellanox ConnectX-3 Pro

8.05 Mpps 7.85 Mpps No difference proven at 95.0% confidence

E5-2650v4 (2x12) & ml5en
Xeon & Mellanox ConnectX-4 Lx

14.65Mpps 14.83 Mpps 1.3% +/- 0.1%

E5-2650v2 (8) & cxgbe
Xeon & Chelsio T540

10.84 Mpps 10.92 Mpps 0.74% +/- 0.26%

C2758 (8) & cxgbe
Atom & Chelsio T540

4.20 Mpps 4.18 Mpps No diff. proven at 95.0% confidence

C2758 (8) & ixgbe
Atom & Intel 82599ES

3.06 Mpps 3.06 Mpps No diff. proven at 95.0% confidence

C2558 (4) & igb
Atom & Intel I354

1.2 Mpps 1.2 Mpps No diff. proven at 95.0% confidence

GX412 (4) & igb
AMD & intel I210

729 Kpps 727 Kpps No diff. proven at 95.0% confidence

Server
CPU (cores) & NIC

100(igb), 256(ix),
default
median

-1 (disabled)
median

ministat

E5-2650v4 (2x12) & ixgbe
Xeon & Intel 82599ES

8.04 Mpps 8.34 Mpps 3.75% +/- 0.73%

C2758 (8) & ixgbe
Atom & Intel 82599ES

3.12 Mpps 3.85 Mpps 22.66% +/- 2.14%

C2558 (4) & igb
Atom & Intel I354

1.10 Mpps 1.13 Mpps 1.65% +/- 0.9%

GX412 (4) & igb
AMD & Intel I210

730 Kpps 735 Kpps No diff. proven at 95.0% conf.

x Xeon 2xE5-2650v4 & cxgbe, default caps enabled: inet4 packet-per-seconds
+ Xeon 2xE5-2650v4 & cxgbe, caps disabled: inet4 packet-per-seconds
+--+
|x +|
|x +|
|x +|
|x +|
|x +|
|A |
| A|
+--+
 N Min Max Median Avg Stddev
x 5 12411366 12413439 12411915 12412289 901.22767
+ 5 14796094 14800927 14799082 14798629 2169.6179
Difference at 95.0% confidence
 2.38634e+06 +/- 2422.83
 19.2256% +/- 0.0201158%
 (Student's t, pooled s = 1661.24)

Illustration 21: Disabling cxgbe caps

M) Tuning summary for a router

Here are the summary of all information learned to tune
a FreeBSD 11.1 router:

• Check for multiples IP flows to being correctly
distributed among each NIC’s queue

• Disable HyperThreading

• Exclude Ethernet packets & Interrupt as
entropy sources

• Apply Yandex’s AFDATA and RADIX locks
patches

• Use good NIC like Mellanox and Chelsio

• Increase Intel & Chelsio NIC drivers queues if
number of core > 8, and with Chelsio use a
number of queue = power of 2.

• Intel NIC driver: Remove maximum limit of
packets to process

• Chelsio driver: Prevent to reserve resources for
unused features

• Disable TSO and LRO

Translated into configuration parameters it gives:

/boot/loader.conf:

Disabling Hyper-threading

machdep.hyperthreading_allowed="0"

Remove limit of the maximum number of packets
to manage at once (Intel only)

hw.igb.rx_process_limit="-1"

hw.em.rx_process_limit="-1"

hw.ix.rx_process_limit="-1"

Increase number of cxgbe or Intel queue if
ncpu >8

This value should be a power of 2 with cxgbe.

Example of a 24-core server with cxgbe and
ixgbe:

hw.cxgbe.nrxq10g="16"

hw.cxgbe.ntxq10g="16"

hw.ix.num_queues="16”

Disabling cxgbe caps

hw.cxgbe.toecaps_allowed="0"
hw.cxgbe.rdmacaps_allowed="0"
hw.cxgbe.iscsicaps_allowed="0"
hw.cxgbe.fcoecaps_allowed="0"

/etc/rc.conf:

Exclude Ethernet packets and Interrupt from
entropy source

harvest_mask="351"

Disable TSO and LRO

ifconfig_X="YYY -tso4 -tso6 -lro -vlanhwtso

Applying Yandex patches on FreeBSD 11.1:

cd /usr/src

fetch
https://people.freebsd.org/~olivier/fbsd11.1.ae.
afdata-radix.patch

patch < fbsd11.1.ae.afdata-radix.patch

make buildkernel && make installkernel

Without these tuning parameters and patches, FreeBSD
11.1-RELEASE is not able to reach the minimum
7Mpps for a 10Gigabit router. But once patches and
tuning tips applied, the benefit is resumed here:

Illustration 22: Forwading tuning summary

III. SOME CONFIGURATIONS IMPACT

A) IPv6

All previous benches were done using IPv4 flows but
what about IPv6 flows?

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 9/16

Setup
CPU (cores) & NIC

Generic 11.1 Yandex patched
& tuned 11.1

ministat

E5-2650v4 (2x12) & ixgbe
Xeon & Intel 82599ES

3.74 Mpps 8.61 Mpps 127.93% +/- 8.44%

E5-2650v4 (2x12) & cxgbe
Xeon & Chelsio T520

4.83 Mpps 14.8 Mpps 204.3% +/- 4.80%

E5-2650v4 (2x12) & ml4en
Xeon & Mellanox ConnectX-3 Pro

3.92 Mpps 8.06 Mpps 126.9% +/- 7.77%

E5-2650v4 (2x12) & ml5en
Xeon & Mellanox ConnectX-4 Lx

0 Mpps 14.64 Mpps NA

E5-2650v2 (8) & cxgbe
Xeon & Chelsio T540

5.75 Mpps 11.15 Mpps 139.8% +/- 5.0%

E5-2650v2 (8) & oce
Xeon & Emulex be3

1.33 Mpps 1.33 Mpps No diff. proven at 95.0% confidence

C2758 (8) & cxgbe
Atom & Chelsio T540

2.83 Mpps 4.19 Mpps 50.49% +/- 5.33%

C2758 (8) & ixgbe
Atom & Intel 82599ES

2.29 Mpps 3.85 Mpps 66.97% +/- 2.7%

C2558 (4) & igb
Atom & Intel I354

951 Kpps 1.13 Mpps 18.58% +/- 1.17%

GX412 (4) & igb
AMD & Intel I210

726 Kpps 735 Kpps 1.03% +/- 0.56%

Illustration 23: IPv4 vs IPv6 forwarding performance

The IPv6 forwarding stack is not as efficient as the IPv4
and can performance penalty are between -3 to -20%.
Notice the exact same performance on the 8 core Atom
servers: The bottleneck is no more into NIC drivers but
moved into the IPv6 kernel stack.

B) VLAN tagging

Routers often use 802.1Q tagging on their network
interfaces. And, as seen previously, modern NIC
chipsets include VLAN tag accelerating features: So
performance impact should be minimum.

• Configuration set 1: No VLAN

ifconfig_cxl0="inet 198.18.0.10/24"

ifconfig_cxl1="inet 198.19.0.10/24"

• Configuration set 2: VLAN tagging

vlans_cxl0="2"

ifconfig_cxl0="up"

ifconfig_cxl0_2="inet 198.18.0.10/24"

vlans_cxl1="4"

ifconfig_cxl1="up"

ifconfig_cxl1_4="inet 198.19.0.10/24"

Illustration 24: VLAN tagging impact

The performance drop of -17% is massive but it’s a
known problem caused by the long path a tagged frame
needs to cross into FreeBSD network stack. An
experimental patch (once again from Yandex) fixing this
problem is in progress 13.

C) Jail/vnet (VIMAGE)

VNET is a powerful feature allowing to create isolated
network stack for jails. But it needs kernel option
VIMAGE that is not enabled by default on FreeBSD
11.1. The first step is to bench impact of just enabling
this kernel option, without using it.

E5-2650v2 & cxgbe
Xeon & Chelsio T540

GENERIC
(median)

Mpps

VIMAGE
(median)

Mpps

ministat

inet 4 forwarding 10.9 10.2 -6.25% +/- 0.29%

inet 6 forwarding 9.18 9.39 2.24% +/- 0.33

Illustration 25: VIMAGE impact of forwarding
performance

The performance degradation is very negligible (about -
6% on this setup) versus the benefit of VIMAGE.

The second step is to create a simple jail/vnet lab setup
to measuring the impact:

netmap‘s
pkt-gen

VNET jail

Illustration 26: Jail/vnet lab diagram

Configuration parameters for this lab:

/etc/rc.conf of the host:

ifconfig_cxl0="up -tso4 -tso6 -lro -vlanhwtso"

ifconfig_cxl1="up -tso4 -tso6 -lro -vlanhwtso"

jail_enable="YES"

jail_list="jrouter"

/etc/rc.conf of the jail/vnet:

gateway_enable=YES

ipv6_gateway_enable=YES

ifconfig_cxl0="inet 198.18.0.10/24"

ifconfig_cxl1="inet 198.19.0.10/24"

static_routes="generator receiver"

route_generator="-net 198.18.0.0/16
198.18.0.108"

route_receiver="-net 198.19.0.0/16 198.19.0.108"

E5-2650v2 & cxgbe
Xeon & Chelsio T540

No Jail VNET-Jail Ministat

inet 4 forwarding 10.8 Mpps 11.0 Mpps No diff. proven at 95.0% confidence

inet 6 forwarding 10.0 Mpps 10.0 Mpps No diff. proven at 95.0% confidence

Illustration 27: jail/vnet forwarding performance
Very big surprise: There is no performance penalty if
forwarding is done by a jail or the host system.

D) if_bridge

After creating multiple jail/vnet, the need for sharing
the same VLAN between multiple jail/vnet will follow.

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 10/16

x Xeon E5-2650v2 & cxgbe, no VLAN tagging: inet4 packets-per-second
+ Xeon E5-2650v2 & cxgbe, VLAN tagging: inet4 packets-per-second
+--+
|+ |
|+ xx|
|+++ xxx|
| |A||
|MA| |
+--+
 N Min Max Median Avg Stddev
x 5 10917371 10970686 10945136 10946743 22298.313
+ 5 9056449 9104195 9064032 9075563.7 21531.387
Difference at 95.0% confidence
 -1.87118e+06 +/- 31966.4
 -17.0935% +/- 0.267353%
 (Student's t, pooled s = 21918.2)

Setup
CPU (cores) & NIC

inet4 inet6 ministat

E5-2650v4 (2x12) & ixgbe
Xeon & Intel 82599ES

8.35 Mpps 8.12 Mpps -3.25% +/- 1.7%

E5-2650v4 (2x12) & cxgbe
Xeon & Chelsio T520

14.8 Mpps 14.47 Mpps -2.18% +/- 0.02%

E5-2650v4 (2x12) & ml4en
Xeon & Mellanox ConnectX-3 Pro

8.06 Mpps 7.71 Mpps -3.35% +/- 3.26%

E5-2650v4 (2x12) & ml5en
Xeon & Mellanox ConnectX-4 Lx

14.84 Mpps 14.29 Mpps -3.70% +/- 0.02%

E5-2650v2 (8) & cxgbe
Xeon & Chelsio T540

10.94 Mpps 9.18 Mpps -16.12% +/- 0.19%

C2758 (8) & cxgbe
Atom & Chelsio T540

4.29 Mpps 3.43 Mpps -19.08% +/- 1.61%

C2758 (8) & ixgbe
Atom & Intel 82599ES

3.81 Mpps 3.43 Mpps -9.84% +/- 1.3%

C2558 (4) & igb
Atom & Intel I354

1.23 Mpps 1.08 Mpps -11.79% +/- 0.5%

GX412 (4) & igb
AMD & Intel I210

734 Kpps 709 Kpps -3.6% +/- 0.70%

To sharing a LAN, if_bridge interface is the easiest
solution. But how the insertion of if_bridge into the
network stack impacts forwarding performance?

2 configuration sets are created: Once without bridge
and one with a bridge.

pkt-gen
cxl0

cxl1

bridge0

Illustration 28: if_bridge bench lab diagram

• Configuration set 1: No bridge

ifconfig_cxl0="inet 198.18.0.10/24"

ifconfig_cxl1="inet 198.19.0.10/24"

• Configuration set 2: Using a bridge

cloned_interfaces="bridge0"

ifconfig_bridge0="inet 198.18.0.8/24 addm cxl0
up"

ifconfig_cxl0="up"

ifconfig_cxl1="inet 198.19.0.10/24"

The massive performance degradation (-63%) is a big
surprise: if_bridge code is using lot’s on non-optimised
locking mechanism. Its usage needs to be avoided.

IV. TUNING FIREWALLS
PERFORMANCE

Disclaimer: All benches in this section have the unique
purpose of measuring the impact of firewalls
configurations on forwarding throughput. None of these
benches results can conclude than a firewall is better
than another because a firewall can't be reduced to its
only forwarding performance.

A) Firewalls impact on forwarding throughput

FreeBSD includes three firewalls (ipfw, pf and ipf) and
this bench, by using minimum rule set for each is
measuring their impact on the forwarding speed.

Configuration set 1: ipfw in stateful

#!/bin/sh

/sbin/ipfw -f flush

/sbin/ipfw add 3000 allow ip from any to any
keep-state

Configuration set 2: ipfw in stateless

#!/bin/sh

/sbin/ipfw -f flush

/sbin/ipfw add 3000 allow ip from any to any

Configuration set 3: pf in stateful

set skip on lo0

pass

Configuration set 4: pf in stateless

set skip on lo0

pass no state

Configuration set 5: ipf in stateful

pass in quick on lo0

pass out quick on lo0

pass in proto icmp from any to any keep state

pass out proto icmp from any to any keep state

pass out proto udp from any to any keep state

pass out proto udp from any to any keep state

pass in proto tcp from any to any flags S/SAFR
keep state

pass out proto tcp from any to any flags S/SAFR
keep state

Configuration set 6: ipf in stateless

pass out all

pass in all

Like all previous benches, 2000 UDP flows are
generated to being forwarded by the 8-core Xeon and
Chelsio setup for an objective of a 10Giga bit firewall

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 11/16

x Xeon E5-2650v2 & cxgbe, NO bridge: inet4 packets-per-second
+ Xeon E5-2650v2 & cxgbe, bridge: inet4 packets-per-second
+--+
| + x|
|++++ xx|
| |A|
||AM| |
+--+
 N Min Max Median Avg Stddev
x 5 11102006 11179490 11155098 11149783 28766.212
+ 5 4040161 4322481 4201494.5 4178806.5 113801.03
Difference at 95.0% confidence
 -6.97098e+06 +/- 121051
 -62.5212% +/- 1.05729%
 (Student's t, pooled s = 83000.5)

Illustration 29: if_bridge bench results

Only IPFW doesn’t hurt too much the forwarding
performance and allows this server to reach the
minimum of 7Mpps for keeping its “10Gigabit IMIX
stateless firewall” label.

Notice the bug regarding IPv6 performance with IPFW
in stateful mode. This bug was related to a bad hash
value and was fixed in head14 and 11-stable.

B) Number of rules impact

Once firewalls enabled, next step is to measure the
impact of number of rules. For each stateless firewall,
new configuration sets are generated by inserting some
number of non-matched rules before the last “allow all”.

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 12/16

Illustration 30: firewalls impact on throughput

Illustration 31: Number of firewalls rules impact on forwarding performance

• IPFW is very sensitive to the number of rules:
Starting at 10 rules we can already observe a
degradation.

• IPFW and IPF became almost useless at 1000
rules.

• PF is converting all the simple rule set into a
table. This bench is wrong because it didn’t
compare the same things: pf table vs ipfw & ipf
rules number.

C) Table size impact

To fixing the previous bench (number of rules impact),
a new bench is started but using the table concept. IPF
firewall doesn’t support table.

All deny rules used previously are replaced by a unique
table with a variable number of entries and result in
 Illustration 32: Firewall table size impact on
forwarding performance.

The behaviour between IPFW and PF is now equivalent
and this bench shows the importance of using table.
IPFW is useable as 10Gigabit IMIX stateless firewall.

D) Number of states impact

After the number of states or table size, the lookup
speed of the state table needs to be benched too. IPFW
and PF allow to configure 2 main parameters regarding
their state table:

• Default maximum number of state

• Default size for their state hash table

The major difference between IPFW and PF is that PF
creates 2 state entries for each flow (one state for each
direction): This bench will generate up to 5M of
unidirectional UDP flow, so:

• IPFW maximum state entry needs to be 5M

• PF maximum state entry needs to be 10M

But once increased the state table, the hash table needs
to be increased too: A simple cross-multiplication
between default values and targeted state table is used
for calculating the size of the hash table for IPFW and
PF.

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 13/16

Illustration 32: Firewall table size impact on forwarding performance

keys Default
value

Increased value

dynamic rules
net.inet.ip.fw.dyn_max

16 384 5 000 000

hash table size
[max_dyn / 64 ?]
(power of 2)
net.inet.ip.fw.dyn_buckets

256 65 536 (max)

Illustration 33: IPFW state table limit and size of hash
table

IPFW limit is 65 536 for its hash table size
(net.inet.ip.fw.dyn_buckets), so theoretically the
maximum number of states (net.inet.ip.fw.dyn_max)
should be about 4M, but the value of 5M is used for this
bench.

keys Default value Increased value

states limit
set limit { states X }

10 000 10 000 000

Hash table size
= state x 3
(power of 2)
net.pf.pf_states_hashsize

32 768 33 554 432
(max with 8GB RAM)

RAM consummed
(hashsize x 80)
vmstat -m | grep pf_hash

2.5Mb 2.5Gb

Illustration 34: PF state table limit and size of hash table

PF needs a power-of-2 value for its hash table size and
it allocates RAM for this table. So, once configured a
value of 33 554 432 for it (net.pf.pf_states_hashsize),

the maximum limit of number of state can be increased
to 10M.

• Configuration set 1: IPFW

/etc/sysctl.conf:

net.inet.ip.fw.dyn_max=5000000

net.inet.ip.fw.dyn_buckets=65535

/etc/ipfw.rules

#!/bin/sh

/sbin/ipfw -f flush

/sbin/ipfw add 3000 allow ip from any to any
keep-state

• Configuration set 2: PF

/boot/loader.conf:

net.pf.states_hashsize="33554432"

/etc/pf.conf

set limit { states 10000000 }

set skip on lo0

pass

This bench result is in Illustration 35: Number of states
impact on forwarding performance.

IPFW stateful engine didn’t scale once reached 100K
sessions while PF performance stay consistent.

A patch (“Make ipfw dynamic states lockless on fast
path”), written by Andrey V. Elsukov (Yandex), fixes

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 14/16

Illustration 35: Number of states impact on forwarding performance

IPFW stateful performance 15 and was committed into -
head. Amongst many improvements, the hash table size
didn’t have limitation anymore, so the last bench with
this patch applied on a FreeBSD 12-head is using these
updated ipfw values:

net.inet.ip.fw.dyn_max=5000000

net.inet.ip.fw.dyn_buckets=5000000

This patch correctly fixes stateful IPFW behaviour, but
still not enough to allow this 8-core Xeon server to be
called a “10 Gigabit IMIX Stateful Firewall”.

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 15/16

Illustration 36: Number of states impact with IPFW-lockless on forwarding performance

REFERENCES
1 https://www.freebsd.org/

2 http://www.ietf.org/rfc/rfc2544.txt

3 https://www.cisco.com/c/en/us/about/security-center/network-performance-metrics.html

4 https://en.wikipedia.org/wiki/Internet_Mix

5 https://github.com/luigirizzo/netmap

6 https://github.com/ocochard/BSDRP/blob/master/BSDRP/Files/usr/local/bin/nic-queue-usage

7 https://wiki.freebsd.org/ProjectsRoutingProposal

8 https://svnweb.freebsd.org/base/projects/routing/

9 https://people.freebsd.org/~ae/afdata.diff

10 https://people.freebsd.org/~ae/radix.diff

11 https://people.freebsd.org/~olivier/fbsd11.1.ae.afdata-radix.patch

12 https://github.com/ocochard/BSDRP/blob/master/BSDRP/Files/usr/local/etc/rc.d/chelsio_affinity

13 https://reviews.freebsd.org/D12040

14 https://svnweb.freebsd.org/base?view=revision&revision=309660

15 https://reviews.freebsd.org/D12685

Tuning FreeBSD for routing and firewalling, AsiaBSDCon 2018 Page 16/16

https://reviews.freebsd.org/D12685
https://svnweb.freebsd.org/base?view=revision&revision=309660
https://reviews.freebsd.org/D12040
https://github.com/ocochard/BSDRP/blob/master/BSDRP/Files/usr/local/etc/rc.d/chelsio_affinity
https://people.freebsd.org/~olivier/fbsd11.1.ae.afdata-radix.patch
https://people.freebsd.org/~ae/radix.diff
https://people.freebsd.org/~ae/afdata.diff
https://svnweb.freebsd.org/base/projects/routing/
https://wiki.freebsd.org/ProjectsRoutingProposal
https://github.com/ocochard/BSDRP/blob/master/BSDRP/Files/usr/local/bin/nic-queue-usage
https://github.com/luigirizzo/netmap
https://en.wikipedia.org/wiki/Internet_Mix
https://www.cisco.com/c/en/us/about/security-center/network-performance-metrics.html
http://www.ietf.org/rfc/rfc2544.txt
https://www.freebsd.org/

	ReferenceS
	Abstract
	I. Basic concepts
	A) Benchmarking a router
	B) Differences with RFC 2544
	C) Ethernet line rate references
	D) Throughput to bandwidth
	E) Benchmarking lab

	II. Tuning forwarding performance
	A) Multi-queue NIC & RSS
	B) Checking flow distribution between each queue
	C) Hyper-threading
	D) Relation between the number of cores and throughput
	E) Random Harvest Sources
	F) arpresolve & ip_findroute
	G) Forwarding performance scale on 8 core single socket with AFDATA and RADIX patches
	H) Increasing default number of NIC’s queue
	I) Pining cxgbe queue’s interrupt to CPU
	J) NUMA affinity
	K) Forwarding performance scale on 24-core dual socket
	L) NIC drivers tuning
	M) Tuning summary for a router

	III. Some configurations impact
	A) IPv6
	B) VLAN tagging
	C) Jail/vnet (VIMAGE)
	D) if_bridge

	IV. Tuning firewalls performance
	A) Firewalls impact on forwarding throughput
	B) Number of rules impact
	C) Table size impact
	D) Number of states impact

